1 Studies in the Development of Experimental

Total Page:16

File Type:pdf, Size:1020Kb

1 Studies in the Development of Experimental 1 STUDIES IN THE DEVELOPMENT OF EXPERIMENTAL PHARMACOLOGY IN THE EIGHTEENTH AND EARLY NINETEENTH CENTURIES A Thesis presented by MELVIN PETER EARLES for the degree of Doctor of Philosophy in the University of London. University College, October, 1961. London. 2 ABSTRACT General pharmacology in -the seventeenth and eighteenth centuries is considered (Parts 1 and 2). Reference is made to some criticisms of the contemporary materia medica and -to early attempts at a scientific investigation of drugs and poisons. The studies of vegetable drugs by Stoerk and Withering are discussed to illustrate the problems associated with pharmaco-dynamic studies in clinical practice. Part 3 describes the experiments with drugs arid poisons carried out in -the eighteenth century. Parti- cular reference is made to experimental studies of cherry laurel, arrow-poisons, viper venom and opium. The influence of this work on the history of experimental pharmacology is considered in a discussion concerning the recognition of animal experiments as a valid contribution to pharmacology and human medicine. In Part 4 the factors contributing to advances in posology are discussed with particular reference to experi- mental studies and to the isolation of active constituents of drugs. Part is concerned with the development of knowledge concerning the mode of action of drugs and poisons, in particular with the problem of the manner in 3 which a substance can affect an organ situated at a dis- tance from the site of administration. These sections of the thesis include a study of the work of some inves- tigators in the early nineteenth century with particular reference to some early researches by Fran9ois Magendie. 4 COITTENTS Page No. ACKNOWLEDGEMENTS 8 INTRODUCTI ON 9 1. DEVELOPMENTS IN PHABDIACOLOGY DURING TI1E SEVENTEENTH CENTURY 15 1. Materia ivfedica and Therapeutics 15 a. The origins of the inateria medica b. The influence of dogmatic medicine c. The study of the action of drugs in clinical practice. ii. Criticisms of the Materia Medica 27 iii. Development of Methods for the Investi- gation of Drugs and Poisons. 31 a. Determination of effects by refer- ence to morphological and sensory characters. b. The study of drugs and poisons by chemical analyciB. iv. Experimental Pharriacology in the Seventeenth Century. 38 v. Knowledge and Theories concerning the Mode of Action of Drugs and Poisons. 58 5 Page No. 2. GENERAL AND OFFICIAL PHARMACOLOGY IN THE EIGHTEENTH CENTURY 70 1. The Medical Systems 70 ii. Changes in the Official Materia Medlca 75 iii. Pharmacological Classifications 85 iv. Pharmacotherapeutic Studies of Hemlock, Digitalis and other Vegetable Poisons 89 3 ' EXPERIMENTS ON ANIMALS WITH DRUGS AND POISONS IN THE EIGHTEENTH CENTURY 110 i. Experiments by Stephen Hales with some 'common Liquors'. 110 ii. Experiments with Cherry-laurel Water 119 iii. Experiments with Arrow Poisons 135 iv. Experiments with Opium 157 a. Experimental studies on opium before 1750 b. The Whytt-Haller controversy con- cerning the action of opium c. Experiments by Alexander Monro with opium, camphor and alcohol v. Felice Fontana - Experiments in Pharma- cology and Toxicology, 1764-1781. 199 a. Studies of the viper venom. 6 Page No. b. Studies of' tiounas arrow poison c. Studies of' solutions prepared from cherry-laurel leaves d. Studies of opium vL Studies with Oputn, 1782-1800 279 vii The Recognition of the Place or Role of the Experimental Liethod in Pharmacology 305 4. DEVELOPMENTS IN KNO7LEDGE OF DOSE AND EPYECT 321 i. Standardization of Drugs and Poisons 326 ii. Scientific Studies relating to Dose 328 a. Studies of therapeutic doses b. The application of dose in experi- mental studies on drugs and poisons iii. Development of Knowledge concerning the Active Constituents of Drugs and Poisons 45 5. II0WLEDGE CONCERNING THE I'IODE OP ACTION OF DRUGS AND P015 ONS 368 BIBLIOGRAPHY 419 - 7 ILLUSTRATI ONS Plate I The elements, qualities & humours II Injection into the vein of a dog From Elsholz, Olysmatica Nova, 1667 III 7epfer's report of an experiment with nux vornica. Prom Cicutae .AQuatica, 1679 IV Linnean classification of medicines From Materia Medica, De Plantis, 1740 V Diagrams to illustrate the technique used by Fontana for injection into a vein. VI Sketch to illustrate Fontana's experiment of immersing the nerves of a frog in a solution of opium. VII Table of doses calculated by Cockburn. From Philosohioal Transactions, vol.28, 1708 VIII Bernard's modification of Magendie's experiment with the isolated limb. From Lecons de Physiologie Operatoire, 1879. Plates II, II, IV and VIII are by courtesy of the Welicornellistorical Medical Library. Plate VII is by courtesy of the Science Museum Library. 8 ACKNOWLEDGEMENTS I wish to express my gratitude to Professor D. McKie, Professor of History and Philosophy of Science, University College, for his encouragement and advice throughout the course of my work. Also to Professor H. 0. Schild, Professor of Pharmacology, University College, who has read my manuscript and advised on its technical content. I acknowledge the valuable assistance of Dr. Poynter and his staff of the Weilcome Historical Medical Library, Miss Lothian and Miss Jones of the Library of the Pharmaceutical Society, the librarians and staffs of the :Bri-tish Museum Reading Room, the British Museum Library (Natural History), the Patent Office Library, the Science Museum Library, the Library of University College, the Chelsea Public Library, the Library of the Royal Society of Medicine and the Library of the London Medical Society. Finally I wish to thank my wife, Yolande, for her assistance in checking the manuscript and for her patience at my frequent neglect of domestic duties during the course of this work. 9 INTRODUCTI ON A number of physicians in the seventeenth and eighteenth centuries, influenced by developments in experimental science, began to take a more critical view of the large collection of real and supposed remedies then in common use. The gradual rationalization of the materia medics that folloved, resulted in the simplifica- tion of the eighteenth-century pharniacopoelas and the deletion of superstitious and traditional remedies. Deletion, however, is a negative process and this rejec- tion of the inert, when once initiated by more rational modes of thought, required little more than experience and common sense to accomplish it. The study of the active materials on the other hand demanded more positive and objective methods of approach. In the late seventeenth century attempts were made to define and predict medicinal action by a study of the sensory, botanical and chemical characteristics of drugs. These methods, although achieving a limited success with some drugs, did not yield the results neces- sary to establish a reliable therapeutic or pharniaco- dynamic classification, and still less lead to a knowledge of the mode of action. The two principal sources of 10 information leading to such a knowledge are (i) objective experimentation on animals and (ii) clinical practice. In the eighteenth century the greater care and precision that developed in clinical practice gave rise, in a few cases, to &iore objective reporting of the effects of drugs, but this source did not contribute greatly to knowledge concerning pharrnacodynamic action. The best known examples are the studies by Anton Freiher: von Stoerk with hemlock, stramonium, aconi-te and coichicurn, and William Withering's study of digitalis. It must be remembered, however, that in these excellent studies the reporting of pharniacodynamic effects was secondary to the therapeutic purpose of the work which was directed to the relief of certain symptoms. Likewise many animal experiments carried out during this period were undertaken with therapy in mind. Here, how- ever, because the observations were made on healthy animals, -the results were more productive of a knowledge of the true pharmacological effects of the substances inves- tigated. In -this thesis a number of these animal experi- ments have been studied in order to show that, although they were primarily made for therapeutic, toxicological or physiological purposes, they were none the lees concerned with some problems of phartnacology and might, therefore, be rightly considered as part of the history of that subject. 11 It is necessary a-t -this poinl to give some consideration to what is meant by pharmacology since its exact meaning has changed over the years and even today is variably defined. The word is derived f•rom the Greek Pharmakon - a remedy. John Schroeder in his Pharmacopoeia Medico-chymica (Lugduni, 1649) used the term Pharmacologia and William Rowland in an English edition (London, 1669) translated this into Pharmacology. Rowland described pharmacology as "the Art of making Medicines" and later in Nathaniel Bailey's An Universal Etymological English Dictionary (London, 1721), it is defined as a "Treatise concerning the Art of Preparing Medicines". The word subsequently assumed a much wider meaning. Jonathon Pereira in his textbook on -the materia medica, first published in 1839, defined pharmacology as a branch of therapeutics devoted to a consideration of medicines. He divided the subject into pharmacogriosia, -the study of crude drugs, pharmacy, -the preparation and dispensing of medicines, and pharmaco-dynamics, which treats of the effects and uses of medicines. A number of modern medical and general dictionaries continue to define the word as "the science of the effects of drugs'1 but in Germany and in the English-speaking world this definition is no longer exact. In the latter half of 12 the nineteenth century Rudolf Buchheim and his pupil Oswald Schiniedeberg of the University of Dorpat freed pharmacology from traditional therapeutio so that sub- stances were grouped according to their chemical nature and phartuacodynainic action instead of their therapeutic effects. The modern pharmacology which has developed from this movement is, therefore, more accurately defined as the experimental investigation of the action of natural and synthetic substances on healthy animal tissues.
Recommended publications
  • Notes to the Note on the Text and Introduction
    Notes Notes to the Note on the Text and Introduction i. Mandeville’s address is repeated at the end of the Preface: “From my House in Manchester-Court, Channel-Row, Westminster.” ii. A Treatise of the Hypochondriack and Hysterick Passions, vulgarly call’d the hypo in men and vapours in women; In which the Symptoms, Causes, and Cure of those Diseases are set forth after a Method intirely new. The whole interspers’d, with Instructive Discourses on the Real art of Physick it self; And Entertaining Remarks on the Modern Practice of Physicians and Apothecaries; Very useful to all, that have the Misfortune to stand in need of either. In three dialogues. By B. de Mandeville, M.D. (London, printed for and to be had of the author, at his house in Manchester-Court, in Channel- Row, Westminster; and D. Leach, in the Little-Old-Baily, and W. Taylor, at the Ship in Pater-Noster-­Row, and J. Woodward in Scalding-Alley, near Stocks-Market, 1711). The second 1711 issue bears the following publica- tion details: “London, printed and sold by Dryden Leach, in Elliot’s Court, in the Little-Old-Baily, and W. Taylor, at the Ship in Pater-Noster-Row, 1711”. The 1715 reprint bears the same title with different publication details (London, printed by Dryden Leach, in Elliot’s Court, in the Little Old-Baily, and sold by Charles Rivington, at the Bible and Crown, near the Chapter-House in St. Paul’s Church Yard, 1715). A Treatise of the Hypochondriack and Hysterick Diseases. In three dialogues.
    [Show full text]
  • 2017 Stevens Helen 1333274
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Paradise Closed Energy, inspiration and making art in Rome in the works of Harriet Hosmer, William Wetmore Story, Elizabeth Barrett Browning, Nathaniel Hawthorne, Sophia Peabody Hawthorne, Elizabeth Gaskell and Henry James, 1847-1903 Stevens, Helen Christine Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Paradise Closed: Energy, inspiration and making art in Rome in the works of Harriet Hosmer, William Wetmore Story, Elizabeth Barrett Browning, Nathaniel Hawthorne, Sophia Peabody Hawthorne, Elizabeth Gaskell and Henry James, 1847-1903 Helen Stevens 1 Thesis submitted for the degree of PhD King’s College London September, 2016 2 Table of Contents Acknowledgements ....................................................................................................
    [Show full text]
  • Amanita Muscaria (Fly Agaric)
    J R Coll Physicians Edinb 2018; 48: 85–91 | doi: 10.4997/JRCPE.2018.119 PAPER Amanita muscaria (fly agaric): from a shamanistic hallucinogen to the search for acetylcholine HistoryMR Lee1, E Dukan2, I Milne3 & Humanities The mushroom Amanita muscaria (fly agaric) is widely distributed Correspondence to: throughout continental Europe and the UK. Its common name suggests MR Lee Abstract that it had been used to kill flies, until superseded by arsenic. The bioactive 112 Polwarth Terrace compounds occurring in the mushroom remained a mystery for long Merchiston periods of time, but eventually four hallucinogens were isolated from the Edinburgh EH11 1NN fungus: muscarine, muscimol, muscazone and ibotenic acid. UK The shamans of Eastern Siberia used the mushroom as an inebriant and a hallucinogen. In 1912, Henry Dale suggested that muscarine (or a closely related substance) was the transmitter at the parasympathetic nerve endings, where it would produce lacrimation, salivation, sweating, bronchoconstriction and increased intestinal motility. He and Otto Loewi eventually isolated the transmitter and showed that it was not muscarine but acetylcholine. The receptor is now known variously as cholinergic or muscarinic. From this basic knowledge, drugs such as pilocarpine (cholinergic) and ipratropium (anticholinergic) have been shown to be of value in glaucoma and diseases of the lungs, respectively. Keywords acetylcholine, atropine, choline, Dale, hyoscine, ipratropium, Loewi, muscarine, pilocarpine, physostigmine Declaration of interests No conflicts of interest declared Introduction recorded by the Swedish-American ethnologist Waldemar Jochelson, who lived with the tribes in the early part of the Amanita muscaria is probably the most easily recognised 20th century. His version of the tale reads as follows: mushroom in the British Isles with its scarlet cap spotted 1 with conical white fl eecy scales.
    [Show full text]
  • Experimental Pharmacology and Therapeutic Innovation in the Eighteenth Century
    -e: EXPERIMENTAL PHARMACOLOGY AND THERAPEUTIC INNOVATION IN THE EIGHTEENTH CENTURY by ANDREAS-HOLGER MAEHLE A thesis submitted for the degree of Doctor of Philosophy of the University of London University College London 1996 ProQuest Number: 10017185 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10017185 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT In the historiography of pharmacology and therapeutics, the 18th century is regarded as a period of transition from traditional, Galenistic materia medica to the beginnings of modern, experimental drug research. Ackerknecht (1973) characterized the pharmacotherapy of this period as a "chaotic mixture of chemiatric and Galenistic practices", yet acknowledged an "increasing tendency toward empiricism, partly even true experimentalism". This thesis explores this transitional phase for the first time in depth, examining the relations between pharmacological experimentation, theory-building, and therapeutic practice. Furthermore, ethical aspects are highlighted. The general introduction discusses the secondary literature and presents the results of a systematic study of pharmacological articles in relevant 18th-century periodicals. The identified main areas of contemporary interest, the spectrum of methods applied, and the composition of the authorship are described and interpreted.
    [Show full text]
  • Public Cultii En
    Ursula Klein MPIWG Berlin [email protected] The Public Cult of Natural History and Chemistry in the age of Romanticism In einem Zeitalter wo man alles Nützliche mit so viel Enthusiasmus auffasst… (I. v. Born und F. W. H. v. Trebra)1 The chemical nature of the novel, criticism, wit, sociability, the newest rhetoric and history thus far is self-evident (F. Schlegel)2 Chemistry is of the most widespread application and of the most boundless influence on life (Goethe)3 In May 1800 the philosopher and theologian Friedrich Daniel Ernst Schleiermacher wrote his sister Charlotte that at the time he was attending in Berlin “lectures about all kinds of sciences, … among others about chemistry.”4 The “chemistry” to which he was referring were the regular public lectures given by the Berlin chemist and apothecary Martin Heinrich Klaproth starting in 1783. The theologian-philosopher’s interest in chemistry was by no means superficial, as his lecture notes document.5 What was it about chemistry of that time that fascinated Schleiermacher? Goethe’s Elective Affinity (“Wahlverwandtschaft”) immediately comes to mind, in which a tragic conflict between marital bonds and love is portrayed in the light of chemical affinities or “elective affinities,” as do Johann Wilhelm Ritter’s spectacular electrochemical experiments and speculations on natural philosophy. Yet a look at Schleiermacher’s notes on Klaproth’s lectures from the year 1800 immediately informs us that this would be mistaken. Very little mention of chemical theories can be found in Klaproth’s lectures, let alone of speculative natural philosophy. In his lectures Klaproth betook himself instead to the multi-faceted world of material substances.
    [Show full text]
  • Editorial Udc: 615:378 Doi: 10.18413/2313-8971-2017-3-4-3
    Pokrovskii M.V., Avtina T.V., Zakharova E.V., Belousova Yulia V. Oswald Schmiedeberg – the “father” of experimental pharmacology. Research Result: Pharmacology and Clinical 3 Pharmacology. 2017;3(4):3-19. EDITORIAL Rus. UDC: 615:378 DOI: 10.18413/2313-8971-2017-3-4-3-19 Mikhail V. Pokrovskii1 Tatyana V. Avtina T. OSWALD SCHMIEDEBERG –THE “FATHER” OF Elena V. Zakharova EXPERIMENTAL PHARMACOLOGY Yulia. V. Belousova Belgorod State National Research University, 85 Pobedy St., Belgorod, 308015 Russia Corresponding author, 1e-mail: [email protected] “Our tribute to the memory of the Teachers and those who were pioneers of pharmacology is an invaluable gift to our descendants” Abstract Biography. Oswald Schmiedeberg (1838-1921) was a son of a bailiff and a maid of honour, the eldest of the six children in the family. He was born and educated in the Russian Empire. Scientific activity. All his life he was completely devoted to science, making experimental pharmacology an independent scientific discipline, and was able to bring it to the international level. O. Schmiedeberg studied the action of muscarine and nicotine, digitoxin, hypnotics and analeptics. He was the first to introduce the concept of ―pharmacodynamics‖ and ―pharmacokinetics‖ of a drug. With his participation, the world‘s first pharmacological journal was founded, which is still published today. Science school. Working for many years at the University of Strasbourg, Schmiedeberg managed to educate about 120 students – professors from 20 countries of the world, many of whom later founded experimental pharmacology in their countries, for example, Abel in the USA, and N.P. Kravkov in Russia.
    [Show full text]
  • 1 Evolution of Drug Discovery
    1 1 Evolution of Drug Discovery 1.1 Antiquity Adam and Eve lived in paradise and did not know disease nor suffering; when they were expelled they discovered misery and disease. It is not surprising that throughout history man has searched for remedies to fight against disease. Historically speaking, man has explored nature to satisfy two major needs – food and herbs for alleviating pain and suffering. Ancient civilizations had comprehensive treatises where herbs or mixtures of them rep- resented the ‘‘corpus therapeuticum’’ to alleviate and treat disease. One of these compendia was the Ebers Papyrus. Egyptian culture already used a range of herbs from medicinal plants that were described in the Ebers Papyrus that was dated about 1550 BC. The papyrus was purchased in Thebes in 1872 by German Egyptologist Dr. George Ebers who had recognized its content and extraordinary value. It incorporates about 800 prescriptions written as hieroglyphics for over 700 remedies. It is preserved at the University of Leipzig (Figure 1.1). B. Ebbell produced a good translation in 1937 [1]. Most of the Egyptian names of drugs and ingredients, at least a third, have been identified with drugs and active principles that appear in current formularies and recipe books. In addition to recipes for purgatives, it also mentions some alkaloid plants as well as essentials oils, turpen- tine, cedar wood, soothing balms for skin problems, and many other prescriptions. Fragrant resins of Boswelia trees growing on the southern coast of Arabia such as frankincense (also known as olibanum) and myrrh were prized by Egyptian embalmers. Later, they were cited in the Bible, and have been used along with other balsams and gums throughout the centuries as deodorants and antiseptic drugs.
    [Show full text]
  • The Development of Concepts of Mechanisms of Anesthesia
    1 The Development of Concepts of Mechanisms of Anesthesia Donald Caton and Joseph F. Antognini INTRODUCTION Even before Morton's demonstration of surgical anesthesia in Boston, on October 16, 1846, phy­ sicians and scientists had begun to explore mechanisms by which drugs affect the central nervous system. In large part, this was an outgrowth of a revolution in therapeutics that had begun in wake of the Enlightenment. As philosophers and politicians threw out old patterns of religious, political, and economic thought, so physicians discarded a system of medical practice that had been in place for almost fifteen hundred years. Modem medicine began during this era and with it new disciplines such as physiology, pharmacology, and biochemistry (1). The discarded system of practice, called "Galenic Medicine", for the early Greek physician who established it, maintained that the body was composed of four elements (earth, air, fire, and water), which combined in various proportions to produce four humours (blood, black bile, yellow bile, and phlegm). Health was a state in which humours stayed in proper balance: disease a condition in which that balance had been upset by some internal or external disturbance. Physicians were to discern the character of the imbalance and institute appropriate restorative measures such as bleeding, purging, or cupping (2,3). In the centuries following Galen's death, physicians modified his original scheme in response to new discoveries in other areas of science. As engineers began to exploit hydraulics, for example, physicians attributed all disease to fluctuations of hydrostatic pressure. After the discovery of elec­ tricity, they exchanged hydraulics for energy imbalance to explain disease.
    [Show full text]
  • Early Drug Discovery and the Rise of Pharmaceutical Chemistry in a Classic Monograph (Figure 5)
    Drug Testing Historical and Analysis Received: 15 April 2011 Revised: 28 April 2011 Accepted: 28 April 2011 Published online in Wiley Online Library (www.drugtestinganalysis.com) DOI 10.1002/dta.301 Early drug discovery and the rise of pharmaceutical chemistry Alan Wayne Jones∗ Studies in the field of forensic pharmacology and toxicology would not be complete without some knowledge of the history of drug discovery, the various personalities involved, and the events leading to the development and introduction of new therapeutic agents. The first medicinal drugs came from natural sources and existed in the form of herbs, plants, roots, vines and fungi. Until the mid-nineteenth century nature’s pharmaceuticals were all that were available to relieve man’s pain and suffering. The first synthetic drug, chloral hydrate, was discovered in 1869 and introduced as a sedative-hypnotic; it is still available today in some countries. The first pharmaceutical companies were spin-offs from the textiles and synthetic dye industry and owe much to the rich source of organic chemicals derived from the distillation of coal (coal-tar). The first analgesics and antipyretics, exemplified by phenacetin and acetanilide, were simple chemical derivatives of aniline and p-nitrophenol, both of which were byproducts from coal-tar. An extract from the bark of the white willow tree had been used for centuries to treat various fevers and inflammation. The active principle in white willow, salicin or salicylic acid, had a bitter taste and irritated the gastric mucosa, but a simple chemical modification was much more palatable. This was acetylsalicylic acid, better known as Aspirin, the first blockbuster drug.
    [Show full text]
  • A New Look at Halley's Life Table
    J. R. Statist. Soc. A (2011) 174, Part 3, pp. 823–832 A new look at Halley’s life table David R. Bellhouse University of Western Ontario, London, Canada [Received March 2010. Revised November 2010] Summary. Edmond Halley published his Breslau life table in 1693, which was arguably the first in the world based on population data. By putting Halley’s work into the scientific context of his day and through simple plots and calculations, new insights into Halley’s work are made. In particular, Halley tended to round his numbers and to massage his data for easier presentation and calculation. Rather than highlighting outliers as would be done in a modern analysis, Halley instead smoothed them out. Halley’s method of life table construction for early ages is exam- ined. His lifetime distribution at higher ages, which is missing in his paper, is reconstructed and a reason is suggested for why Halley neglected to include these ages in his table. Keywords: Data analysis; Demographic statistics; Life tables; 17th century; Smoothing 1. Introduction In 1693 Edmond Halley constructed a life table or more correctly, as noted by Greenwood (1941, 1943), a population table. It was based on data collected for the years 1687–1691 from the city of Breslau, which is now called Wrocław, by the Protestant pastor of the town, Caspar Neumann. The data that Halley used were the numbers of births and deaths recorded in the parish registers of the town, which was then under the control of the Habsburg monarchy of Austria. It was a town in a Polish area comprised predominantly of German speakers adhering to Lutheranism within an officially Roman Catholic empire (Davies and Moorhouse (2002), pages 159–160, 180).
    [Show full text]
  • La Obra Farmacológica De Amalio Gimeno Y Cabañas (1850-1936)*
    Memoria IMV 1979_2009 ok:Memoria IMV 1979_2009 ok.qxd 29/9/2010 15:28 Página 159 159 La obra farmacológica de Amalio Gimeno y Cabañas (1850-1936)* José L. Fresquet Febrer La situación de la terapéutica farmacológica en la segunda mitad del siglo XIX Durante el siglo XIX las que llamamos ciencias de la naturaleza y la medicina, esta última tanto en sus aspectos biológicos como sociales, iniciaron un cambio decisi- vo. Las transformaciones tuvieron lugar en los aspectos conceptuales y también metodológicos. En el terreno de la biología, por ejemplo, esto permitió acabar con la crisis en la que habían entrado los sistemas interpretativos. En esta mudanza jugaron un papel fundamental diferentes aspectos sociales y económicos, especial- mente un importante cambio institucional. En el campo de la farmacología se produjeron dos hechos de gran transcenden- cia: el descubrimiento progresivo de los principios activos de los remedios vegeta- les y la línea que inició Magendie de investigar la acción de los fármacos mediante la experimentación en animales. Esto fue posible en buena medida a que la quími- ca reconstruyó su metodología y penetró en el estudio de la composición de los seres vivos.1 Uno de los principales escenarios donde tuvieron lugar estos cambios fue Fran- cia. A mediados del siglo XIX Alemania irrumpió con fuerza en la investigación far- macológica. Sin embargo, en el país vecino también surgió un movimiento que * Del proyecto de trató de moderar el excesivo optimismo que tenía lugar en los laboratorios. Una investigación HAR2008-04023. cosa era la fisiología, y otra, la farmacología. La terapéutica debía racionalizarse para los defensores de esta idea, es decir, adaptarse al enfermo.
    [Show full text]
  • Experimental Philosophers and Public Demonstrators in Augustan England
    13 J B)HS, 1995, 28, 131-56 Who did the work? Experimental philosophers and public demonstrators in Augustan England STEPHEN PUMFREY* The growth of modern science has been accompanied by the growth of professionalization. We can unquestionably speak of professional science since the nineteenth century, although historians dispute about where, when and how much. It is much more problematic and anachronistic to do so of the late seventeenth century, despite the familiar view that the period saw the origin of modern experimental science. This paper explores the broad implications of that problem. One area of scientific activity, public science lecturing and demonstrating, certainly produced its first professionals in the period 1660-1730. This was a period which Geoffrey Holmes called 'Augustan England', and which he found to be marked by the expansion of many of the professions.1 Swollen lower ranks of physicians, civil servants and teachers crowded onto the ladder up to gentility, and even solicitors achieved respectability. Alongside these established types the professional scientist, such as the public lecturer, was a novelty. Later, in the high Georgian era, a small army of men like Stephen Demainbray and Benjamin Martin made recognized if precarious livings from public experimentation, but the first generation pioneers were entering new and risky territory. As Larry Stewart has shown, 'the rise of public science' was a successful social and economic transformation of the highest significance in the history of science which was part of what has been called England's commercial revolution.2 We are accustomed to think of early, pioneering professionals like Robert Hooke, Francis Hauksbee or Denis Papin as 'notable scientists'.
    [Show full text]