Protein Clean-Up Technical Handbook Dialysis • Desalting • Detergent Removal • Concentration • Endotoxin Removal Contents Protein Clean-Up Technical Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Protein Clean-Up Technical Handbook Dialysis • Desalting • Detergent Removal • Concentration • Endotoxin Removal Contents Protein Clean-Up Technical Handbook Protein clean-up technical handbook Dialysis • Desalting • Detergent removal • Concentration • Endotoxin removal Contents Protein clean-up technical handbook Contents Introduction 2 Protein concentration using ultrafiltration membranes Overview 30 Protein dialysis using regenerated cellulose membranes Selecting the right membrane 31 Overview 4 Membrane performance data 32 Membrane performance data 6 Selecting the right format 34 Selecting the right format for sample processing 8 Pierce Protein Concentrators, 0.5 mL 35 Pierce 96-well Microdialysis Plate 9 Pierce Protein Concentrators, 6 mL 35 Slide-A-Lyzer MINI Dialysis Devices 10 Pierce Protein Concentrators, 20 mL 36 Original Thermo Scientific Slide-A-Lyzer Dialysis Cassette 11 Pierce Protein Concentrators, 100 mL 36 Slide-A-Lyzer G2 Dialysis Cassettes 12 Slide-A-Lyzer Dialysis Flasks 13 Endotoxin removal using affinity chromatography SnakeSkin Dialysis Tubing 14 Overview 37 Resin performance data 38 Protein desalting using gel filtration resins Selecting the right format 40 Overview 15 Spin columns 40 Resin performance data 17 Loose resin 41 Selecting the right format for sample processing 21 Endotoxin quantitation kit 41 Zeba Spin Desalting Columns 22 Zeba Spin Desalting Plates 23 Ordering information 42 Zeba Desalting Chromatography Cartridges 24 References 47 Detergent removal using chromatography resins Overview 25 Protein research handbooks 48 Resin performance data 26 Selecting the right format for sample processing 28 Spin columns, loose resin and kits 29 96-well spin plates 29 2 Introduction Protein clean-up technical handbook the membrane barrier in a centrifuge tube, concentrating Endotoxin removal Overview of protein clean-up methods the macromolecules (e.g., proteins) in the remaining Endotoxin contamination is a common problem with solution (retentate). For buffer exchange (diafiltration), the recombinant proteins purified from gram-negative bacteria concentrated solution is diluted and concentrated multiple such as E. coli. Traditional endotoxin removal methods times until the desired state is achieved. The easy-to-use include anion-exchange chromatography, ultrafiltration, Thermo Scientific™ Pierce™ Protein Concentrators contain membrane-based chromatography, and Polymixin B affinity a high performance PES (polyethersulfone) membrane ligand. These methods are limited by specificity, capacity Flat dialysis tubing composed of cellulose acetate or that enables fast processing and excellent protein recovery or reusability. Thermo Scientific™ Pierce™ High Capacity The first step in protein analysis is regenerated cellulose was introduced in the 1950s. This for samples. Endotoxin Removal Resin selectively binds and removes format requires preparation and is cumbersome and endotoxins from protein, peptide and antibody samples cellular extraction. Following lysis, difficult to handle. Thermo Scientific™ dialysis products Thermo Fisher Scientific offers a variety of specialty devices using a modifiedε -poly-L-lysine [poly(ε-lysine)] affinity ligand. are essentially ready to use and are designed to eliminate and resins that simply and efficiently desalt, exchange buffer, and depending on the next step potential sample leakage and maximize ease of use for and remove detergents from samples. In addition, if the specific applications. protein sample is too dilute for further processing or analysis, in the workflow, the protein extract the sample can be concentrated quickly using centrifugal Desalting concentrators (Table 1). may require further clean-up or Size exclusion chromatography (also known as gel filtration or molecular sieve chromatography) can be effectively Table 1. Protein clean-up selection guide enrichment during downstream utilized for protein desalting (removal of salt from a sample). A resin is selected with pores that are large enough to trap Dialysis devices, Desalting spin columns, Detergent removal spin processing, using techniques cassettes, 96-well 96-well spin plates columns and 96-well small contaminants (e.g., salts), but too small for the protein plates and tubing and cartridges spin plates Concentrators such as dialysis, desalting, of interest to enter. The larger, faster proteins separate from the slower, smaller molecules and can be collected first. concentration, or contaminant- The Thermo Scientific™ Zeba™ desalting products contain a unique resin that enables exceptional desalting and protein specific removal. recovery, and are available in convenient spin columns and plate formats that allow samples to be processed in minutes. Historically, mechanical disruption has been used to lyse Sample volume 10 μL–250 mL 2 μL–4 mL 25 μL–1 mL 100 μL–100 mL cells and tissues; however, detergent-based solutions have Detergent removal processing range more recently been developed to efficiently lyse cells and Detergent removal has traditionally utilized a variety of Sample processing time 2–24 hrs 5–10 min 15–20 min 5–30 min* enable the separation of subcellular structures without methods including dialysis, ion exchange chromatography, (volume dependent) requiring physical disruption. Many detergents, salts sucrose gradients, or acid or acetone precipitation. However, Key applications Buffer exchange, desalting, Desalting, buffer exchange, Removal of anionic, Sample concentration, and other molecules used in or generated during protein all these methods can be labor- and/or time-intensive, virus purification removal of unincorporated nonionic and zwitterionic desalting, buffer exchange extraction or purification may have adverse effects on or detergent-specific. The proprietary Thermo Scientific™ label detergents protein function or stability, or interfere with downstream Detergent Removal resins enable the efficient, rapid and Recommended Purified protein Lysate or purified protein Purified protein or peptide Lysate or purified protein applications; therefore it may be necessary to remove effective extraction of a wide variety of detergents (ionic, sample type mixture or reduce these contaminants using one or more of the nonionic and zwitterionic) that are commonly used in protein Compatible with Yes No No No following methods. extraction, purification and biological assays. viscous samples? Sample diluted during Possible No No No Dialysis Concentration processing? Dialysis is a separation method that utilizes selective Protein concentration utilizes a semi-permeable membrane Gamma-irradiated Yes No No No diffusion through a semi-permeable membrane to remove to separate macromolecules from low molecular weight options available? small contaminants or exchange buffers from proteins in compounds. Unlike dialysis, which relies on passive * For 10K MWCO (device dependent—times may vary for other MWCOs) solution. Proteins that are larger than the membrane pore diffusion, concentration is achieved by forcing solutions size are retained on one side of the membrane while small through the membrane by centrifugation. Solvents and Learn more at thermofisher.com/proteincleanup molecular weight contaminants diffuse freely through the small molecular weight molecules pass through the membrane and approach an equilibrium concentration. membrane pores as the protein solution is forced against 2 3 Protein dialysis using regenerated cellulose membranes Protein clean-up technical handbook Factors that influence dialysis frequency exchange of the external buffer. The rate of Protein dialysis using regenerated Dialysis is used for separating molecules with significantly dialysis is also directly proportional to the surface area of different molecular weights (typically a 10- to >50-fold size the membrane in relationship to the volume of the sample difference). The diffusion properties of a membrane are and the average distance of the sample from the membrane. cellulose membranes determined by the average or maximum size of its pores, The more that a sample can be spread over a membrane the number of pores and the thickness of the membrane. surface, the faster dialysis will proceed because all Membrane selection is based on the molecular weight molecules in the sample will be closer to the membrane, and Through this process, the concentration of small cutoff (MWCO), which is defined as the average molecular a higher proportion of them will be in direct contact with the Overview contaminants in the sample can be decreased to acceptable weight of a molecule that can no longer diffuse across membrane at any instant. or negligible levels if the external buffer volume is large the membrane, such that it is retained at >90%, as it no Dialysis is a classic solution-based (typically 30–500 times the sample volume). Alternatively, longer fits into the pores. Understanding the significance Optimized products for easier, efficient dialysis desired components in the external buffer solution can be of a membrane’s MWCO and how it behaves enables Using dialysis to separate complex mixtures of separation technique that facilitates slowly brought into the sample. Dialysis is used for a wide selection of the best membrane for a particular dialysis biomacromolecules was established in the 1950s. Many variety of applications including simple salt removal and application. Molecular weight cutoff is not a “defined” value, of the dialysis theories established at that time are the the removal of small, unwanted buffer exchange, removal of labeling reagents, drug binding as diffusion of molecules near but below the MWCO will also cornerstones for contemporary dialysis products. However,
Recommended publications
  • Protocols and Tips in Protein Purification
    Department of Molecular Biology & Biotechnology Protocols and tips in protein purification or How to purify protein in one day Second edition 2018 2 Contents I. Introduction 7 II. General sequence of protein purification procedures 9 Preparation of equipment and reagents 9 Preparation and use of stock solutions 10 Chromatography system 11 Preparation of chromatographic columns 13 Preparation of crude extract (cell free extract or soluble proteins fraction) 17 Pre chromatographic steps 18 Chromatographic steps 18 Sequence of operations during IEC and HIC 18 Ion exchange chromatography (IEC) 19 Hydrophobic interaction chromatography (HIC) 21 Gel filtration (SEC) 22 Affinity chromatography 24 Purification of His-tagged proteins 25 Purification of GST-tagged proteins 26 Purification of MBP-tagged proteins 26 Low affinity chromatography 26 III. “Common sense” strategy in protein purification 27 General principles and tips in “common sense” strategy 27 Algorithm for development of purification protocol for soluble over expressed protein 29 Brief scheme of purification of soluble protein 36 Timing for refined purification protocol of soluble over -expressed protein 37 DNA-binding proteins 38 IV. Protocols 41 1. Preparation of the stock solutions 41 2. Quick and effective cell disruption and preparation of the cell free extract 42 3. Protamin sulphate (PS) treatment 43 4. Analytical ammonium sulphate cut (AM cut) 43 5. Preparative ammonium sulphate cut 43 6. Precipitation of proteins by ammonium sulphate 44 7. Recovery of protein from the ammonium sulphate precipitate 44 8. Analysis of solubility of expression 45 9. Analysis of expression for low expressed His tagged protein 46 10. Bio-Rad protein assay Sveta’s easy protocol 47 11.
    [Show full text]
  • Anatomy and Physiology of Peritoneal Dialysis
    Anatomy and Physiology of Peritoneal Dialysis Isaac Teitelbaum, MD Professor of Medicine Director, Acute & Home Dialysis Programs University of Colorado Hospital Denver, Colorado •1 Outline • Peritoneal cavity as a dialysis system • Models of peritoneal transport • Physiology of peritoneal transport Inverse relationship between solute transport and ultrafiltration • Kinetics of peritoneal transport • Synthesis & Application • Middle Molecules Anatomy of The Peritoneum • The lining of the abdominal cavity • Two layers: parietal - lines the anterior wall and undersurface of the diaphragm - 20% of total SA; blood supply from abdominal wall visceral - covers the abdominal organs - 80% of total SA; blood supply from mesenteric aa and portal vv Gokal R, Textbook of PD, pp. 61-70 •3 Anatomy of The Peritoneum • Size 1.5 – 2 m2; approximates BSA • Highly Vascular • Semi-permeable/bi-directional • “Lymphatic” drainage through diaphragmatic stomata • Continuous with Fallopian Tubes in females Gokal R, Textbook of PD, pp. 61-70 1. The two main properties of the peritoneal membrane are: a. Semi permeable – this allows substances of certain sizes to move from an area of greater concentration to less concentration. b. Bi Directional - substances move in either direction across the membrane. 2. So-called “lymphatic” drainage refers to bulk flow from the peritoneal cavity back to the circulation. This actually occurs across tissues as well as lymphatics. As this is convective flow, dissolved solutes move with the fluid. Thus, fluid reabsorption results in loss of solute clearance as well as loss of fluid removal. 3. It is important to be aware of the continuity of the peritoneal cavity with the Fallopian tubes as retrograde menstruation- which may occur in any woman but goes undetected- will cause bloody dialysate and create concern in the PD patient.
    [Show full text]
  • Water Treatment for Hemodialysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Hong Kong JournalJ Nephrol of 2001;3(1):7-14.Nephrology MKH TONG, et al 2001;3(1):7-14. REVIEW ARTICLE Water treatment for hemodialysis Matthew Ka-Hang TONG1, Wei WANG2, Tze-Hoi KWAN1, Lawrence CHAN2, Tak-Cheung AU1 1Department of Medicine, Tuen Mun Hospital, Tuen Mun, Hong Kong; 2Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA. Abstract Water treatment plays a vital role in the delivery of safe and effective hemodialysis (HD). Ensuring that water quality meets the American Association for the Advancement of Medical Instrumentation standards and recommendations (or equivalent) is necessary to reduce the incidence of chemical hazards and endotoxemia associated with the use of water for HD. This review will discuss the principles of water treatment for HD, the essential components of water purification, the recommended system monitoring and maintenance procedures, and some of the historical incidents of adverse reactions that resulted from the use of contaminated dialysis water. Key words: Dialysis solutions, Hemodialysis (HD), Pyrogenic reactions, Reverse osmosis (RO), Water purification ! !"#$%&'()*EeaF !"#$%&'()*+,-./0123456789%: ea !"#$%&'()*+,-*./0123456789ea !"#$%& !"#$%&'()#*+,-./0123456789:;<=> INTRODUCTION can build up to toxic levels, causing long-term physical Since the early 1960s, hemodialysis (HD) has been harm, and other substances are immediately toxic and increasingly used for the treatment of acute renal failure can cause death. A normal person also encounter these and end-stage renal failure. Technologic advances in contaminants through drinking water, but the healthy dialyzer membranes, dialysis machines and vascular kidney is able to remove these substances.
    [Show full text]
  • Separation Techniques (Proteins)
    Separation techniques (Proteins) Desalting / Dialysis, Ultrafiltration Dialysis and Ultrafiltration Dialysis is an easy and efficient technique to separate biomolecules according to their molecular weight, but also usefull for small bioactive compounds release or binding studies. Applications include : Applications Area Biomolecule of interest ! desalting (removing salts) biochemistry (synthesis, proteins ! buffer exchange labeling, analysis) lipids ! fractionation production (purification,...) nucleic acids carbon hydrates ! drug binding studies pharmacology drugs, ligands, cytokines... Membranes 200 MWCO most molecules with MW >200 ! drug release in cell models or organisms 200 Da MWCO Dialysis is driven by a differential concentration gradient, discriminating biomolecules across a "semi-permeable" membrane. The membrane can be considered to display pores that retain molecules above a given size, and is permeable to small molecules. Membrane should be chosen with a Molecular Weight Cut-Off (MWCO) between the MW of molecules to recover in the sample compartment, and the MW of the molecules to remove (usually salts, by-products of reaction,...). See technical tip. ! MWCO is defined for globular proteins (90% of molecules with MW=MWCO are retained), in given conditions (buffer, temperature,...). So, the membrane choice may depend on the molecules shape, hydrophilicity,... (see the table for nucleic acids with CelluSep). For effective dialysis, the ratio (MW of molecules to retain/MW of salt to remove) passed should be superior to 25. ! Also, the dialysis rate and the selectivity of molecules discrimination are affected near the Proteomics MWCO. For quick desalting, the dialysis speed may be favored with MWCO far above MW of salts (closer to biomolecules), while for applications with small difference of MWs or with populations of dispersed molecules, the selectivity may be privileged by choosing a MWCO relatively close to small molecules to be removed.
    [Show full text]
  • Desalting and Buffer Exchange by Dialysis, Gel Filtration Or Diafiltration*
    Scientific & Technical Report PN 33290 Desalting and Buffer Exchange by Dialysis, Gel Filtration or Diafiltration* By Larry Schwartz, Senior Technical Manager, Pall Life Sciences DIALYSIS GEL FILTRATION Dialysis is an old established procedure for Gel Filtration is a non-adsorptive chromatography reducing the salt concentration in samples. technique that separates molecules on the basis It requires filling a dialysis bag (membrane of molecular size. Desalting and buffer exchange casing of defined porosity), tying the bag off, are two special examples of gel filtration that and placing the bag in a bath of water or are widely used in many downstream bio- buffer. Through diffusion, the concentration of processes. Desalting is used to completely salt in the bag will equilibrate, with that in the remove or lower the concentration of salt or bath. Large molecules that can’t diffuse other low molecular weight components in the through the bag remain in the bag. If the bath sample while buffer exchange replaces the is water, the concentration of the small mole- sample buffer with a new buffer. cules in the bag will decrease slowly until the Gel filtration is one of the easiest chromatography concentration inside and outside are the same. methods to perform because samples are The greater the volume of the bath relative to processed using isocratic elution. In its the sample volume in the bags, the lower the analytical form, gel filtration (also known as equilibration concentration that can be reached. size exclusion chromatography) can distinguish Usually several replacements of the bath water between molecules (e.g. proteins) with a are required to completely remove all of the molecular weight difference of less than a salt.
    [Show full text]
  • Diffusion Using Dialysis Tubing
    Diffusion Using Dialysis Tubing Introduction SCIENTIFIC How do membranes around cells regulate the internal composition of the cell? Can any molecule BIO FAX! pass through the membrane or only certain molecules. What determines the direction of molecular movement? Use dialysis tubing to teach students the fundamental concepts of diffusion. Concepts •Diffusion • Concentration gradient • Semipermeable membrane Background Diffusion is one of the key processes involved in the movement of materials throughout living systems. Diffusion is the tendency for molecules of any substance to spread out into the available space. Diffusion can be effectively demonstrated by observing the action of a drop of dye in a glass of water. The H2O molecules that make up water are in constant motion. If a drop of blue food dye is added to the glass, the dye begins to slowly diffuse throughout the water. The individual dye molecules disperse and collide with the moving water molecules and eventually become evenly distributed throughout the glass. The solution in the glass appears as a uniform light blue. The movement of individual molecules is indeed random. The net movement of the dye molecules is directional in a sense that they move from a region where they are highly concentrated to a region where they are less concentrated. Diffusion is said to occur down a concentration gradient. When the dye has become evenly distributed, and the dye and water are at equilibrium, the net movement of the dye appears to have stopped. It is important to understand that the random movement of individual dye and water molecules continues even when equilibrium is reached.
    [Show full text]
  • General Lab Dialysis
    Ref: March 12, 2008 Laboratory Dialysis: FAQ’s Q1: How do you prepare dialysis membrane tubing? Preparation instructions will vary based on the membrane type as follows. Note that boiling membrane is not recommended as it can damage the membrane and alter the pore rating. A) Biotech RC, CE, and PVDF membranes should be rinsed in DI water for 15 to 30 minutes to remove sodium azide preservative. B) Spectra/Por® 7 Standard RC has been pretreated to remove the trace levels of heavy metals and sulfides and only requires a 15 to 30 minute soak in DI water to remove the sodium azide preservative. C) Spectra/Por® 1 through 6 Standard RC membranes may require some extra preparation. While rinsing Spectra/Por® 1 through 6 in water is typically sufficient to remove glycerin or preservative, Spectrum offers two membrane pre-treatment solution kits for the removal of the trace levels of heavy metals and sulfides introduced during manufacturing. Heavy Metal Cleaning Solution and Sulfide Removal Solution Kits are recommended for ultra-sensitive dialysis applications like binding studies or when low level presence of these contaminants may interfere with downstream analysis of the dialysis sample. Refer to the Membrane Dialysis Accessories webpage for more product information. Q2: How does dialysis work and how long does it take to complete? Dialysis is the diffusion of dissolved solutes across a selectively permeable membrane against a concentration gradient in an effort to achieve equilibrium. While small solutes pass through the membrane larger solutes are trapped on one side. By exchanging the dialysate buffer on the outside side of the membrane, you can continually pull away the smaller solutes to purify the trapped larger molecules.
    [Show full text]
  • Dialysis: an Overview
    TECH TIP # 20 Dialysis: an overview TR0020.1 Introduction Thermo Scientific Pierce® Protein Research Products include a number of innovative devices to facilitate the buffer exchange and removal of small contaminants by dialysis. SnakeSkin® Dialysis Tubing, Slide-A-Lyzer® Dialysis Cassettes and Slide-A- Lyzer MINI Dialysis Units (see Related Pierce Products) all offer unprecedented convenience and performance for dialysis of samples ranging from 10 µl to 100 ml. Although these high-performance dialysis products are much easier to use than traditional dialysis tubing, which requires boiling and soaking before use, they make use of the same principles of dialysis. Dialysis is Diffusion Through a Semi-Permeable Membrane Dialysis is the movement of molecules by diffusion from high concentration to low concentration through a semi-permeable membrane. Only those molecules that are small enough to fit through the membrane pores are able move through the membrane and reach equilibrium with the entire volume of solution in the system. Once equilibrium is reached, there is no further net movement of the substance because molecules will be moving through the pores into and out of the dialysis unit at the same rate. By contrast, large molecules that cannot pass through the membrane pores will remain on the same side of the membrane as they were when dialysis was initiated. To remove additional unwanted substance, it is necessary to replace the dialysis buffer so that a new concentration gradient can be established. Once the buffer is changed, movement of particles from high (inside the membrane) to low (outside the membrane) concentration will resume until equilibrium is once again reached.
    [Show full text]
  • Isolation and Characterization of Polysaccharides from Oysters (Crassostrea Gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System
    marine drugs Article Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System Kit-Leong Cheong † ID , Li-Xuan Xia † and Yang Liu * Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology & STU-UNIVPM Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, Guangdong, China; [email protected] (K.-L.C.); [email protected] (L.-X.X.) * Correspondence: [email protected]; Tel.:+86-0754-8650-2749 † These authors contributed equally to this work. Received: 8 October 2017; Accepted: 25 October 2017; Published: 1 November 2017 Abstract: In this study, a simple aqueous two-phase system (ATPS) was employed for concurrent purification of oyster polysaccharides. The chemical structure and anti-tumor activities of purified oyster polysaccharides (OP-1) were also investigated. Under optimal ATPS conditions, oyster polysaccharides can be partitioned in the bottom phase with 67.02% extraction efficiency. The molecular weight of OP-1 was determined as 3480 Da. OP-1 is a (1!4)-α-D-glucosyl backbone and branching points located at O-3 of glucose with a terminal-D-Glcp. The anti-tumor activity assay showed that OP-1 exhibited good activities, including promotion of splenocyte proliferation, IL-2 release, and inhibition of HepG2 cell proliferation. Additionally, OP-1 had no in vivo toxicity. This finding suggests that ATPS is a much simpler and greener system, and it opens up new possibilities in the large-scale separation of active polysaccharides from oysters. OP-1 could be used by the health food and pharmaceutical therapies as potential anti-cancer adjuvants.
    [Show full text]
  • Workshop 7B Protein Isolation and Purification
    Workshop 7B Protein Isolation and Purification Part I--Fractionation and dialysis Introduction page 2 Concentration and partial fractionation of a protein “extract” page 3 Ammonium sulfate table page 5 Dialysis page 6 References and useful books page 7 Part II--Liquid Chromatography and MALDI Mass Analysis Introduction page 8 Size exclusion chromatography page 10 Desalting using gel filtration chromatography page 10 Normal phase chromatography page 11 Ion-exchange chromatography page 12 Reversed-phase chromatography page 12 HPLC instructions page 14 MALDI instructions page 17 Principle of MALDI page 21 MALDI sample preparation page 23 Mass Spectrometry Terms page 24 Resolution page 24 Mass accuracy page 26 Common matrices used for MALDI page 27 MALDI spectrums page 29 References and useful books page 32 Equipment List page 33 Spring 2016 Workshop 7B- Protein Isolation and purification Part I- Fractionation and dialysis Instructors Joel Nott, Margie Carter, 1182 Mol. Biol. Bldg., Phone 294-3267, [email protected], http://www.protein.iastate.edu Introduction The first step in protein purification involves a cell disruption step. The method of choice depends on the type of cell. In general, animal cells are easier to disrupt than bacteria, yeast or plant cells. The table below summarizes some of the methods. This list is by no means complete, as there are as many methods of disruption as there are types of cells. Cell Type Method Comment Bacteria French press Shearing forces disrupt cell wall as the cells Plant cells are forced through a small opening under very high pressure. Not practical for large volumes. Bacteria Sonication Disruption of cell walls by shearing and cavitation.
    [Show full text]
  • Application of a PEG/Salt Aqueous Two-Phase Partition System for The
    Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract Dimitris Platis, Nikolaos Labrou To cite this version: Dimitris Platis, Nikolaos Labrou. Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract. Biotechnology Journal, Wiley-VCH Verlag, 2009, 4 (6), pp.1320. 10.1002/biot.200800359. hal-00495061 HAL Id: hal-00495061 https://hal.archives-ouvertes.fr/hal-00495061 Submitted on 25 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biotechnology Journal Application of a PEG/salt aqueous two-phase partition system for the recovery of monoclonal antibodies from unclarified transgenic tobacco extract For Peer Review Journal: Biotechnology Journal Manuscript ID: BIOT-2008-0359.R2 Wiley - Manuscript type: Research Article Date Submitted by the 30-Mar-2009 Author: Complete List of Authors: Platis, Dimitris; Agricultural University of Athens, Agricultural Biotechnology Labrou, Nikolaos; Agricultural University of Athens, Agricultural Biotechnology Aqueous two phase system, molecular farming, downstream Keywords: processing, therapeutic monoclonal antibody, transgenic plants Wiley-VCH Page 2 of 26 Biotechnology Journal 1 1 2 3 4 Research Article ((4760 words)) 5 6 7 Application of a PEG/salt aqueous two-phase partition 8 9 10 system for the recovery of monoclonal antibodies from 11 12 13 unclarified transgenic tobacco extract 14 15 16 17 18 D.
    [Show full text]
  • Semipermeable Membranes (Dialysis/Cellophane Membranes/Peptides/Activation Energy) LYMAN C
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 3, pp. 702-705, March 1972 On a Theory for the Passive Transport of Solute through Semipermeable Membranes (dialysis/cellophane membranes/peptides/activation energy) LYMAN C. CRAIG AND HAO-CHIA CHEN The Rockefeller University, New York, N.Y. 10021 Contributed by Lyman C. Craig, January 10, 1972 ABSTRACT It has been shown that thin-film dialysis the peptide or the membrane. This theory seemed reasonable can be performed in such a way that the limiting rate is the rate of entry of the solute into the membrane from the because of the high discrimination of the dialysis method, high-concentration side. The rate of diffusion, therefore, that appeared to be in the range of 2-3% of the Stokes reflects the probability of a molecule entering the pores on radius (3). the surface and does not depend on the resistance to Recently it has been discovered (5) that with peptides of diffusion offered by the internal structure of the mem- brane. The good correlation, so generally found, of the high charge density and with charges of the same sign, a order of escape times of given solutes with the order of free higher order of freedom from fixed charge on the membrane is diffusion rates is thus explained. The data from stretching required in order for dialysis rates to be independent of experiments with wet cellophane, in which the pore struc- charge. A method of covering any residual fixed charge has ture is distorted, are also explained. been developed; the charge is coupled with glycine amide with Soon after the method of thin-film dialysis was proposed as a the help of a water-soluble carbodiimide coupling agent.
    [Show full text]