GEA14954C 1.5 MW Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study of the Introduction of Renewable Energy in the EU
Study of the Introduction of Renewable Energy in the EU Report by INFORSE-Europe to the EU - Japan Centre for Industrial Cooperation February 2006 Study of the Introduction of Renewable Energy in the EU A report on current status and trends in renewable energy in the 25 EU countries, policies for renewable energy and energy efficiency, and the EU Emission Trading Scheme. Highlights of developments in the UK, Czech Republic and Hungary. Report by International Network for Sustainable Energy - Europe (INFORSE-Europe), www.inforse.org/europe for EU-Japan Centre for Industrial Cooperation, www.eujapan.com Main authors: Gunnar Boye Olesen Judit Szoleczky (Hungary) Pete West (United Kingdom) Emil Bedi (Czech Republic) Niki Fowler (Text Advice) February 2006 © Copyright EU Japan Centre for Industrial Cooperation, 2006. Quotation permitted if source is clearly stated. 2 Table of Contents 1. Introduction ..................................................................................................................................................3 1.1 Overview of EU Energy Sectors ............................................................................................................. 3 1.2 Latest Trends in Renewable Energy........................................................................................................ 5 2. EU Policy Trends in Renewable Energy and Energy Efficiency..............................................................6 2.1 Framework for Renewable Energy and Energy Efficiency.................................................................... -
2018 Annual Report WHERE YOU CAN FIND MORE INFORMATION Annual Report
2018 Annual Report WHERE YOU CAN FIND MORE INFORMATION Annual Report https://www.ge.com/investor-relations/annual-report Sustainability Website https://www.ge.com/sustainability FORWARD-LOOKING STATEMENTS Some of the information we provide in this document is forward-looking and therefore could change over time to reflect changes in the environment in which GE competes. For details on the uncertainties that may cause our actual results to be materially different than those expressed in our forward-looking statements, see https://www.ge.com/ investor-relations/important-forward-looking-statement-information. We do not undertake to update our forward-looking statements. NON-GAAP FINANCIAL MEASURES We sometimes use information derived from consolidated financial data but not presented in our financial statements prepared in accordance with U.S. generally accepted accounting principles (GAAP). Certain of these data are considered “non-GAAP financial measures” under the U.S. Securities and Exchange Commission rules. These non-GAAP financial measures supplement our GAAP disclosures and should not be considered an alternative to the GAAP measure. The reasons we use these non-GAAP financial measures and the reconciliations to their most directly comparable GAAP financial measures are included in the CEO letter supplemental information package posted to the investor relations section of our website at www.ge.com. Cover: The GE9X engine hanging on a test stand at our Peebles Test Operation facility in Ohio. Here we test how the engine’s high-pressure turbine nozzles and shrouds, composed of a new lightweight and ultra-strong material called ceramic matrix composites (CMCs), are resistant to the engine’s white-hot air. -
Vestas to Supply 35 MW of Turbines for Heavy Industry Sites in Belgium
News release from Vestas Northern and Central Europe Hamburg, 30 June 2021 Vestas to supply 35 MW of turbines for heavy industry sites in Belgium Vestas has received a 35 MW order to supply turbines to two projects being developed for corporate heavy industry in Belgium, including providing renewable power for steel production. The two projects are being developed by Storm, a Belgian wind farm developer and owner-operator, and are both located in the industrial harbour of Ghent, Belgium. Storm is developing the 31 MW ArcelorMittal Wind Farm, which will comprise of three V162-6.0 MW EnVentus turbines, two V150-4.2 MW turbines operating at 4.3 MW power mode, and one V150-4.2 MW turbine. The three EnVentus turbines are the first to be installed in Belgium, and will be the largest turbines installed onshore in Belgium. They will be built subsidy-free on the basis of a 20-year corporate PPA with ArcelorMittal. The ArcelorMittal Wind Farm will be powering the ArcelorMittal steel manufacturing plant in Ghent, providing the electricity for steel production. The turbines will also be equipped with Vestas’ Anti-Icing System, enhancing performance by improving power production in cold climate conditions. At a separate project, the 4.2 MW Honda Gent Wind Farm, which is also being developed by Storm, Vestas will deliver one V136-4.2 MW turbine. The power from this project will be used by Honda Motor Europe’s logistics centre in Ghent. Vestas will supply, install, and commission turbines at both sites. At both sites, Vestas will provide service through long-term 20-year Active Output Management 4000 (AOM 4000) service agreements, providing power performance certainty and Vestas’ industry-leading service expertise throughout the lifetime of the projects. -
Annual Report FORWARD-LOOKING STATEMENTS
2019 Annual Report FORWARD-LOOKING STATEMENTS Some of the information we provide in this document is forward-looking and therefore INSIDE FRONT COVER could change over time to reflect changes in the environment in which GE competes. For details on the uncertainties that may cause our actual results to be materially different Wysheka Austin, Senior Operations than those expressed in our forward-looking statements, see https://www.ge.com/ Manager, works on a combustion unibody investor-relations/important-forward-looking-statement-information. for GE Gas Power’s 7HA gas turbine in Greenville, South Carolina. We do not undertake to update our forward-looking statements. NON-GAAP FINANCIAL MEASURES COVER We sometimes use information derived from consolidated financial data but not presented Kevin Jones, a Development Assembly in our financial statements prepared in accordance with U.S. generally accepted accounting Mechanic, performs a perfection review on principles (GAAP). Certain of these data are considered “non-GAAP financial measures” the propulsor for GE Aviation’s GE9X engine under the U.S. Securities and Exchange Commission rules. These non-GAAP financial before it is shipped for certification testing. measures supplement our GAAP disclosures and should not be considered an alternative to the GAAP measure. The reasons we use these non-GAAP financial measures and the reconciliations to their most directly comparable GAAP financial measures can be found on pages 43-49 of the Management’s Discussion and Analysis within our Form 10-K and in GE’s fourth-quarter 2019 earnings materials posted to ge.com/investor, as applicable. Dear fellow shareholder, Over 60 GE wind turbines work together at Meikle Wind Farm, the largest wind farm in Western Canada, to generate enough energy to power over 54,000 homes in British Columbia. -
U.S. Offshore Wind Power Economic Impact Assessment
U.S. Offshore Wind Power Economic Impact Assessment Issue Date | March 2020 Prepared By American Wind Energy Association Table of Contents Executive Summary ............................................................................................................................................................................. 1 Introduction .......................................................................................................................................................................................... 2 Current Status of U.S. Offshore Wind .......................................................................................................................................................... 2 Lessons from Land-based Wind ...................................................................................................................................................................... 3 Announced Investments in Domestic Infrastructure ............................................................................................................................ 5 Methodology ......................................................................................................................................................................................... 7 Input Assumptions ............................................................................................................................................................................................... 7 Modeling Tool ........................................................................................................................................................................................................ -
Suzlon Group: Fact Sheet
Suzlon Group: Fact Sheet Suzlon Group Suzlon Group, consisting of Suzlon Energy Limited (SEL) and its global subsidiaries, is India’s largest renewable energy solutions provider with presence in 18 countries across six continents. Suzlon has a strong presence across the entire wind value chain with a comprehensive range of services to build and maintain the projects, which include design, supply, installation, commissioning of the project and dedicated life cycle asset management services. Suzlon Group is a market leader in India with over 11.9 GW of installed capacity and global installation of ~ 17.9 GW spread across 17 countries in Asia, Australia, Europe, Africa and Americas. Suzlon’s Global wind installations help in reducing ~38 million tonnes of CO2 emissions every year. The company has an installed manufacturing capacity of 4,200 MW wind turbine generators spread across three Nacelle units in India and one unit in China (Joint venture). Suzlon boasts of a wide range within its 2.1 MW suite of products with varying rotor blade and tower heights suitable for all wind regimes. o The S111-120m (120 meter hub height), lattice-tubular tower prototype turbine commissioned in Gujarat in March 2016 achieved ~42% plant load factor (PLF). It received Type Certification in June, 2016. o The S111-140m (140 meter hub height), is the tallest lattice-tubular tower in the country. The prototype set up in August 2017 at Kutch, Gujarat, has received its Type Certification. It is expected to deliver 44% plant load factor (PLF) than earlier products on the same site location and wind conditions. -
Wind Energy & Wildlife
WIND ENERGY & WILDLIFE: Benefits for companies purchasing wind energy, wind Site it Right energy developers and financiers, consumers, and wildlife. central great plains grasslandscollaborating to conserve America’s most impacted habitat THE CHALLENGE The Nature Conservancy supports the development of A REAL LIFE EXAMPLE: renewable energy, such as wind, as an emission-free source of electricity. Economically viable wind resources Company XYZ was looking to purchase wind-generated and ecologically important areas, however, show some electricity, both to meet forecasted energy needs, and to overlap in the Central Great Plains. This overlap raises satisfy the company’s own initiative for sustainability, concerns that wildlife populations may be seriously which promotes the use of renewable energy, along impacted by commercial wind energy development. As a with other sustainable practices. XYZ issued a request for proposals for 100 megawatts (MW) of wind energy, result, power purchasers should be aware of this overlap, beginning in 2017. Several proposals were received and and more importantly, know how to avoid wildlife XYZ reviewed them, selecting company “ABC” as the impacts and the risks of procuring wind power from lowest-cost provider. A power purchase agreement was projects sited in sensitive habitat areas. signed, and XYZ’s CEO was pleased. rasslands are an important part of Gthe country’s cultural, economic and natural history, and are the most altered and least conserved landscapes on earth. The results of this decline are staggering. Almost three-quarters of the breeding bird species in the United States survive in the prairies of the Great Plains. Historically, some of these birds were widely distributed and found in vast numbers. -
Board of Directors
Alstom update December 3, 2015 CAUTION CONCERNING FORWARD-LOOKING STATEMENTS: This document contains "forward-looking statements" – that is, statements related to future, not past, events. In this context, forward-looking statements often address our expected future business and financial performance and financial condition, and often contain words such as "expect," "anticipate," "intend," "plan," "believe," "seek," "see," "will," "would," or "target." Forward-looking statements by their nature address matters that are, to different degrees, uncertain, such as statements about our announced plan to reduce the size of our financial services businesses, including expected cash and non-cash charges associated with this plan; expected income; earnings per share; revenues; organic growth; margins; cost structure; restructuring charges; cash flows; return on capital; capital expenditures, capital allocation or capital structure; dividends; and the split between Industrial and GE Capital earnings. For us, particular uncertainties that could cause our actual results to be materially different than those expressed in our forward-looking statements include: obtaining (or the timing of obtaining) any required regulatory reviews or approvals or any other consents or approvals associated with our announced plan to reduce the size of our financial services businesses; our ability to complete incremental asset sales as part of that plan in a timely manner (or at all) and at the prices we have assumed; changes in law, economic and financial conditions, -
5 Minute Wind Forecasting Challenge: Exelon and GE's Predix
The 5 Minute Wind Forecasting Challenge: Exelon and GE’s Predix At a Glance A move toward digital industrial transformation As a leading utility company with more than $31 billion in global Renewable Energy revenues in 2016 and over 32 gigawatts (GW) of total generation, Exelon knows the importance of taking a strategic view of digital transformation across its lines of business. Challenge Exelon sought to optimize wind power forecasting by predicting wind Exelon was developing strategies for managing its various generation ramp events, enabling the company to dispatch power that could not be assets across nuclear, fossil fuels, wind, hydro, and solar power as well monetized otherwise. The result is higher revenue for Exelon’s large-scale wind farm operations. as determining how it would leverage the enormous amount of data those assets would generate going forward. Solution GE and Exelon teams co-innovated to build a solution on Predix that In evaluating its strategies, the company reviewed its current increases wind forecasting accuracy by designing a new physical and statistical wind power forecast model that uses turbine data on-premises OT/IT infrastructure across its entire energy portfolio. together with weather forecasting data. This model now represents Business leaders looked at the system administration challenges the industry-leading forecasting solution (as measured by a substantial and costs they would face to maintain the current infrastructure, let reduction in under-forecasting). alone use it as a basis for driving new revenue across its business Results units. This assessment made digital transformation an even greater Exelon’s wind forecasting prediction accuracy grew signifcantly, enabling imperative, and inspired discussions about how Exelon could leverage higher energy capture valued at $2 million per year. -
Wind Power: Energy of the Future It’S Worth Thinking About
Wind power: energy of the future It’s worth thinking about. »Energy appears to me to be the first and unique virtue of man.« Wilhelm von Humboldt 2 3 »With methods from the past, there will be no future.« Dr. Bodo Wilkens Wind power on the increase »Environmental protection is an opportunity and not a burden we have to carry.« Helmut Sihler When will the oil run out? Even if experts cannot agree on an exact date, one thing is certain: the era of fossil fuels is coming to an end. In the long term we depend on renewable sources of energy. This is an irrefutable fact, which has culminated in a growing ecological awareness in industry as well as in politics: whereas renewable sources of energy accounted for 4.2 percent of the total consumption of electricity in 1996, the year 2006 registered a proportion of 12 per- cent. And by 2020 this is to be pushed up to 30 percent. The growth of recent years has largely been due to the use of wind power. The speed of technical development over the past 15 years has brought a 20-fold rise in efficiency and right now wind power is the most economical regenerat- ive form there is to produce electricity. In this respect, Germany leads the world: since 1991 more than 19.460 wind power plants have been installed with a wind power capacity of 22.247 MW*. And there is more still planned for the future: away from the coastline, the offshore plants out at sea will secure future electricity supplies. -
Vestas Wins 97 MW Order for Wind Project in Australia
Page 1 of 2 News release from Vestas Asia Pacific Singapore, 14 December 2020 Vestas wins 97 MW order for wind project in Australia In partnership with Global Power Generation, a subsidiary of the multinational power company Naturgy Group, Vestas has secured a 97 MW deal for the Hawkesdale Wind Farm in Victoria, Australia. The project will feature 23 V136-4.2 MW wind turbines which Vestas will supply and install. Upon completion, Vestas will also deliver a 15-year Active Output Management 5000 (AOM 5000) service agreement. With an energy-based availability guarantee, the service agreement will maximise the energy production of the fleet and provide Global Power Generation (Naturgy Group) with long-term business case certainty. The deal follows Vestas’ recent announcement of the second stage of the Berrybank wind project and the Ryan Corner wind project, two new Victorian wind parks to be developed with Global Power Generation. Together, the three projects will export a total of 425 MW of clean energy to the Australian grid. “We are proud that customers from all around the world turn to Vestas for our leading technology, market experience, broad service solutions and ultimately, the best return on investment for their wind project”, said Clive Turton, President of Vestas Asia Pacific. “Global Power Generation is a valued customer to Vestas globally and we look forward to building on our existing partnership through the delivery of Hawkesdale Wind Farm”. “Global Power Generation is very pleased to continue its partnership with Vestas as OEM and long-term maintenance service provider for Hawkesdale Wind Farm”, said Pedro Serrano, Chief Business Development Officer, Global Power Generation. -
Commercialization of Energy Storage Technologies
Commercialization of Energy Storage Technologies PECC International Project Energy Transition and New Economic Models 2013-2014 Energy transition: Making the most out of available resources Victoria, BC, Canada November 08 2013 CONFIDENTIAL Presentation Agenda • Introduction to SDTC’s clean technology commercialization model • Demand Drivers for Energy Storage (ES) and Renewable Energy (RE) Integration • Technology Configurations and SDTC ES Portfolio Company Summary • ES Market Size and Potential • Regulatory Policy and Market Rules Support for ES CONFIDENTIAL 2 External Sources Acknowledgement • Sandia National Labs • DOE/ EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA July 2013 • Energy Storage for the Electicity Grid: Benefits and Market Potential Assessments Guide, A Study for the DOE Energy Storage System Program Feb 2010 • EPRI (Electric Power Research Institute) • Electricity Energy Storage Technology Options 23-Dec-2010 • Lux • Grid Storage Under the Microscope: Using Local Knowledge to Forecast Global Demand March 2012 • Roland Berger Strategy Consultants CONFIDENTIAL 3 SDTC Mission and Mandate • SDTC is a policy delivery instrument of the Government of Canada to deliver environmental and economic benefits to Canadians. • As a delivery agent, we foster the development and demonstration of technological solutions that address: • Clean Air • Clean Water • Climate Change • Clean Land • Forge innovative partnerships and build a sustainable development technology infrastructure. • Ensure timely diffusion - increase