2010 Landslide and Debris Flow from Mount Meager
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electoral Area Directors Committee Agenda October 9, 2019; 10:30 AM Pemberton Community Church - Meeting Room 7420 Dogwood Street, Pemberton, BC
Electoral Area Directors Committee Agenda October 9, 2019; 10:30 AM Pemberton Community Church - Meeting Room 7420 Dogwood Street, Pemberton, BC Item Item of Business and Page Number Page 1. Call to Order We would like to recognize that this meeting is being held on the Traditional Territory of the Líl’wat Nation. 2. Approval of Agenda 3. Electoral Area Directors Committee Closed Meeting THAT the Committee close the meeting to the public under the authority of Section 90(1)() of the Community Charter. 4. Rise & Report from the Closed Electoral Area Directors Committee Meeting 5. Consent Agenda (Voting rule on each item may vary; unanimous vote required) Items appearing on the consent agenda which present a conflict of interest for Committee Members must be removed from the Consent Agenda and considered separately. Any items to be debated or voted against must be removed from the Consent Agenda and considered separately. THAT the resolutions set out in the Consent Agenda be approved, and those Consent Agenda items which do not have resolutions related thereto be received. 5.1 Approval and Receipt of Minutes 5.1.1. Electoral Area Directors Committee Meeting Draft 5 - 11 Minutes of September 5, 2019 THAT the Electoral Area Directors Committee Meeting Minutes of September 5, 2019 be approved as circulated. 5.2 Staff Reports & Other Business 5.2.1. September 2019 Select Funds Report 12 - 16 THAT the following resolution of the September 5, 2019 Electoral Area Directors Committee meeting with respect Item Item of Business and Page Number Page -
Washington Division of Geology and Earth Resources Open File Report
l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval Perkins, J. B.; Moy, Kenneth, 1989, Llabil quak:e-induced ground failures in south uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo original accounts-The moderate sized and its impacts in the States of Califor nel Foster rock avalanches and auoci earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is Final repon. Maley, Richard, 1986, Strong motion accel land, British Columbia. erograph stations in Oregon and Wash Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab Milne, W. G., 1953, Seismological investi earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc Chan, W.W., 1988, Network and array anal Munro, P. S.; Halliday, R. J.; Shannon, W. -
Community Risk Assessment
COMMUNITY RISK ASSESSMENT Squamish-Lillooet Regional District Abstract This Community Risk Assessment is a component of the SLRD Comprehensive Emergency Management Plan. A Community Risk Assessment is the foundation for any local authority emergency management program. It informs risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflects their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. SLRD Emergency Program [email protected] Version: 1.0 Published: January, 2021 SLRD Community Risk Assessment SLRD Emergency Management Program Executive Summary This Community Risk Assessment (CRA) is a component of the Squamish-Lillooet Regional District (SLRD) Comprehensive Emergency Management Plan and presents a survey and analysis of known hazards, risks and related community vulnerabilities in the SLRD. The purpose of a CRA is to: • Consider all known hazards that may trigger a risk event and impact communities of the SLRD; • Identify what would trigger a risk event to occur; and • Determine what the potential impact would be if the risk event did occur. The results of the CRA inform risk reduction strategies, emergency response and recovery plans, and other elements of the SLRD emergency program. Evaluating risks is a requirement mandated by the Local Authority Emergency Management Regulation. Section 2(1) of this regulation requires local authorities to prepare emergency plans that reflect their assessment of the relative risk of occurrence, and the potential impact, of emergencies or disasters on people and property. -
Dynamics of Aboriginal Land Use Institutions: the Rise and Fall of Community Control Over Reserve Systems in the Lil'wat Nation, Canada
DYNAMICS OF ABORIGINAL LAND USE INSTITUTIONS: THE RISE AND FALL OF COMMUNITY CONTROL OVER RESERVE SYSTEMS IN THE LIL'WAT NATION, CANADA Akihiko Nemoto Forest Economics Research Institute #301 Mansion Yoneda, 2-13-12 Hakusan, Bunkyo-Ku, Tokyo, Japan zip 112-0001 E-mail: [email protected] Abstract I Resume Through a combination of the participant-observer method and archival data collection, this descriptive study deals with the changing dynam ics of land use institutions in an Aboriginal community of British Columbia, Canada, namely the LiI'wat Nation. En alliant la methode du participant-observateur et la collecte de donnees d'archives, I'etude descriptive se penche sur la dynamique en evolution des institutions responsables de I'utilisation du sol dans une collectivite autochtone de la Colombie-Britannique (Canada), soit la Nation Lil'wat. The Canadian Journal of Native Studies XXII, 2(2002}:207-237. 208 Akihiko Nemoto 1. Research Objectives and Methodology In the context of "sustainable development," traditional resource use systems around the world have been gaining attention as practical ways to conserve natural resources today.1 With respect to Aboriginal peoples in Canada, some scholars have advocated that there is a strong hope for contemporary resource management practices to incorporate the Aboriginal knowledge that has sustained the living resource base over extended periods of time.2 However, these arguments tend to fol low only philosophical lines, ignoring the reality of Aboriginal people who have been subjected to the politics of assimilation and economic modernization. As a way to explore Aboriginal relationship to land against the reality of their life, it is worthwhile investigating de facto land use institutions evolving in an Aboriginal community. -
Volcanic Landslide Risk Management, Lillooet River Valley, BC: Start of North and South Fsrs to Meager Confluence, Meager Creek and Upper Lillooet River
Volcanic Landslide Risk Management, Lillooet River Valley, BC: Start of north and south FSRs to Meager Confluence, Meager Creek and Upper Lillooet River. Submitted to: Malcolm Schulz, RPF Engineering Officer Metro Vancouver Squamish District Ministry of Forests, Lands and Natural Resource Operations Submitted by: Pierre Friele, P. Geo. Cordilleran Geoscience, PO Box 612, 1021 Raven Drive, Squamish, BC V8B 0A5 March 10, 2012 Table of Contents Introduction ......................................................................................................................... 1 Scope ................................................................................................................................... 1 Hazard & Risk Assessment ................................................................................................. 1 Volcanic Landslide Hazard ................................................................................................. 2 Hazard Frequency and Magnitude .................................................................................. 2 Affected Areas ................................................................................................................ 3 Proximal Zones ........................................................................................................... 3 Distal Zone .................................................................................................................. 4 Consequences of Volcanic Landslide Impacts .............................................................. -
Harmony Ridge-Lucania's Southeast Ridge
Harmony Ridge-Lucania’s Southeast Ridge S t e v e n G a s k il l , Colorado Mountain Club T h E complex massif of Mount Lu- cania rises to 17,147 feet in the St. Elias Mountains, only 50 miles north of Mount Logan. Before we started, no route had yet been completed on its southeast face for obvious reasons. The ridges are all long and draped with hanging glaciers; the faces are forbidding and well fortified. Of the myriad of ridges which make up this side of the mountain, only one goes directly to the summit, the southeast ridge, rising above a tor tured icefall in a perfect line toward the top. This was our objective. Phil Raevsky, Mike Ruckhaus, my brother Craig* and I landed on the upper Dennis Glacier on April 23, a perfect day which allowed us an unsurpassed view of the complex of St. Elias peaks, pinnacles and glaciers and especially of our entire route and planned traverse. We contemplated an alpine-style climb over Mount Lucania, across Mount Steele and finally down Steele’s beautiful east ridge, followed by a 70-mile hike out to the Alaska Highway. The mountain of equipment and food needed for the climb would make us ferry loads, at least up to the summit. By then we hoped to have reduced it to a load apiece. We spent the first day carrying two loads each up the two-and-a-half miles to our first camp, Echo Flats, at the base of the icefall. The worst dangers of the climb start there. -
Mountain Goat Population Ecology and Habitat Use Along the Juneau Access Road Corridor, Alaska
Final Wildlife Research Report, ADFG/DWC/WRR-2012-02 Mountain goat population ecology and habitat use along the Juneau Access road corridor, Alaska Kevin S. White, David P. Gregovich, Grey W. Pendleton, Neil L. Barten, Ryan Scott, Anthony Crupi and Doug N. Larsen ©2005 ADFG/photo by Kevin White May 2012 Alaska Department of Fish and Game Division of Wildlife Conservation Final Wildlife Research Reports are fi nal reports detailing the objectives, methods, data collected and fi ndings of a particular research project undertaken by ADF&G Division of Wildlife Conservation staff and partners. They are written to provide broad access to information obtained through the project. While these are fi nal reports, further data analysis may result in future adjustments to the conclusions. Please contact the author(s) prior to citing material in these reports. These reports are professionally reviewed by research staff in the Division of Wildlife Conservation. They are provided a number for internal tracking purposes. This Wildlife Research Report was reviewed and approved for publication by Rod Flynn, Reseach Coodinator for Region 1, for the Division of Wildlife Conservation. Wildlife Research Reports are available from the Alaska Department of Fish and Game’s Division of Wildlife Conservation, PO Box 115526, Juneau, Alaska 99811-5526; phone (907) 465-4190; email: dfg.dwc.publications@ alaska.gov; website: www.adfg.alaska.gov. The report may also be accessed through most libraries, via interlibrary loan from the Alaska State Library or the Alaska Resources Library and Information Service (www.arlis.org). This document should be cited as: White, K. S., D. -
North American Notes
268 NORTH AMERICAN NOTES NORTH AMERICAN NOTES BY KENNETH A. HENDERSON HE year I 967 marked the Centennial celebration of the purchase of Alaska from Russia by the United States and the Centenary of the Articles of Confederation which formed the Canadian provinces into the Dominion of Canada. Thus both Alaska and Canada were in a mood to celebrate, and a part of this celebration was expressed · in an extremely active climbing season both in Alaska and the Yukon, where some of the highest mountains on the continent are located. While much of the officially sponsored mountaineering activity was concentrated in the border mountains between Alaska and the Yukon, there was intense activity all over Alaska as well. More information is now available on the first winter ascent of Mount McKinley mentioned in A.J. 72. 329. The team of eight was inter national in scope, a Frenchman, Swiss, German, Japanese, and New Zealander, the rest Americans. The successful group of three reached the summit on February 28 in typical Alaskan weather, -62° F. and winds of 35-40 knots. On their return they were stormbound at Denali Pass camp, I7,3oo ft. for seven days. For the forty days they were on the mountain temperatures averaged -35° to -40° F. (A.A.J. I6. 2I.) One of the most important attacks on McKinley in the summer of I967 was probably the three-pronged assault on the South face by the three parties under the general direction of Boyd Everett (A.A.J. I6. IO). The fourteen men flew in to the South east fork of the Kahiltna glacier on June 22 and split into three groups for the climbs. -
Chapter 5: Canada
156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:49 PM Page 156 pter ha C 55 CanadaCanada Social Studies To learn more about Canada’s people Chapter Overview Visit The World and Its and places, view The World and Its People Web site at twip.glencoe.com and People Chapter 5 video. click on Chapter 5—Chapter Overviews to preview information about Canada. 156 156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:49 PM Page 157 Compare-Contrast Make this foldable to help you analyze the similarities and differences between the landforms, climate, and cultures of northern and southern Canada. Step 1 Mark the midpoint of the side Step 2 Turn the paper and fold the edge of a sheet of paper. outside edges in to touch at the midpoint. Draw a mark at the midpoint. Step 3 Turn and label your foldable as shown. Northern Canada Southern Canada Reading and Writing As you read the chapter, collect and write information under the appropriate tab that will help you compare and contrast northern and southern Canada. Sharing a Border The boundary line between Canada and the United States forms the longest unprotected border in the world. Citizens of these countries have been allowed to travel freely across the border, which is symbolic of the free trade between these nations. ▼ ▼ Vancouver, British Columbia 156-164 U2 CH05 S1 TWIP-860976 3/22/04 10:50 PM Page 158 Guide to Reading Main Idea 11 A Resource-Rich Canada is a vast country with many landforms and resources. -
British Columbia Coastal Range and the Chilkotins
BRITISH COLUMBIA COASTAL RANGE AND THE CHILKOTINS The Coast Mountains of British Columbia are remote with limited accessibility by float plane, helicopter or boating up its deep inlets along the coast and hiking in. The mountains along British Columbia and SE Alaska intermix with the sea in a complex maze of fjords, with thousands of islands. It is a true wilderness where not exploited by logging and salmon farming pens. But there are some areas accessible from roads that can be explored, including west of Lillooet, the Chilcotins, and the Garibaldi Range. The Coast Mountains extend approximately 1,600 kilometres (1,000 mi) long from the southeastern boundaries are surrounded by the Fraser River and the Interior Plateau while its far northwestern edge is delimited by the Kelsall and Tatshenshini Rivers at the north end of the Alaska Panhandle, beyond which are the Saint Elias Mountains. The western mountain slopes are covered by dense temperate rainforest with heavily glaciated peaks and icefields that include Mt Waddington and Mt Silverthrone. Mount Waddington is the highest mountain of the Coast Mountains and the highest that lies entirely within British Columbia, located northeast of the head of Knight Inlet with an elevation of 4,019 metres (13,186 ft). The range along its eastern flanks tapers to the dry Interior Plateau and the boreal forests of the southern Chilkotins north to the Spatsizi Plateau Wilderness Provincial Park. The mountain range's name derives from its proximity to the sea coast, and it is often referred to as the Coast Range. The range includes volcanic and non-volcanic mountains and the extensive ice fields of the Pacific and Boundary Ranges, and the northern end of the volcanic system known as the Cascade Volcanoes. -
Canadian Volcanoes, Based on Recent Seismic Activity; There Are Over 200 Geological Young Volcanic Centres
Volcanoes of Canada 1 V4 C.J. Hickson and M. Ulmi, Jan. 3, 2006 • Global Volcanism and Plate tectonics Where do volcanoes occur? Driving forces • Volcano chemistry and eruption types • Volcanic Hazards Pyroclastic flows and surges Lava flows Ash fall (tephra) Lahars/Debris Flows Debris Avalanches Volcanic Gases • Anatomy of an Eruption – Mt. St. Helens • Volcanoes of Canada Stikine volcanic belt Presentation Outline Anahim volcanic belt Wells Gray – Clearwater volcanic field 2 Garibaldi volcanic belt • USA volcanoes – Cascade Magmatic Arc V4 Volcanoes in Our Backyard Global Volcanism and Plate tectonics In Canada, British Columbia and Yukon are the host to a vast wealth of volcanic 3 landforms. V4 How many active volcanoes are there on Earth? • Erupting now about 20 • Each year 50-70 • Each decade about 160 • Historical eruptions about 550 Global Volcanism and Plate tectonics • Holocene eruptions (last 10,000 years) about 1500 Although none of Canada’s volcanoes are erupting now, they have been active as recently as a couple of 4 hundred years ago. V4 The Earth’s Beginning Global Volcanism and Plate tectonics 5 V4 The Earth’s Beginning These global forces have created, mountain Global Volcanism and Plate tectonics ranges, continents and oceans. 6 V4 continental crust ic ocean crust mantle Where do volcanoes occur? Global Volcanism and Plate tectonics 7 V4 Driving Forces: Moving Plates Global Volcanism and Plate tectonics 8 V4 Driving Forces: Subduction Global Volcanism and Plate tectonics 9 V4 Driving Forces: Hot Spots Global Volcanism and Plate tectonics 10 V4 Driving Forces: Rifting Global Volcanism and Plate tectonics Ocean plates moving apart create new crust. -
Impact of a Quaternary Volcano on Holocene Sedimentation in Lillooet River Valley, British Columbia
Sedimentary Geology 176 (2005) 305–322 www.elsevier.com/locate/sedgeo Impact of a Quaternary volcano on Holocene sedimentation in Lillooet River valley, British Columbia P.A. Frielea,T, J.J. Clagueb, K. Simpsonc, M. Stasiukc aCordilleran Geoscience, 1021, Raven Drive, P.O. Box 612, Squamish, BC, Canada V0N 3G0 bDepartment of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada V5A 1S6; Emeritus Scientist, Geological Survey of Canada, 101-605 Robson Street, Vancouver, BC, Canada V6B 5J3 cGeological Survey of Canada, 101-605 Robson Street, Vancouver, BC, Canada V6B 5J3 Received 3 May 2004; received in revised form 15 December 2004; accepted 19 January 2005 Abstract Lillooet River drains 3850 km2 of the rugged Coast Mountains in southwestern British Columbia, including the slopes of a dormant Quaternary volcano at Mount Meager. A drilling program was conducted 32–65 km downstream from the volcano to search for evidence of anomalous sedimentation caused by volcanism or large landslides at Mount Meager. Drilling revealed an alluvial sequence consisting of river channel, bar, and overbank sediments interlayered with volcaniclastic units deposited by debris flows and hyperconcentrated flows. The sediments constitute the upper part of a prograded delta that filled a late Pleistocene lake. Calibrated radiocarbon ages obtained from drill core at 13 sites show that the average long-term floodplain aggradation rate is 4.4 mm aÀ1 and the average delta progradation rate is 6.0 m aÀ1. Aggradation and progradation rates, however, varied markedly over time. Large volumes of sediment were deposited in the valley following edifice collapse events and the eruption of Mount Meager volcano about 2360 years ago, causing pulses in delta progradation, with estimated rates to 150 m aÀ1 over 50-yr intervals.