Phytophthora Spp. and Pythium Intermedium Isolates Recovered from Taxus Baccata: Virulence and Genetic Variation 115 5.1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytopythium: Molecular Phylogeny and Systematics
Persoonia 34, 2015: 25–39 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X685382 Phytopythium: molecular phylogeny and systematics A.W.A.M. de Cock1, A.M. Lodhi2, T.L. Rintoul 3, K. Bala 3, G.P. Robideau3, Z. Gloria Abad4, M.D. Coffey 5, S. Shahzad 6, C.A. Lévesque 3 Key words Abstract The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium COI clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian LSU phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase Oomycetes subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as Oomycota a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora Peronosporales and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. Phytopythium The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of Pythiales the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense. SSU Article info Received: 28 January 2014; Accepted: 27 September 2014; Published: 30 October 2014. INTRODUCTION establish which species belong to clade K and to make new taxonomic combinations for these species. To achieve this The genus Pythium as defined by Pringsheim in 1858 was goal, phylogenies based on nuclear LSU rRNA (28S), SSU divided by Lévesque & de Cock (2004) into 11 clades based rRNA (18S) and mitochondrial DNA cytochrome oxidase1 (COI) on molecular systematic analyses. -
Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final Report
Assessment of Forest Pests and Diseases in Protected Areas of Georgia Final report Dr. Iryna Matsiakh Tbilisi 2014 This publication has been produced with the assistance of the European Union. The content, findings, interpretations, and conclusions of this publication are the sole responsibility of the FLEG II (ENPI East) Programme Team (www.enpi-fleg.org) and can in no way be taken to reflect the views of the European Union. The views expressed do not necessarily reflect those of the Implementing Organizations. CONTENTS LIST OF TABLES AND FIGURES ............................................................................................................................. 3 ABBREVIATIONS AND ACRONYMS ...................................................................................................................... 6 EXECUTIVE SUMMARY .............................................................................................................................................. 7 Background information ...................................................................................................................................... 7 Literature review ...................................................................................................................................................... 7 Methodology ................................................................................................................................................................. 8 Results and Discussion .......................................................................................................................................... -
Can Phytophthora Quercina Have a Negative Impact on Mature Pedunculate Oaks Under Field Conditions? Ulrika Jönsson-Belyazio, Ulrika Rosengren
Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Ulrika Jönsson-Belyazio, Ulrika Rosengren To cite this version: Ulrika Jönsson-Belyazio, Ulrika Rosengren. Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions?. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2006, 63 (7), pp.661-672. hal-00884017 HAL Id: hal-00884017 https://hal.archives-ouvertes.fr/hal-00884017 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 63 (2006) 661–672 661 c INRA, EDP Sciences, 2006 DOI: 10.1051/forest:2006047 Original article Can Phytophthora quercina have a negative impact on mature pedunculate oaks under field conditions? Ulrika J¨ -B*, Ulrika R Plant Ecology and Systematics, Department of Ecology, Ecology Building, Lund University, 223 62 Lund, Sweden (Received 26 September 2005; accepted 10 March 2006) Abstract – Ten oak stands in southern Sweden were investigated to evaluate the impact of the root pathogen Phytophthora quercina on mature oaks under field conditions. Phytophthora quercina was present in five of the stands, while the other five stands were used as controls to verify the effect of the pathogen. -
Alnus Glutinosa
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.875229; this version posted December 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Investigations into the declining health of alder (Alnus glutinosa) along the river Lagan in Belfast, including the first report of Phytophthora lacustris causing disease of Alnus in Northern Ireland Richard O Hanlon (1, 2)* Julia Wilson (2), Deborah Cox (1) (1) Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland, UK. (2) Queen’s University Belfast, Northern Ireland, UK * [email protected] Additional key words: Plant health, Forest pathology, riparian, root and collar rot. Abstract Common alder (Alnus glutinosa) is an important tree species, especially in riparian and wet habitats. Alder is very common across Ireland and Northern Ireland, and provides a wide range of ecosystem services. Surveys along the river Lagan in Belfast, Northern Ireland led to the detection of several diseased Alnus trees. As it is known that Alnus suffers from a Phytophthora induced decline, this research set out to identify the presence and scale of the risk to Alnus health from Phytophthora and other closely related oomycetes. Sampling and a combination of morphological and molecular testing of symptomatic plant material and river baits identified the presence of several Phytophthora species, including Phytophthora lacustris. A survey of the tree vegetation along an 8.5 km stretch of the river revealed that of the 166 Alnus trees counted, 28 were severely defoliated/diseased and 9 were dead. -
Presidio Phytophthora Management Recommendations
2016 Presidio Phytophthora Management Recommendations Laura Sims Presidio Phytophthora Management Recommendations (modified) Author: Laura Sims Other Contributing Authors: Christa Conforti, Tom Gordon, Nina Larssen, and Meghan Steinharter Photograph Credits: Laura Sims, Janet Klein, Richard Cobb, Everett Hansen, Thomas Jung, Thomas Cech, and Amelie Rak Editors and Additional Contributors: Christa Conforti, Alison Forrestel, Alisa Shor, Lew Stringer, Sharon Farrell, Teri Thomas, John Doyle, and Kara Mirmelstein Acknowledgements: Thanks first to Matteo Garbelotto and the University of California, Berkeley Forest Pathology and Mycology Lab for providing a ‘forest pathology home’. Many thanks to the members of the Phytophthora huddle group for useful suggestions and feedback. Many thanks to the members of the Working Group for Phytophthoras in Native Habitats for insight into the issues of Phytophthora. Many thanks to Jennifer Parke, Ted Swiecki, Kathy Kosta, Cheryl Blomquist, Susan Frankel, and M. Garbelotto for guidance. I would like to acknowledge the BMP documents on Phytophthora that proceeded this one: the Nursery Industry Best Management Practices for Phytophthora ramorum to prevent the introduction or establishment in California nursery operations, and The Safe Procurement and Production Manual. 1 Title Page: Authors and Acknowledgements Table of Contents Page Title Page 1 Table of Contents 2 Executive Summary 5 Introduction to the Phytophthora Issue 7 Phytophthora Issues Around the World 7 Phytophthora Issues in California 11 Phytophthora -
Distribution and Severity of Alder Phytophthora in Alaska1
Proceedings of the Sudden Oak Death Fourth Science Symposium Distribution and Severity of Alder 1 Phytophthora in Alaska G.C. Adams,2 M. Catal,2 and L. Trummer3 Abstract In Alaska, an unprecedented dieback and mortality of Alnus incana ssp. tenuifolia has occurred which stimulated an effort to determine causal agents of the disease. In Europe, similar dieback and mortality of Alnus incana and Alnus glutinosa has been attributed to root rot by a spectrum of newly emergent strains in the hybrid species Phytophthora alni. The variable hybrids of P. alni were grouped into three subspecies: P. alni ssp. alni (PAA), P. alni ssp. multiformis (PAM), and P. alni ssp. uniformis (PAU). From 2007 to 2008, we conducted a survey of Phytophthora species at 30 locations with stream baiting as used in the 2007 national Phytophthora ramorum Early Detection Survey for Forests in the United States. Additionally, Phytophthora species from saturated rhizosphere soil beneath alder stands were baited in situ using rhododendron leaves. We discovered PAU in rhizosphere soils in 2007 at two sample locations in unmanaged stands hundreds of miles apart, on the Kenai Peninsula and near Denali National Park. PAA was reported to be the most aggressive and pathogenic to alders and PAM and PAU were significantly less aggressive than PAA, though still pathogenic. To ascertain whether PAU was of restricted distribution due to recent introduction, or widespread distribution, we extended the survey in 2008 to 81 locations. Intensive sampling was conducted at five alder stands exhibiting dieback and 10 alder genets per location were excavated to expose nearly the entire root system for evaluation of the severity of root rot, ELISA detection of Phytophthora in diseased roots, and isolation of Phytophthora species. -
Pythium Root Rot to Always Act the Same
pests & diseases DON’T EXPECT PYTHIUM ROOT ROT TO ALWAYS ACT THE SAME Cornell University trials are teaching researchers more about this troublesome pathogen, how it interacts with the plants it infects and how it is becoming more difficult to control — and what they’ve learned may surprise you. Seedling geraniums inoculated with Pythium may be stunted or killed. By Gary W. Moorman (Photos courtesy of Margery Daughtrey) and Margery L. Daughtrey ne new development impor- tems because it has a swimming spore stage. pasteurization could lead to Pythium outbreaks. tant to our understanding of Pythium irregulare also forms swimming spores Second, Pythium ultimum favors cool greenhouse Pythium species comes from and is isolated from a very wide variety of temperatures: the minimum for growth is 41° F, the findings of molecular greenhouse crops, almost any crop grown. It is maximum 95° F and optimum 77-86° F. When geneticists. We have long less aggressive than P. aphanidermatum, often other organisms are inhibited by cool tempera- thoughtO of Pythium as a “water mold fun- causing stunting but seldom killing plants quick- ture, P. ultimum can prosper. gus”— now it has been reclassified according to ly. Pythium ultimum, very commonly noted in P. aphanidermatum has a higher minimum tem- information gained from comparing gene simi- old clinic records, is much less common but is perature (50° F) than P. ultimum and a very high larities…and Pythium is no longer a fungus! still isolated from chrysanthemums, verbenas, optimum temperature at 95-104° F. This Pythium DNA analysis has shown us that Pythium is geraniums and sometimes poinsettias. -
Enhancement of Development and Induction of Resistance in Tomato
Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum Gaétan Le Floch, Patrice Rey, Franck Déniel, Nicole Benhamou, Karine Picard, Yves Tirilly To cite this version: Gaétan Le Floch, Patrice Rey, Franck Déniel, Nicole Benhamou, Karine Picard, et al.. Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum. Agronomie, EDP Sciences, 2003, 23 (5-6), pp.455-460. 10.1051/agro:2003018. hal-00886197 HAL Id: hal-00886197 https://hal.archives-ouvertes.fr/hal-00886197 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Agronomie 23 (2003) 455–460 455 © INRA, EDP Sciences, 2003 DOI: 10.1051/agro:2003018 Original article Enhancement of development and induction of resistance in tomato plants by the antagonist, Pythium oligandrum Gaétan LE FLOCHa, Patrice REYa*, Franck DÉNIELa, Nicole BENHAMOUb, Karine PICARDa, Yves TIRILLYa a Laboratoire de Microbiologie, Université de Bretagne Occidentale-Brest, Technopôle Brest-Iroise, 29280 Plouzané, France b Département Recherche en Sciences de la Vie et de la Santé, Pav. Ch.E. Marchand, Université Laval, Sainte-Foy, Québec, GIK7P4, Canada (Received 3 July 2002; accepted 18 December 2002) Abstract – To exert an optimal biological control, P. -
Soil- and Waterborne Phytophthora Species Linked to Recent
REVIEW ARTICLE Soil- and waterborne Phytophthora species linked to recent outbreaks in Northern California restoration sites A review identifies several Phytophthora species found in California wildlands and discusses approaches for preventing and diagnosing the spread of these plant pathogens. by Matteo Garbelotto, Susan J. Frankel and Bruno Scanu istorically, the release of Phytophthora species Abstract in the wild has resulted in massive die-offs of Himportant native plant species, with cascading Many studies around the globe have identified plant production facilities consequences on the health and productivity of affected as major sources of plant pathogens that may be released in the wild, ecosystems (Brasier et al. 2004; Hansen 2000; Jung with significant consequences for the health and integrity of natural 2009; Lowe 2000; Rizzo and Garbelotto 2003; Swiecki ecosystems. Recently, a large number of soilborne and waterborne et al. 2003; Weste and Marks 1987). Once introduced, species belonging to the plant pathogenic genus Phytophthora have plant pathogens in general cannot be eradicated (Cun- been identified for the first time in California native plant production niffe et al. 2016; Garbelotto 2008), and costs associated facilities, including those focused on the production of plant stock used with the spread and control of exotic pathogens and in ecological restoration efforts. Additionally, the same Phytophthora pests have been estimated to surpass $100 billion per species present in production facilities have often been identified in failing year for the United States alone (Pimentel et al. 2005). restoration projects, further endangering plant species already threatened Thus, preventing the introduction of pathogens by us- or endangered. To our knowledge, the identification of Phytophthora ing pathogen-free plant stock is the most cost-effective species in restoration areas and in plant production facilities that produce and responsible approach (Parnell et al. -
Downy Mildew Disease of Crucifers: Biology, Ecology and Disease
Govind Singh Saharan · Naresh Mehta Prabhu Dayal Meena Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Govind Singh Saharan • Naresh Mehta Prabhu Dayal Meena Downy Mildew Disease of Crucifers: Biology, Ecology and Disease Management Govind Singh Saharan Naresh Mehta Department of Plant Pathology Department of Plant Pathology CCS Haryana Agricultural University CCS Haryana Agricultural University Hisar, Haryana, India Hisar, Haryana, India Prabhu Dayal Meena ICAR-Directorate of Rapeseed-Mustard Research Bharatpur, Rajasthan, India ISBN 978-981-10-7499-8 ISBN 978-981-10-7500-1 (eBook) https://doi.org/10.1007/978-981-10-7500-1 Library of Congress Control Number: 2017961551 © Springer Nature Singapore Pte Ltd. 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. -
Economic Cost of Invasive Non-Native Species on Great Britain F
The Economic Cost of Invasive Non-Native Species on Great Britain F. Williams, R. Eschen, A. Harris, D. Djeddour, C. Pratt, R.S. Shaw, S. Varia, J. Lamontagne-Godwin, S.E. Thomas, S.T. Murphy CAB/001/09 November 2010 www.cabi.org 1 KNOWLEDGE FOR LIFE The Economic Cost of Invasive Non-Native Species on Great Britain Acknowledgements This report would not have been possible without the input of many people from Great Britain and abroad. We thank all the people who have taken the time to respond to the questionnaire or to provide information over the phone or otherwise. Front Cover Photo – Courtesy of T. Renals Sponsors The Scottish Government Department of Environment, Food and Rural Affairs, UK Government Department for the Economy and Transport, Welsh Assembly Government FE Williams, R Eschen, A Harris, DH Djeddour, CF Pratt, RS Shaw, S Varia, JD Lamontagne-Godwin, SE Thomas, ST Murphy CABI Head Office Nosworthy Way Wallingford OX10 8DE UK and CABI Europe - UK Bakeham Lane Egham Surrey TW20 9TY UK CABI Project No. VM10066 2 The Economic Cost of Invasive Non-Native Species on Great Britain Executive Summary The impact of Invasive Non-Native Species (INNS) can be manifold, ranging from loss of crops, damaged buildings, and additional production costs to the loss of livelihoods and ecosystem services. INNS are increasingly abundant in Great Britain and in Europe generally and their impact is rising. Hence, INNS are the subject of considerable concern in Great Britain, prompting the development of a Non-Native Species Strategy and the formation of the GB Non-Native Species Programme Board and Secretariat. -
The Genus Pythium in Mainland China
菌物学报 [email protected] 8 April 2013, 32(增刊): 20-44 Http://journals.im.ac.cn Mycosystema ISSN1672-6472 CN11-5180/Q © 2013 IMCAS, all rights reserved. The genus Pythium in mainland China HO Hon-Hing* Department of Biology, State University of New York, New Paltz, New York 12561, USA Abstract: A historical review of studies on the genus Pythium in mainland China was conducted, covering the occurrence, distribution, taxonomy, pathogenicity, plant disease control and its utilization. To date, 64 species of Pythium have been reported and 13 were described as new to the world: P. acrogynum, P. amasculinum, P. b ai sen se , P. boreale, P. breve, P. connatum, P. falciforme, P. guiyangense, P. guangxiense, P. hypoandrum, P. kummingense, P. nanningense and P. sinensis. The dominant species is P. aphanidermatum causing serious damping off and rotting of roots, stems, leaves and fruits of a wide variety of plants throughout the country. Most of the Pythium species are pathogenic with 44 species parasitic on plants, one on the red alga, Porphyra: P. porphyrae, two on mosquito larvae: P. carolinianum and P. guiyangense and two mycoparasitic: P. nunn and P. oligandrum. In comparison, 48 and 28 species have been reported, respectively, from Taiwan and Hainan Island with one new species described in Taiwan: P. sukuiense. The prospect of future study on the genus Pythium in mainland China was discussed. Key words: Pythiaceae, taxonomy, Oomycetes, Chromista, Straminopila 中国大陆的腐霉属菌物 何汉兴* 美国纽约州立大学 纽约 新帕尔茨 12561 摘 要:综述了中国大陆腐霉属的研究进展,内容包括腐霉属菌物的发生、分布、分类鉴定、致病性、所致植物病 害防治及腐霉的利用等方面。至今,中国已报道的腐霉属菌物有 64 个种,其中有 13 个种作为世界新种进行了描述, 这 13 个新种分别为:顶生腐霉 Pythium acrogynum,孤雌腐霉 P.