Hydrocotyle Ranunculoides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
"National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment. -
Invasive Alien Species Fact Sheet Hydrocotyle Ranunculoides
NOBANIS – Invasive Alien Species Fact Sheet Hydrocotyle ranunculoides Authors of this fact sheet: Andreas Hussner, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany, e-mail: [email protected], Luc Denys, Research Institute for Nature and Forest, Kliniekstraat 25, B-1070, Brussel, Belgium: [email protected], Johan van Valkenburg, Plant Protection Service, National Reference Laboratory, Geertjesweg 15, P.O. Box 9102, 6700 HC, Wageningen, The Netherlands: [email protected] Bibliographical reference – how to cite this fact sheet: Hussner, A., Denys, L. and van Valkenburg, J. (2012): NOBANIS – Invasive Alien Species Fact Sheet – Hydrocotyle ranunculoides – From: Online Database of the European Network on Invasive Alien Species – NOBANIS www.nobanis.org Date of access: x/x/201x. Species description Scientific name: Hydrocotyle ranunculoides L.f., 1781, Araliaceae (formerly Apiaceae) Synonyms: Hydrocotyle natans Cirillo Common names: water-pennywort, floating pennywort, floating marsh-pennywort, (Irish) marsh pennywort, greater water pennywort (GB), hydrocotyle flottante, hydrocotyle fausse-renoncule (F), grote waternavel, Amerikaanse waternavel (NL), Großer Wassernabel (DE). Species identification H. ranunculoides is an entirely glabrous, stoloniferous, perennial aquatic plant species. Stems float in the water or creep onto the shore and the plants root freely from nodes at about 3-10 cm intervals. The alternate leaves are emergent or floating and sit above the horizontal stem on fleshly petioles of up to 40 cm long. The leaves are non-peltate, suborbicular to reniform with a cordate base, (25) 40 – 100 (180) mm in diameter, and usually broader than long. They are shallowly or deeply incised into 3-7 rounded, crenate or lobulate subequal lobes. -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Hydrocotyle Sibthorpioides and H. Batrachium (Araliaceae) New for New York State
Atha, D. 2017. Hydrocotyle sibthorpioides and H. batrachium (Araliaceae) new for New York State. Phytoneuron 2017-56: 1– 6. Published 21 August 2017. ISSN 2153 733X HYDROCOTYLE SIBTHORPIOIDES AND H. BATRACHIUM (ARALIACEAE) NEW FOR NEW YORK STATE DANIEL ATHA Center for Conservation Strategy New York Botanical Garden Bronx, New York 10458 [email protected] ABSTRACT Spontaneous populations of Hydrocotyle sibthorpioides (lawn marsh pennywort) and H. batrachium (Araliaceae) are documented for New York state for the first time. Hydrocotyle batrachium is also new to North America. Hydrocotyle sibthorpioides was first found in 2013 in Queens county; H. batrachium was first found in 2016 in Westchester county. Both species are native to eastern Asia and show potential to be aggressive invaders in southeastern New York, particularly in wetlands. A key to the species of Hydrocotyle in New York State is provided. Prior to this report four species of Hydrocotyle were known from New York state, all of them native and all but one state-listed rarities: H. umbellata – Rare; H. verticillata var. verticillata – Endangered; and H. ranunculoides – Endangered (Young 2010). Among the native New York species, only H. americana occurs in abundance in the state. It is the only species historically reported for New York City and has not been documented for New York City since 1901. The present report documents two additional species for the New York flora, both native to Asia and naturalized in southeastern New York. Fertile herbarium specimens and DNA samples were obtained for all cited specimens and are available for analysis. Hydrocotyle sibthorpioides Lam. Spontaneous populations of Hydrocotyle sibthorpioides in New York were first detected and identified in Queens County by Nick Wagerik in the summer of 2013. -
Nature Conservation
J. Nat. Conserv. 11, – (2003) Journal for © Urban & Fischer Verlag http://www.urbanfischer.de/journals/jnc Nature Conservation Constructing Red Numbers for setting conservation priorities of endangered plant species: Israeli flora as a test case Yuval Sapir1*, Avi Shmida1 & Ori Fragman1,2 1 Rotem – Israel Plant Information Center, Dept. of Evolution, Systematics and Ecology,The Hebrew University, Jerusalem, 91904, Israel; e-mail: [email protected] 2 Present address: Botanical Garden,The Hebrew University, Givat Ram, Jerusalem 91904, Israel Abstract A common problem in conservation policy is to define the priority of a certain species to invest conservation efforts when resources are limited. We suggest a method of constructing red numbers for plant species, in order to set priorities in con- servation policy. The red number is an additive index, summarising values of four parameters: 1. Rarity – The number of sites (1 km2) where the species is present. A rare species is defined when present in 0.5% of the area or less. 2. Declining rate and habitat vulnerability – Evaluate the decreasing rate in the number of sites and/or the destruction probability of the habitat. 3. Attractivity – the flower size and the probability of cutting or exploitation of the plant. 4. Distribution type – scoring endemic species and peripheral populations. The plant species of Israel were scored for the parameters of the red number. Three hundred and seventy (370) species, 16.15% of the Israeli flora entered into the “Red List” received red numbers above 6. “Post Mortem” analysis for the 34 extinct species of Israel revealed an average red number of 8.7, significantly higher than the average of the current red list. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence. -
Chemical Examination of Hydrocotyle Bonariensis L. (Apiaceae)
Journal of Chemistry, Vol. 47 (5), P. 542 - 546, 2009 CHEMICAL EXAMINATION OF HYDROCOTYLE BONARIENSIS L. (APIACEAE) Received 19 Oct 2007 TON NU LIEN HUONG1, NGUYEN KIM PHI PHUNG2, NGUYEN NGOC SUONG2 1Department of Sciences, University of Can Tho 2University of Natural Sciences, National University Ho Chi Minh City Abstract Hydrocotyle bonariensis, growing in the Mekong-delta, is used as vegetable and has not yet been chemically studied. From the aerial parts of H. bonariensis, three compounds had been isolated: a triterpene squalene (1) and a mixture of two lignans: hinokinin (2) and α-[3,4- methylendioxy phenylmethylidene]-β-[3,4-methylendioxyphenylmethyl]-γ-butyrolactone (3). The fresh plant was divided into stem-leaf and flower and each part was distilled with steam to afford essential oils. The major components of stem-leaf are: (Z)-3-hexen-1-ol, trans-caryophyllene, α- farnesene, copaene while the major components of flower are: α-pinene, 2-β-pinene, β-myrcene, limonene, α-caryophyllene, epibicyclosesquiphellandrene. The essential oil of the stem-leaf showed cytotoxic activities in vitro on RD and Hep-G2 cancer cells with the IC50 values of 16.1 and 19.9μg/ml, respectively. The study on the plant is being continued. 1 35 7 911 2 (1) Squalene 30 29 28 O O 20 16 15 6 10 14 13 3 4 O 17 7 O 2 8 O O 12 9 10a 19 α 20a 16a 18 β 6a 11 14a 13a 3a 4a O 1 O O 17a 7a O 12a 2a ( 2 ) Hinokinin 18a β α 9a 8a [α,β- bis(3,4-Methylendioxyphenylmethyl)- 11a O 1a O -γ-butyrolactone] (3) α-(3,4-Methylendioxyphenylmethyliden)- -β-(3,4-methylendioxyphenylmethyl)- -γ-butyrolactone Hydrocotyle bonariensis 1 - INTRODUCTION species (Apiaceae) produce characteristic Hydrocotyle bonariensis, growing in the essential oils. -
Wild Flowers of the Cornish Valleys and Lizard Peninsula
Wild Flowers of the Cornish Valleys and Lizard Peninsula Naturetrek Tour Report 19 – 22 May 2021 Sea Sandwort View Burnet Rose Thrift Report and images compiled by Pip O’Brien Naturetrek Mingledown Barn Wolf’s Lane Chawton Alton Hampshire GU34 3HJ UK Naturetrek T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Wild Flowers of the Cornish Valleys & Lizard Peninsula Tour participants: Pip O’Brien (Leader) with six Naturetrek clients Day 1 Wednesday 19th May The group met up in the car park of our Helston hotel after some epic trips across England. Everyone was determined to make the most of sunshine on the first day of what for many, was their first real trip out in almost 18 months. We headed straight out on the Lizard peninsula past Culdrose Naval station and through the pretty village of Gunwalloe, down to Church Cove. Every hedge was hazed navy blue with Bluebells and clouds of Cow Parsley brushed the van on the narrow lanes. In glorious late afternoon sunshine, we wandered out of the car park towards the cove. The Cornish hedges were covered in the glossy green leaves of Sea Beet (Beta maritima) interspersed with Danish Scurvygrass (Cochlearia danica) that was coming to the end of its flowering season. As we got nearer to the beach, one wall was covered from top to bottom with a blanket of Sea Sandwort (Honckenya peploides) in full flower. The cliffs were dotted with Common Scurvygrass (Cochlearia officinalis) and huge mounds of Thrift (Armeria maritima). Up on top of the cliffs we came across our first blue Spring Squills (Scilla verna). -
Growth Strategy, Phylogeny and Stoichiometry Determine The
Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants Bart Grutters, Benedetta Saccomanno, Elisabeth Maria Gross, Dedmer van de Waal, Ellen van Donk, Elisabeth Bakker To cite this version: Bart Grutters, Benedetta Saccomanno, Elisabeth Maria Gross, Dedmer van de Waal, Ellen van Donk, et al.. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos, Nordic Ecological Society, 2017, 126 (12), pp.1770-1779. 10.1111/oik.03956. hal-03189435 HAL Id: hal-03189435 https://hal.archives-ouvertes.fr/hal-03189435 Submitted on 4 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Oikos 126: 1770–1779, 2017 doi: 10.1111/oik.03956 © 2017 The Authors. This is an Online Open article Subject Editor: Richard Michalet. Editor-in-Chief: Dries Bonte. Accepted 15 May 2017 Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants Bart M. C. Grutters, Benedetta Saccomanno, Elisabeth M. Gross, Dedmer B. Van de Waal, Ellen van Donk and Elisabeth S. Bakker B. -
Biodiversity Action Plan
CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 2014-2019 Front Cover Images: Sruwaddacon Bay Evening Lady’s Bedstraw at Glengad Green-veined White Butterfly near Leenamore Common Dolphin Vegetation survey at Glengad CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 1 Leenamore Inlet CORRIB DEVELOPMENT 2 BIODIVERSITY ACTION PLAN LIST OF CONTENTS 2.4 DATABASE OF BIODIVERSITY 39 3 THE BIODIVERSITY A CKNOWLEDGEMENTS 4 ACTION PLAN 41 FOREWORd 5 3.1 ESTABLISHING PRIORITIES FOR CONSERVATION 41 EXECUTIVE SUMMARY 6 3.1.1 HABITATS 41 1 INTRODUCTION 8 3.1.2 SPECIES 41 1.1 BIODIVERSITY 8 3.2 AIMS 41 1.1.1 WHAT is biodiversity? 8 3.3 OBJECTIVES AND acTIONS 42 1.1.2 WHY is biodiversity important? 8 3.4 MONITORING, EVALUATION 1.2 INTERNATIONAL AND NATIONAL CONTEXT 9 AND IMPROVEMENT 42 1.2.1 CONVENTION on BIODIVERSITY 9 3.4.1 MONITORING 42 1.2.2 NATIONAL and local implementation 9 3.4.2 EVALUATION and improvement 43 1.2.3 WHY A biodiversity action plan? 10 TABLE 5 SUMMARY of obJECTIVES and actions for THE conservation of habitats and species 43 3.4.3 Reporting, commUNICATING and 2 THE CORRIB DEVELOPMENT VERIFICATION 44 AND BIODIVERSITY 11 3.4.3.1 ACTIONS 44 2.1 AN OVERVIEW OF THE CORRIB 3.4.3.2 COMMUNICATION 44 DEVELOPMENT 11 3.5 STAKEHOLDER ENGAGEMENT AND FIG 1 LOCATION map 11 PARTNERSHIPS FOR BIODIVERSITY 44 FIG 2 Schematic CORRIB DEVELOPMENT 12 3.5.1 S TAKEHOLDER engagement and CONSULTATION 44 2.2 DESIGNATED CONSERVATION SITES AND THE CORRIB GaS DEVELOPMENT 13 3.5.2 PARTNERSHIPS for biodiversity 44 3.5.3 COMMUNITY staKEHOLDER engagement 45 2.2.1 DESIGNATED