excerpt from the book: , Popovic, Academic Press, Elsevier, 2019. (No of pages 668) ISBN 978-0-12-812939-5 https://doi.org/10.1016/C2016-0-04132-3 Copyright © 2019 Elsevier Inc. All rights reserved.

Chapter 7, Pages 175-199

Artificial Organs, Tissues, and Support Systems † ‡ § Hiroyuki Tashiro*, Marko B. Popovic , Ivo Dobrev , Yasuo Terasawa

*KYUSHU UNIVERSITY, FUKUOKA, JAPAN †WORCESTER POLYTECHNIC INSTITUTE,

WORCESTER, MA, UNITED STATES ‡UNIVERSITY HOSPITAL ZURICH, UNIVERSITY ZURICH,

ZURICH, SWITZERLAND §NIDEK CO., LTD., AICHI, JAPAN

Abstract

When diseases or injuries result in serious dysfunction of organs, people may face a life-threatening crisis. In such cases, treatment with an artificial can be performed. The artificial organs are anticipated to perform functionally as substitutes for impaired or missing organs. Attempts to replace dysfunctional body parts with engineered devices have a history that is at least 3000–4000 years old. Currently, not only material science, electrical and electronic engineering, mechanical engineering but also nanotechnology and are applied to the design of artificial organs. In this chapter, numerous artificial organs, tissues, and support systems already in wide use as well as those that still being actively researched and developed are addressed.

CHAPTER OUTLINE

7.1 Introduction ...... 175

7.2 Cardiovascular and Respiratory Devices ...... 177

7.2.1 Artificial Heart Lung—Circulation-Assisting Device—Artificial Heart ...... 177

7.2.2 Artificial Heart Valve ...... 178

7.2.3 Artificial Blood Vessel ...... 182

7.2.4 Pacemaker ...... 182 7.2.5 Artificial Respirator ...... 182

7.3 Metabolic and Digestive Devices ...... 183

7.3.1 Artificial Dialyzer ...... 183

7.3.2 Artificial Pancreatic Islet ...... 185

7.4 Sensory Devices ...... 185

7.4.1 Ear ...... 185

7.4.2 Eye ...... 191

7.5 Orthopedic, Dentistry, Plastic, and Reconstructive Devices ...... 194

7.5.1 Breast ...... 194

7.5.2 Dental ...... 195

7.5.3 Artificial Skin ...... 195

7.5.4 Artificial Dura Mater ...... 196

7.5.5 Artificial Bone and Artificial Joint ...... 196

7.6 Neuromodulation ...... 196

References ...... 196

Biomechatronics. https://doi.org/10.1016/B978-0-12-812939-5.00007-0

© 2019 Elsevier Inc. All rights reserved.

[chapter content intentionally omitted]

References

[1] R. Tang, Artificial organs, Bios 69 (3) (1998) 119–122.

[2] G. Catapano, G.J. Verkerke, Artificial organs. in: Z.O. Abu-Faraj (Ed.), Handbook of on Education and Advanced Bioengineering Learning: Interdisciplinary Concepts, IGI Global, Hershey, 2012, p. 63, doi:10.4018/978-1-4666-0122-2.ch002.

[3] P.M. Galletti, Prostheses and artificial organs, in: J.D. Bronzino (Ed.), The Biomedical Engineering Handbook, CRC Press, Boca Raton, 1995, p. 1836. [4] A.G. Nerlich, A. Zink, U. Szeimies, H.G. Hagedorn, Ancient Egyptian prosthesis of the big toe. Lancet 356 (9248) (2000) 2176–2179, doi:10.1016/S0140-6736(00)03507-8.

[5] G. Capatano, Artificial organs design: towards the integration of disciplines. in: Proceeding of 2011 1st Middle East Conference on Biomedical Engineering (MECBME), Sharjah, United Arab Emirates, 21–24 Feburuary, 2011, pp. 185–187, doi:10.1109/MECBME.2011.5752096.

[6] Y. Man, X. li, S. Wang, Recent advances in biohybrid materials for tissue engineering and regenerativemedicine. J. Mol. Eng. Mater 4 (1) (2016) 164001, doi:10.1142/S2251237316400013.

[7] P.S. Malchesky, Artificial organs and vanishing boundaries. Artif. Organs 25 (2) (2001) 75–88, doi:10.1046/j.1525-1594.2001.025002075.x.

[8] A.C. Passaroni, M.A. de Moraes Silva, W.B. Yoshida, Cardiopulmonary bypass: development of John Gibbon’s heart-lung machine. Rev. Bras. Cir. Cardiovasc. 30 (2) (2015) 235–245, doi:10.5935/1678- 9741.20150021.

[9] E. Tatsumi, Artificial lungs: current state and trends of clinical use and research and development. J. Artif. Organs 10 (1) (2007) 1–5, doi:10.1007/s10047-006-0356-x.

[10] D. Hou, F. Yang, X. Hou, Clinical application of intra-aortic balloon counterpulsation in high-risk patients undergoing cardiac surgery. Perfusion 33 (3) (2017) 178–184, doi:10.1177/0267659117734630.

[11] C. Feldmann, A. Chatterjee, A. Haverich, J.D. Schmitto, Left ventricular assist devices—a state of the art review. in: S. Islam (Ed.), Heart Failure: From Research to Clinical Practice, in: Adv. Exp.Med. Biol. Series, vol. 1067, Springer, Cham, 2013, pp. 287–294, doi:10.1007/5584_2018_145.

[12] M.B. Popovic, Biomechanics and Robotics, Pan Stanford, Singapore, 2013.

[13] R.D. Dowling, L.A. Gray Jr., S.W. Etoch, H. Laks, D. Marelli, L. Samuels, J. Entwistle, G. Couper, G. J. Vlahakes, O.H. Frazier, Initial experience with the AbioCor implantable replacement heart system. J. Thorac. Cardiovasc. Surg. 127 (1) (2004) 131–141, doi:10.1016/j.jtcvs.2003.07.023.

[14] G.D. Dangas, J.I. Weitz, G. Giustino, R. Makkar, R. Mehran, Prosthetic heart valve thrombosis. J. Am. Coll. Cardiol. 68 (24) (2016) 2670–2689, doi:10.1016/j.jacc.2016.09.958.

[15] S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The tissue-engineered vascular graft—past, present, and future, Tissue Eng. Part B Rev. 22 (1) (2016) 68–100, doi:10.1089/ten.teb.2015.0100.

[16] H.Bangerter, S. Boemke, R.R€othlisberger, V. Schwartz,M.Bergmann, M.D.M€uller, V.Djonov,Combined maceration procedure permits advanced microsurgical dissection of Thiel-embalmed specimens. Ann. Anat. 210 (2017) 9–17, doi:10.1016/j.aanat.2016.10.008.

[17] O. Aquilina, A brief history of cardiac pacing, Images Paediatr. Cardiol. 8 (2) (2006) 17–81.

[18] A.S. Slutsky, History of mechanical ventilation. From vesalius to ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 191 (10) (2015) 1106–1115, doi:10.1164/rccm.201503-0421PP.

[19] V.L. Pinto, S. Sharma, Continuous Positive Airway Pressure (CPAP), StatPearls [Internet], StatPearls Publishing, Treasure Island, 2018. https://www.ncbi.nlm.nih.gov/books/NBK482178/ (Accessed 18.03.16). [20] Z.J. Twardowski, History of hemodialyzers’designs.Hemodial. Int. 12 (2) (2008) 173–210, doi:10.1111/j.1542-4758.2008.00253.x.

[21] G. Panarello,H. de Baz, E. Cecchin, F. Tesio, for the elderly: survival and risk factors, Adv. Perit. Dial. 5 (1989) 49–51.

[22] R. Hirano, K. Namazuda, J. Suemitsu, T. Harashima, N. Hirata, Plasma separation using a membrane. Transfus. Apher. Sci. 56 (5) (2017) 649–653, doi:10.1016/j.transci.2017.08.008.

[23] N. Kambe, S. Kawahito, N.Mita, K. Takaishi, T. Katayama, Y. Sakai, T. Soga, H. Kawano,M. Matsuhisa, M. Shimada, T. Kitagawa, H. Kitahata, Impact of newly developed, next-generation artificial endocrine . J. Med. Investig. 62 (1–2) (2015) 41–43, doi:10.2152/jmi.62.41.

[24] J.R. Castle, J.H. DeVries, B. Kovatchev, Future of automated insulin delivery systems. Technol. Ther 19 (Suppl. 3) (2017) S67–S72, doi:10.1089/dia.2017.0012.

[25] L. Chittka, A. Brockmann, Perception space-the final frontier, PLoS Biol 3 (4) (2005) e137, doi:10.1371/journal.pbio.0030137.

[26] L.L. Beranek, Acoustics, Acoustical Society of America, New York, 1993.

[27] C. Mathers, A. Smith, M. Concha, Global Burden of in the Year 2000. Global Burden of Disease, World Health Organization, Geneva, 2003. http://www.who.int/healthinfo/statistics/bod_hearingloss.pdf. Accessed 18.03.16.

[28] D.J.Hoare, P. Adjamian,M. Sereda, Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plast 2016 (2016) 5130503, doi:10.1155/2016/5130503.

[29] G.M. Sessler, J. Hillenbrand, Hearing aid microphones: from electret to piezoelectret transducers, in: Proceedings of SENSOR+TEST Conferences 2011, N€urnberg, Germany, 7–9 June 2011, Proc. Sensor 2011 (2011) 463–467, doi:10.5162/sensor11/c6.1.

[30] D.J. Young, M.A. Zurcher,M. Semaan, C.A.Megerian,W.H. Ko,MEMS capacitive accelerometer-based middle ear microphone. IEEE Trans. Biomed. Eng. 59 (12) (2012) 3283–3292, doi:10.1109/TBME.2012.2195782.

[31] H. Luts, K. Eneman, J. Wouters, M. Schulte, M. Vormann, M. Buechler, N. Dillier, R. Houben, W. A. Dreschler, M. Froehlich, H. Puder, Multicenter evaluation of signal enhancement algorithms for hearing aids. J. Acoust. Soc. Am. 127 (3) (2010) 1491–1505, doi:10.1121/1.3299168.

[32] S. Kochkin, MarkeTrak VIII: 25-year trends in the hearing health market, Hear. Rev. 16 (11) (2009) 12– 31.

[33] J.P. Fay, R. Perkins, S.C. Levy,M.Nilsson, S. Puria, Preliminary evaluation of a light based contact hearing device for the hearing impaired. Otol. Neurotol 34 (5) (2013) 912–921, doi:10.1097/MAO.0b013e31827de4b1.

[34] G.R. Ball, Implantable Electromagnetic Hearing Transducer, U.S. Patent 5,554,096, Issued September 10, 1996. [35] S. Stenfelt, R.L. Goode, Bone conducted sound: physiological and clinical aspects. Otol. Neurotol. 26 (6) (2005) 1245–1261, doi:10.1097/01.mao.0000187236.10842.d5.

[36] N. Dillier, J. Guntensperger, T. Spillmann, A computer-controlled test system for electrical stimulation of the auditory nerve of deaf patients with implanted multi-electrodes, in: M. Hoke, G. Kauffmann, E. Bappert (Eds.), Scand. Audiol (Suppl. 11) (1980) 163–170.

[37] M.S. Schwartz, S.R. Otto, R.V. Shannon, W.E. Hitselberger, D.E. Brackmann, Auditory brainstem implants. Neurotherapeutics 5 (1) (2008) 128–136, doi:10.1016/j.nurt.2007.10.068.

[38] B. Schwab,M. Durisin, G. Kontorinis, Investigation of balance function using dynamic posturography under electrical-acoustic stimulation in recipients. Int. J. Otolaryngol (2010) (2010) 978594, doi:10.1155/2010/978594.

[39] A. Gomaa, O. Comyn, C. Liu, Keratoprostheses in clinical practice – a review. Clin. Exp. Ophthalmol. 38 (2) (2010) 211–224, doi:10.1111/j.1442-9071.2010.02231.x.

[40] A.M. Potts, J. Inoue, D. Buffum, The electrically evoked response of the visual system (EER), Invest. Ophthalmol. Vis. Sci. 7 (3) (1968) 269–278.

[41] Y.H.-L. Luo, L. da Cruz, The ArgusR II retinal prosthesis system. Prog. Retin. Eye Res. 50 (2016) 89–107, doi:10.1016/j.preteyeres.2015.09.003.

[42] R. Hornig, M. Dapper, E. Le Joliff, R. Hill, K. Ishaque, C. Posch, R. Benosman, Y. LeMer, J.-A. Sahel, S. Picau, Pixium vision: first clinical results and innovative developments. in: V.P. Gabel (Ed.), Artificial Vision, Springer, Cham, 2017, pp. 99–113, doi:10.1007/978-3-319-41876-6_8.

[43] E. Zrenner, K.U. Bartz-Schmidt,D. Besch, F. Gekeler, A. Koitschev, H.G. Sachs, K. Stingl, The subretinal implant ALPHA: implantation and functional results. in: V.P. Gabel (Ed.), Artificial Vision, Springer, Cham, 2017, pp. 65–83, doi:10.1007/978-3-319-41876-6_6.

[44] J.F. Rizzo III, D.B. Shire, S.K. Kelly, P. Troyk, M. Gingerich, B. McKee, A. Priplata, J. Chen, W. Drohan, P. Doyle, O.Mendoza, L. Theogarajan, S. Cogan, J.L.Wyatt, Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind. in: Proceedings of 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, 30 August– 3 September, 2011, pp. 7492–7495, doi:10.1109/IEMBS.2011.6093610.

[45] L.N. Ayton, P.J. Blamey, R.H. Guymer, C.D. Luu, D.A.X. Nayagam, N.C. Sinclair, M. N. Shivdasani, J. Yeoh, M.F. McCombe, R.J. Briggs, N.L. Opie, J. Villalobos, P. N. Dimitrov, M. Varsamidis, M.A. Petoe, C.D. McCarthy, J.G. Walker, N. Barnes, A.N. Burkitt, C. E. Williams, R.K. Shepherd, P.J. Allen, Bionic Vision Australia Research Consortium, First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9 (12) (2014) e115239, doi:10.1371/journal.pone.0115239.

[46] T. Fujikado, M. Kamei, H. Sakaguchi, H. Kanda, T. Endo, M. Hirota, T. Morimoto, K. Nishida, H. Kishima, Y. Terasawa, K. Oosawa, M. Ozawa, K. Nishida, One-year outcome of 49-channel suprachoroidal– transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci 57 (14) (2016) 6147–6157, doi:10.1167/iovs.16-20367. [47] C. Veraart, C. Raftopoulos, J.T. Mortimer, J. Delbeke, D. Pins, G. Michaux, A. Vanlierde, S. Parrini, M.- C. Wanet-Defalque, Visual sensations produced by stimulation using an implanted self-sizing spiral cuff electrode. Res 813 (1) (1998) 181–186, doi:10.1016/S0006-8993(98) 00977-9.

[48] M.J. Kyada, N.J. Killian, J.S. Pezaris, Thalamic project, in: V.P. Gabel (Ed.), Artificial Vision, Springer, Cham, 2017, pp. 177–189, doi:10.1007/978-3-319-41876-6_14.

[49] W.H. Dobelle, Artificial vision for the blind by connecting a television camera to the visual cortex, ASAIO J. 46 (1) (2000) 3–9.

[50] G.P. Kaskhedikar, Z. Hu, G. Dagnelie, P.R. Troyk, Proposed intracortical vision prosthesis system for phosphene mapping and psychophysical studies, in: Proceedings of 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, 6–8 November, 2013, pp. 880–882, doi:10.1109/NER.2013.6696075.

[51] C.F.Walter, E.P. Richards III, The access assurance act of 1998, IEEE Eng.Med. Biol. Mag. 18 (2) (1999) 125–127.

[52] R.V. Shevchenko, S.L. James, S.E. James, A review of tissue-engineered skin bioconstructs available for skin reconstruction. J. R. Soc. Interface 7 (43) (2010) 229–258, doi:10.1098/rsif.2009.0403.

[53] T. Esmonde, C.J. Lueck, L. Symon, L.W. Duchen, R.G. Will, Creutzfeldt-Jakob disease and lyophilized dura mater grafts: report of two cases. J. Neurol. Neurosurg. Psychiatry 56 (9) (1993) 999–1000, doi:10.1136/jnnp.56.9.999.

[54] K. Yamada, S. Miyamoto, M. Takayama, I. Nagata, N. Hashimoto, Y. Ikada, H. Kikuchi, Clinical application of a new bioabsorbable artificial dura mater. J. Neurosurg. 96 (4) (2002) 731–735, doi:10.3171/jns.2002.96.4.0731.

[55] M. Navarro, A. Michiardi, O. Castano, J.A. Planell, Biomaterials in orthopaedics. J. R. Soc. Interface 5 (27) (2008) 1137–1158, doi:10.1098/rsif.2008.0151.

[56] E.B. Plow, A. Pascual-Leone, A. Machado, Brain stimulation in the treatment of chronic neuropathic and non-cancerous pain. J. Pain 13 (5) (2012) 411–424, doi:10.1016/j.jpain.2012.02.001.