BUS SYSTEMS for the FUTURE BUS SYSTEMS for the FUTURE Achieving Sustainable Transport Worldwide

Total Page:16

File Type:pdf, Size:1020Kb

BUS SYSTEMS for the FUTURE BUS SYSTEMS for the FUTURE Achieving Sustainable Transport Worldwide BUS SYSTEMS FOR THE FUTURE BUS SYSTEMS FOR THE FUTURE Achieving Sustainable Transport Worldwide Cities around the world face enormous problems of transport sustainability. Rapidly increasing populations and vehicle usage have created gridlock and sprawl, even in very poor cities, as well as unacceptably high levels of air pollution, noise, and accident rates. But improvements can be made. This book explores how the provision of better bus services can bring concrete solutions. “Bus rapid transit” systems emerging in Latin America provide fast, reliable and efficient urban travel for large numbers of people. Express busways, employing high- capacity buses and new technologies such as GPS-based bus tracking systems, can conveniently and reliably Worldwide Achieving Sustainable Transport move up to 10 times as many people along a route as can cars – and be profitable. BUS SYSTEMS This book shows how bus rapid transit differs from traditional bus systems and how it can be developed FOR THE FUTURE around the world. There is a detailed look at clean fuels Achieving Sustainable Transport Worldwide and advanced technologies such as “clean diesel”, CNG, hybrid-electric and fuel cells. Case studies are made of six cities and of the steps each might take to encourage more sustainable transport systems. $100 €110 (61 02 26 1 P1) ISBN : 92-64-19806-7 -:HSQBMA=UWW[VU: 2002 INTERNATIONAL ENERGY AGENCY BUS SYSTEMS FOR THE FUTURE Achieving Sustainable Transport Worldwide INTERNATIONAL ENERGY AGENCY page2-16x23 8/04/02 15:20 Page 1 INTERNATIONAL ENERGY AGENCY ORGANISATION FOR 9, rue de la Fédération, ECONOMIC CO-OPERATION 75739 Paris, cedex 15, France AND DEVELOPMENT The International Energy Agency (IEA) is an Pursuant to Article 1 of the Convention signed in autonomous body which was established in Paris on 14th December 1960, and which came November 1974 within the framework of the into force on 30th September 1961, the Organisation Organisation for Economic Co-operation and for Economic Co-operation and Development Development (OECD) to implement an inter- (OECD) shall promote policies designed: national energy programme. • to achieve the highest sustainable economic It carries out a comprehensive programme of growth and employment and a rising standard energy co-operation among twenty-six* of the of living in Member countries, while maintaining OECD’s thirty Member countries. The basic aims financial stability, and thus to contribute to the of the IEA are: development of the world economy; • to maintain and improve systems for coping • to contribute to sound economic expansion in with oil supply disruptions; Member as well as non-member countries in the process of economic development; and • to promote rational energy policies in a global context through co-operative relations with non- • to contribute to the expansion of world trade member countries, industry and international on a multilateral, non-discriminatory basis in organisations; accordance with international obligations. • to operate a permanent information system on The original Member countries of the OECD are the international oil market; Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, • to improve the world’s energy supply and Luxembourg, the Netherlands, Norway, Portugal, demand structure by developing alternative Spain, Sweden, Switzerland, Turkey, the United energy sources and increasing the efficiency of Kingdom and the United States. The following energy use; countries became Members subsequently • to assist in the integration of environmental and through accession at the dates indicated energy policies. hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), * IEA Member countries: Australia, Austria, New Zealand (29th May 1973), Mexico (18th Belgium, Canada, the Czech Republic, Denmark, May 1994), the Czech Republic (21st December Finland, France, Germany, Greece, Hungary, Ireland, 1995), Hungary (7th May 1996), Poland (22nd Italy, Japan, the Republic of Korea, Luxembourg, November 1996), the Republic of Korea (12th the Netherlands, New Zealand, Norway, Portugal, December 1996) and Slovakia (28th September Spain, Sweden, Switzerland, Turkey, the United 2000). The Commission of the European Kingdom, the United States. The European Communities takes part in the work of the OECD Commission also takes part in the work of the IEA. (Article 13 of the OECD Convention). © OECD/IEA, 2002 Applications for permission to reproduce or translate all or part of this publication should be made to: Head of Publications Service, OECD/IEA 2, rue André-Pascal, 75775 Paris cedex 16, France or 9, rue de la Fédération, 75739 Paris Cedex 15, France. FOREWORD Rapidly increasing traffic congestion, air pollution, and sprawl are jeopardising the ability of the developing world’s premier cities to achieve sustainability. These problems, present in most large urban areas of developing countries, also account for a substantial share of the expected increase in world oil use and CO2 emissions over the next twenty years. Near-term bus system improvements in these cities – before cars become dominant – could be among the most important and most cost-effective approaches for achieving transport sustainability. Compared to urban transport systems dominated by private vehicles, bus-dominated systems result in much less traffic congestion, lower energy use and emissions, and improved mobility for all social and economic classes. New bus technologies are also emerging that can dramatically reduce emissions and oil use from buses themselves. This book shows how better bus systems and bus technologies can put urban transportation on a more sustainable path around the world. Robert Priddle, IEA Executive Director 3 ACKNOWLEDGEMENTS This publication is the product of an IEA study undertaken by the Office of Energy Efficiency, Technology and R&D under the direction of Marianne Haug, and supervised by Carmen Difiglio, Head of the Energy Technology Policy Division. The study was coordinated by Lew Fulton and Lee Schipper. The book was co-authored by Lew Fulton, Jeffrey Hardy, Lee Schipper, and Aaron Golub. Other individuals who provided important contributions include Lloyd Wright, ITDP (New York), Dana Lowell, NYCT (New York), Peter Danielsson, Volvo Bus (Sweden), Jean Cadu, Shell (UK), Karl Fjellstrom, GTZ (Surabaya), Roland Wong, BEMP (Dhaka), Dinesh Mohan, IIT (Delhi), Bambang Susantano, Pelangi (Jakarta), Florencia Serrannia, STE (Mexico), Claudio de Senna Frederico, Secretaria de Estado dos Transportes Metropolitanos (CPG, Sao Paulo), and Oscar Diaz, formerly of the Mayor’s Office of the City of Bogota. The IEA would also like to express its appreciation to the following individuals for their advice and support to develop the programme of analysis that led to this publication: Karen Peabody O’Brien and J. Q. Zhang, both formerly of W. Alton Jones Foundation, David Rodgers, US Department of Energy, and Glenda Menges, Homeland Foundation. Assistance with editing and preparation of the manuscript was provided by Chris Henze, Scott Sullivan, and Sally Wilkinson. Production assistance was provided by Loretta Ravera, Muriel Custodio and Fiona Davies. The cover photo of Bogota’s TransMilenio bus system courtesy of Peter Danielsson, Volvo Bus Corp. 5 TABLE OF CONTENTS Executive Summary ........................................................................... 11 ■ Key Messages .......................................................................... 12 1. Introduction.................................................................................. 17 ■ Urban Public Transport in Developing Countries: Potential and Problems ............................................................ 19 ■ Why Urban Transit Buses?....................................................... 22 ■ The Importance of Getting Buses Moving............................... 23 ■ The Role of New Bus Technologies.......................................... 24 ■ City Experiences: IEA’s Case Studies........................................ 24 2. Bus Systems ................................................................................. 27 ■ Bus Rapid Transit Systems ....................................................... 27 ■ Improving Bus Systems: Potential Benefits............................... 41 ■ New Technologies for Bus Systems .......................................... 51 ■ Improving Bus System Management........................................ 55 ■ How to Afford Better Buses..................................................... 58 3. Bus Technologies and Fuels....................................................... 61 ■ Diesel Technologies ................................................................. 61 ■ Water-in-oil Emulsions............................................................ 75 ■ Biodiesel and Blends................................................................ 80 ■ Compressed Natural Gas ......................................................... 81 ■ Liquefied Petroleum Gas ......................................................... 90 ■ Dimethyl Ether ....................................................................... 94 ■ Hybrid-electric Vehicles......................................................... 100 ■ Fuel-cell Buses ....................................................................... 107 ■ Chapter Summary: Moving up the Technology Ladder.......... 119 7 4. Bus System Development: Six Case Studies ........................ 123 ■ Surabaya,
Recommended publications
  • Brooklyn Transit Primary Source Packet
    BROOKLYN TRANSIT PRIMARY SOURCE PACKET Student Name 1 2 INTRODUCTORY READING "New York City Transit - History and Chronology." Mta.info. Metropolitan Transit Authority. Web. 28 Dec. 2015. Adaptation In the early stages of the development of public transportation systems in New York City, all operations were run by private companies. Abraham Brower established New York City's first public transportation route in 1827, a 12-seat stagecoach that ran along Broadway in Manhattan from the Battery to Bleecker Street. By 1831, Brower had added the omnibus to his fleet. The next year, John Mason organized the New York and Harlem Railroad, a street railway that used horse-drawn cars with metal wheels and ran on a metal track. By 1855, 593 omnibuses traveled on 27 Manhattan routes and horse-drawn cars ran on street railways on Third, Fourth, Sixth, and Eighth Avenues. Toward the end of the 19th century, electricity allowed for the development of electric trolley cars, which soon replaced horses. Trolley bus lines, also called trackless trolley coaches, used overhead lines for power. Staten Island was the first borough outside Manhattan to receive these electric trolley cars in the 1920s, and then finally Brooklyn joined the fun in 1930. By 1960, however, motor buses completely replaced New York City public transit trolley cars and trolley buses. The city's first regular elevated railway (el) service began on February 14, 1870. The El ran along Greenwich Street and Ninth Avenue in Manhattan. Elevated train service dominated rapid transit for the next few decades. On September 24, 1883, a Brooklyn Bridge cable-powered railway opened between Park Row in Manhattan and Sands Street in Brooklyn, carrying passengers over the bridge and back.
    [Show full text]
  • Metropolitan Transportation Authority New York City
    CASE STUDY Metropolitan Transportation Authority New York City In 2019, Metropolitan Transportation Authority (MTA) released a tender to Shared Mobility providers to develop a new scalable and sustainable on-demand transit proposal. At a glance Liftango was engaged by the MTA for a The MTA network comprises the nation’s simulation service to predict the uptake largest bus fleet and more subway and for an implemented on-demand service. commuter rail cars than all other U.S. Liftango’s simulation technology was transit systems combined. The MTA’s provided to MTA as a benchmark to operating agencies are MTA New York City measure the realism and efficiency of Transit, MTA Bus, Long Island Rail Road, tender proposals from shared mobility Metro-North Railroad, and MTA Bridges and providers. Essentially, enabling MTA to Tunnels. make an educated decision on whom they should choose as their on-demand provider. The Metropolitan Transportation Authority is North America’s largest transportation network, serving a population of 15.3 million people across a 5,000-square-mile travel area surrounding New York City through Long Island, southeastern New York State, and Connecticut. 01 The Problem MTA needed to provide a one of the largest growing As MTA’s first time launching better transport solution sectors in the next five to ten this type of project, there to the people of New York years. The census shows was some risk surrounding City’s outer areas. Why? that a number of people are launch. By engaging Liftango, Existing bus services being leaving for work between 3-6 the aim was to mitigate risk, less frequent than a subway pm and therefore returning simulate possible outcomes service or completely during the overnight period.
    [Show full text]
  • Southern California Rapid Transit District (SCRTD)
    Los Angeles County Metropolitan Transportation Authority Law ---------------------------------------------------------------------- With corresponding provisions of the Southern California Rapid Transit District Law and Los Angeles County Transportation Commission Law Los Angeles County Metropolitan Transportation Authority California Public Utilities Code Page 2 of 110 Introduction The Southern California Rapid Transit District, also known as the SCRTD or the “District” (1964-1993) was created by the State as the successor to the Los Angeles Metropolitan Transit Authority or “LAMTA” (1958-1964). LAMTA was the first publicly governed transit operator in Los Angeles and also responsible for the planning of a new mass transit system to replace the aging remnants of the transit systems built by Pacific Electric (1899-1953) and Los Angeles Railway (1895-1945). Unfortunately, the LAMTA had no ability to raise tax revenues or powers of eminent domain, and its board was appointed by the Governor, making the task building local support for mass transit improvements difficult at best. Dissatisfaction with the underpowered LAMTA led to a complete re-write of its legislative authority. While referred to in state legislation as a merger, the District law completely overwrote the LAMTA Act of 1957. The Los Angeles County Transportation Commission, also known as LACTC or the “Commission” (1977-1993) was created by the State in 1976 as a separate countywide transportation planning agency, along with transportation commissions in San Bernardino, Riverside, and Orange counties. At the time the District was initially created, there were no transit or transportation grant programs available from the State or Federal governments. Once funding sources became available from the Urban Mass Transit Administration, now the Federal Transit Administration, the California Transportation Commission, and others, the creation of county transportation commissions ensured coordination of multimodal transportation planning and funding programs.
    [Show full text]
  • Buses – Global Market Trends
    2017 BUSES – GLOBAL MARKET TRENDS Markets – Competition – Companies – Key Figures Extract from the study BUSES – GLOBAL MARKET TRENDS Markets – Competition – Companies – Key figures In all regions across the globe, buses remain the most widespread public transport mode. Their demand goes hand in hand with several, mostly region-specific factors, including demographics, increasing mobility of people and environmental awareness, as well as public funding. Buses are comparatively to other transportation modes cheap and easy to use, since their use does not necessarily require the implementation of a specific infrastructure. This makes buses ideal vehicles for both short- and long-distance services. Based on the current developments, this Multi Client Study offers a comprehensive insight into the structure, volumes and development trends of the worldwide bus market. In concrete terms, the market study “BUSES – GLOBAL MARKET TRENDS” includes: A look at the worldwide market for buses differentiated by region An analysis of the relevant market data including present and future market volumes Information concerning the installed fleet and future procurement potential until 2022 An assessment of current developments and growth drivers of the worldwide bus markets in the individual regions An overview of bus manufacturers including an analysis of the market shares, financial backups as well as a brief description of the current product portfolio and strategy outlook A list of the major production facilities in each of the regions including product range as well as production capacities Presentation of the development stage of alternative propulsions, their manufacturers and their occurrence worldwide The study is available in English from the August 2017 at the price of EUR 3,400 plus VAT.
    [Show full text]
  • Intercity Bus Planning Process
    The 2018 South Carolina Intercity Bus Program Evaluation Prepared for the South Prepared by: Carolina Department of RLS & Associates, Inc. Transportation, Office of Public Transit December, 2018 955 Park St, Room 201 –POBox 191 Columbia, SC 29202 (803) 737‐2146 https://www.scdot.org/inside/inside-PublicTransit.aspx#services Table of Contents I. Executive Summary ........................................................................................................................................... 1 Statutory Requirements ................................................................................................................................................... 1 Study Work Program ......................................................................................................................................................... 1 South Carolina Intercity Busy Service ........................................................................................................................ 1 State’s Intercity Bus Needs ............................................................................................................................................. 2 Section 5311(f) Funding Recommendations........................................................................................................... 2 II. Project Background and Context ............................................................................................................... 4 Introduction .........................................................................................................................................................................
    [Show full text]
  • Service Failure in Jakarta Public Bus Transport
    Faculty of Economic Sciences, Communication and IT Doddy Hendra Wijaya SERVICE FAILURE IN JAKARTA PUBLIC BUS TRANSPORT Service Science Project Report Date/Term: Spring 2009 Supervisors: Bo Enquist Samuel Petros Sebhatu Karlstads Universitets 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se 1. INTRODUCTION 1.1. Background Populations in most developing countries are increasing much faster than car ownership levels and therefore an increasing proportion of the population is dependent on public transport except for very short journeys. In most countries, walking is the most common mode of travel for distances of up to one or two kilometers in urban areas and much further in rural areas. Those who own bicycles tend to use them for journeys of up to about eight kilometers, beyond which public transport is preferred mode. Public transport also provides an alternative to those who have private transport, but are sometimes deterred from using it by traffic congestion, parking difficulties or problems in accessing certain streets, although in practice it is relatively unusual, particularly in developing countries, for car owners to use public transport to any significant extent. However, in many developing countries families tend to be large, so that even if these is a car belonging to a household, most members of the family are still likely to use public transport for at least some of their travel (Iles 2005) Public transport is therefore vital for the vast majority without access to private transport. There is need for personal mobility, in particular for access to employment opportunities, but with low income levels affordability is a common problem, while the services provided are often regarded as inadequate.
    [Show full text]
  • Global Competitiveness in the Rail and Transit Industry
    Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner Global Competitiveness in the Rail and Transit Industry Michael Renner and Gary Gardner September 2010 2 GLOBAL COMPETITIVENESS IN THE RAIL AND TRANSIT INDUSTRY © 2010 Worldwatch Institute, Washington, D.C. Printed on paper that is 50 percent recycled, 30 percent post-consumer waste, process chlorine free. The views expressed are those of the authors and do not necessarily represent those of the Worldwatch Institute; of its directors, officers, or staff; or of its funding organizations. Editor: Lisa Mastny Designer: Lyle Rosbotham Table of Contents 3 Table of Contents Summary . 7 U.S. Rail and Transit in Context . 9 The Global Rail Market . 11 Selected National Experiences: Europe and East Asia . 16 Implications for the United States . 27 Endnotes . 30 Figures and Tables Figure 1. National Investment in Rail Infrastructure, Selected Countries, 2008 . 11 Figure 2. Leading Global Rail Equipment Manufacturers, Share of World Market, 2001 . 15 Figure 3. Leading Global Rail Equipment Manufacturers, by Sales, 2009 . 15 Table 1. Global Passenger and Freight Rail Market, by Region and Major Industry Segment, 2005–2007 Average . 12 Table 2. Annual Rolling Stock Markets by Region, Current and Projections to 2016 . 13 Table 3. Profiles of Major Rail Vehicle Manufacturers . 14 Table 4. Employment at Leading Rail Vehicle Manufacturing Companies . 15 Table 5. Estimate of Needed European Urban Rail Investments over a 20-Year Period . 17 Table 6. German Rail Manufacturing Industry Sales, 2006–2009 . 18 Table 7. Germany’s Annual Investments in Urban Mass Transit, 2009 . 19 Table 8.
    [Show full text]
  • Evaluation of Online Motorcycle Taxi Performance in Surabaya And
    Journal of Technology and Social Science (JTSS) Evaluation of Online Motorcycle Taxi Performance in Surabaya and Sidoarjo Area, Indonesia Wicaksono, Achmad 1,a, Harnen Sulistio 1, b, Alan Wahyudi Wardani 1 and Dwa Aulia Bramiana 1 1Department of Civil Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, 65145, Indonesia a<[email protected]>, b<[email protected]> Keywords:Online motorcycle taxi, GO-JEK, Importance Performance Analysis, Stated Preference Analysis, Indonesia Abstract. Surabaya is the second biggest city in Indonesia, and Sidoarjo is a regency close to Surabaya, where many people live in but they work in Surabaya. More and more citizen of Surabaya and Sidoarjo use motorcycle taxi, either conventional service or online service so call as “ojek”, operated by the company called as GO-JEK. The purpose of this research is to evaluate the performance of GO-JEK in Surabaya and Sidoarjo based on user point-of-view and to observe what factors that influence the users in selecting either conventional or on-line ojek. The methods used are the Importance Performance Analysis (IPA) and the Stated Preference Technique. The IPA shows that there are 3 factors that have to be improved: firstly, driving manner, secondly, attention to maximum capacity and thirdly, helmet for the passenger. The Stated Preference Analysis shows that there are two major factors affecting the choice whether GO-JEK or conventional ojek, these are trip cost and waiting time to pick up by the ojek. 1. Introduction Surabaya is the second biggest City in Indonesia, with the population of 2.5 million. Sidoarjo is a regency that has a borderline with Surabaya, where many people live in but they work in Surabaya.
    [Show full text]
  • UNEP Mid-Term Evaluation
    Final Mid-term Evaluation Report on UNEP/GEF project GF/4010-07-01 (4960) Bus Rapid Transit and Pedestrian Improvements in Jakarta Typical TransJakarta Halte Evaluation Team David Antell, Transport Expert and Lead Consultant Owen Podger, Institutional Expert Evaluation Office August 2010 Page i Acknowledgments The evaluation team conducted many interviews, attended meetings, and met many employees of the busway. The main interviewees are recorded in Annex 8, but the names of many supporting staff and employees are not given. To all those who provided inputs to us in an atmosphere of genuine cooperation, we extend our sincere gratitude. Without them all it would have been impossible to present this report based on rich and detailed information. Page ii Contents Acronyms v 1 Executive Summary 1 1.1 The Project ......................................................................................................................................... 1 1.2 The Mid-term Evaluation .................................................................................................................... 1 1.3 Assessment ......................................................................................................................................... 1 1.4 Recommendations .............................................................................................................................. 2 2 Introduction and Background 6 2.1 Introduction .......................................................................................................................................
    [Show full text]
  • Buy America on Transportation Infrastructure and U.S
    Effects of Buy America on Transportation Infrastructure and U.S. Manufacturing Updated July 2, 2019 Congressional Research Service https://crsreports.congress.gov R44266 SUMMARY R44266 Effects of Buy America on July 2, 2019 Transportation Infrastructure and Michaela D. Platzer U.S. Manufacturing Specialist in Industrial Organization and Business In 1978, Congress began placing domestic content restrictions on federally funded transportation projects that are carried out by nonfederal government agencies such as state and local William J. Mallett governments. These restrictions, which have changed over the years, are commonly referred to as Specialist in the Buy America Act, or more simply, Buy America. Although there has been ongoing Transportation Policy congressional interest in domestic preference policy over the years, statements and actions by the Trump Administration about reinvigorating domestic manufacturing and investing in infrastructure have stimulated renewed interest in Buy America. Buy America refers to several similar statutes and regulations that apply when federal funds are used to support projects involving highways, public transportation, aviation, and intercity passenger rail, including Amtrak. Unless a nationwide or project-specific waiver is granted, Buy America requires the use of U.S.-made iron and steel and the domestic production and assembly of other manufactured goods, particularly the production of rolling stock (railcars and buses) used in federally funded public transportation and Amtrak’s intercity passenger rail service. A separate law requires that at least half the value of products imported by sea for federally supported transportation projects be transported in U.S.-flag ships. This report examines the effects of Buy America on iron and steel manufacturing, rolling stock manufacturing, and transportation.
    [Show full text]
  • Jakarta's Bus Rapid Transit System Indonesia
    Jakarta’s Bus Rapid Transit System CASE STUDY Indonesia | March 2016 "Transport in Asia and the Pacific faces a web of issues that need a strategic solution... Countries across the region have to contend with road safety, air pollution, social sustainability, climate change impacts, lack of public financing, decrepit infrastructure, and even cross-border bottlenecks, among others.” - James Leather, Co-Chair, ADB Transport Community of Practice Hoping to improve the worsening traffic situation in Jakarta, Sutiyoso—then Governor of Jakarta—bit the bullet and pushed for the construction of the Jakarta Bus Rapid Transit (BRT) system in 2001. With worsening traffic congestion and growing population of 8 million in 2000, BRT was thought as the ultimate solution to the traffic woes of people in the capital of Indonesia. The BRT masterplan is projected to have a busway network consisting of eleven corridors. The system is a closed trunk system without a functioning feeder system. The first corridor of Jakarta’s BRT of around 12.9 km, essentially consisting of a dedicated lane and loading platforms for large buses in the inner side of city streets, began operations in early 2004. Initially, the system ran well and showed good results—patrons’ travel time was reduced by an average of 20 minutes through a clean and convenient transport system that had longer operating hours. Pre-launch objections from affected bus operators and the driving public had disappeared. However, problems on the operational and managerial aspects of the project began to crop up a few months after the BRT was launched. Months after the BRT launch, Governor Sutiyoso—then governor of Jakarta—listened intently at the problems presented by the various stakeholders of Jakarta’s Bus Rapid Transit (BRT) System.
    [Show full text]
  • Flood Risk Management in Dhaka a Case for Eco-Engineering
    Public Disclosure Authorized Flood Risk Management in Dhaka A Case for Eco-Engineering Public Disclosure Authorized Approaches and Institutional Reform Public Disclosure Authorized People’s Republic of Bangladesh Public Disclosure Authorized • III contents Acknowledgements VII Acronyms and abbreviations IX Executive Summary X 1 · Introduction 2 Objective 6 Approach 8 Process 9 Organization of the report 9 2 · Understanding Flood Risk in Greater Dhaka 10 disclaimer Demographic changes 13 This volume is a product of the staff of the International Bank for River systems 13 Reconstruction and Development/ The World Bank. The findings, interpretations, and conclusions expressed in this paper do not necessarily Monsoonal rain and intense short-duration rainfall 17 reflect the views of the Executive Directors of The World Bank or the Major flood events and underlying factors 20 governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and Topography, soil, and land use 20 other information shown on any map in this work do not imply any judgment Decline of groundwater levels in Dhaka on the part of The World Bank concerning the legal status of any territory or the 27 endorsement or acceptance of such boundaries. Impact of climate vulnerability on flood hazards in Dhaka 28 copyright statement Flood vulnerability and poverty 29 The material in this publication is copyrighted. Copying and/or transmitting Summary 33 portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant permission to 3 · Public Sector Responses to Flood Risk: A Historical Perspective 34 reproduce portions of the work promptly.
    [Show full text]