Addressing Safety and Specificity with Aldose Reductase Inhibition: Development of AT-001 for Diabetic Cardiomyopathy Poster #632

Total Page:16

File Type:pdf, Size:1020Kb

Addressing Safety and Specificity with Aldose Reductase Inhibition: Development of AT-001 for Diabetic Cardiomyopathy Poster #632 Addressing Safety and Specificity with Aldose Reductase Inhibition: Development of AT-001 for Diabetic Cardiomyopathy Poster #632 Riccardo Perfetti1, Gautham Yeppuri2, Nosirudeen Quadri2, Ameen F Ghannam1, Ravichandran Ramasamy2, Shoshana Shendelman1. Applied Therapeutics1 and NYU Langone Medical Center2, New York, NY Introduction Methods Zopolrestat (but not AT-001) Reduces Cell Zopolrestat (but not AT-001) Induces Cell Damage Diabetic cardiomyopathy (DbCM) leading to overt heart failure is a Viability of Cultured Hepatocytes in Cultured Hepatocytes as Measured by AST and Cell culture: Cryopreserved human hepatocytes cultured in standard medium. common sequalae of both type 1 and type 2 diabetes. Prior attempts to ALT Release develop treatments for DbCM via inhibition of Aldose Reductase (AR) Comparative cell hepatoxicity of AT-001 vs controls: Primary human hepatocyte demonstrated clinical efficacy. spheroids were cultured for 7 days. At Day 7, spheroid cultures were exposed to different concentrations of AT-001 and zopolrestat. Troglitazone (a known CellTiter-GloTM luminescent CellTiter-GloTM luminescent AST normalised to cell viability However, first generation AR inhibitors (ARIs) presented with liver and hepatotoxic agent) was used as a positive control. Exposure was maintained for cell viability assay cell viability assay renal safety signals. Off-target inhibition of Aldehyde Reductase, an enzyme 14 days and cell viability was assessed via ATP quantification using the CellTiter- 7.00E-06 TM necessary for cellular detoxification, was considered responsible for the Glo luminescent cell viability assay. 10000 14000 6.00E-06 unfavorable safety profile. Liver enzyme quantitation assay: Lactate dehydrogenase (LDH) release (a measure 9000 12000 In the present study, we report the in-vitro safety, selectivity and specificity of cell necrosis/injury), and liver injury markers alanine aminotransferase (ALT) 8000 and aspartate aminotransferase (AST) were measured using commercially available 5.00E-06 of AT-001, a novel small molecule ARI with optimised affinity and 7000 10000 assay kits. specificity for AR, and no off-target aldehyde reductase activity. 6000 Selectivity assessment of AT-001 vs zopolrestat: Enzymatic inhibition (both 8000 4.00E-06 U U on-target inhibition of AR and off-target inhibition of aldehyde reductase) was 5000 Pathogenesis of DbCM and Hyperactivation RL RL 6000 determined via spectrophotometric assay of substrate binding and nicotinamide 4000 3.00E-06 1,2 AST activity of Polyol Pathway adenine dinucleotide phosphate release. 3000 4000 2000 2.00E-06 2000 1000 cell viability normalised to Hexokinase Glucose-6- Glycolitic Glucose Krebs cycle 1.00E-06 phosphate pathway Results 0 0 Vehicle AT-001 ZOPOL TROGLITAZONE Vehicle AT-001 ZOPOL 5X 5X 5X (positive control) 50X 50X 50X 0.00E+00 Improved inhibitory selectivity of AT-001 [EC ] [EC ] Vehicle 50X AT-001 50X ZOPOL 50X Aldose Hyperglycaemia/ischaemia Osmotic stress 50 50 reductase (Polyol Pathway Activated) CELL DEATH for Aldose Reductase p=0.03 vs AT-001 and vehicle AT-001 ALT normalised to cell viability Sorbitol Greater AR inhibition AT-001 vs zopolrestat 6.00E-06 Redox imbalance Zopolrestat Sorbitol Dehydrogenase ROS formation Advanced glycation 5.00E-06 Fructose PKC, NF-kB* activation 100 Zopolrestat (but not AT-001) Induces Cell Damage CELL DEATH 4.00E-06 *Nf-kB is a protein complex that controls transcription of DNA, cytokine production and cell survival 80 in Cultured Hepatocytes as Measured by Lactate Dehydrogenase Release 3.00E-06 60 ALT activity 2.00E-06 LDH normalised to cell viability* First Generation Aldose Reductase 40 cell viability normalised to Inhibitor vs AT-0013 % AR Inhibition 1.00E-06 20 2.50E-05 0.00E+00 Zopolrestat Inhibition of Aldose Reductase 0 Vehicle 50X AT-001 50X ZOPOL 50X Clinical Efficacy Zopolrestat demonstrated 0.1nM 1nM 10nM 100nM 1uM 10uM 100uM Glutamate based assay comparing AT-001 and zopolrestat at 50x EC50 concentration: AST activity reported as mmol/ clinical efficacy in Phase 2 2.00E-05 Competitive inhibition studies. Off-target hepatoxicity min/mL. One unit of AST (or ALT) is the amount of enzyme that will generate 1.0 mmol of glutamate per minute at of Aldehyde Reductase pH 8.0 at 37 oC was documented. Clinical Inhibitor Concentration (AT-001 or Zopolrestat) development was terminated3 (Off-target) Summary and Conclusions Hepatotoxicity Zopolrestat (but not AT-001) Off-target AT-001 1.50E-05 Inhibits Aldehyde Reductase, an Enzyme AT-001 is a logarithmically more potent ARI than zopolrestat in inhibiting Aldose Selective inhibition of AT-001 developed through Reductase, an enzyme implicated in the development of diabetic complications Aldose Reductase rational drug design to Critical for Liver Function selectively inhibit AR without including diabetic cardiomyopathy (DbCM). Clinical Efficacy off-target inhibition of Aldehyde Reductase 1.00E-05 Cell viability assessment at high substrate concentrations demonstrated that while Aldehyde reductase inhibitory activity AT-001 zopolrestat was cytotoxic, AT-001 and vehicle were not. Zopolrestat 100 The unique structure and activity of AT-001 provide selectivity for Aldose Reductase Zopolrestat inhibits Aldehyde LDH activity (millunits/ml) cell viability normalised to n and avoids off-target inhibition of Aldehyde Reductase, which is an enzyme critical IC50 of AT-001 vs zopolrestat for Aldose Reductase Reductase activity in the Aldose 80 for normal detoxification processes in the liver. Reductase effective dose range 5.00E-06 Measurement of ALT, AST and LDH in in-vitro and ex-vivo systems demonstrated Tissue penetration (in rats) 60 that zopolrestat, but not AT-001, was toxic to hepatocytes. MTD in Compound IC 50 Systemic/ The in-vitro safety of AT-001, together with the positive safety data from the Phase 1/2 animals Nerve Retina CNS 40 Heart 0.00E+00 program, support the ongoing pivotal study in DbCM: ARISE-HF (NCT 04083339). 20 Vehicle 50X AT-001 50X ZOPOL 50X AT-001 30pM >2,000mg/kg ✓ ✓ ✓ X References 0 Zopolrestat 10nM 100mg/kg ✓ ✓ X X % Aldehyde reductase inhibitio *Cell damage in cultured hepatocytes measured by lactate dehydrogenase (LDH) release; 1. Brownlee M. Diabetes Care. 2005;54(6):1615–1625; -20 LDH is a biochemical marker for tissue injury/cellular necrosis 2. Miki T, et al. Heart Fail Rev. 2013;18(2):149–166; 0.1uM 1uM 10uM 50uM 100uM 3. Johnson, et al. Diabetes Care. 2004:448–454. Inhibitor concentration (AT-001 or zopolrestat) DISCLOSURES: RP and SS are employees of and stockholders in Applied Therapeutics Inc. 56th Annual EASD Meeting, 21–25 September 2020 Data was first presented at ADA June 2020.
Recommended publications
  • Phosphine Stabilizers for Oxidoreductase Enzymes
    Europäisches Patentamt *EP001181356B1* (19) European Patent Office Office européen des brevets (11) EP 1 181 356 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C12N 9/02, C12P 7/00, of the grant of the patent: C12P 13/02, C12P 1/00 07.12.2005 Bulletin 2005/49 (86) International application number: (21) Application number: 00917839.3 PCT/US2000/006300 (22) Date of filing: 10.03.2000 (87) International publication number: WO 2000/053731 (14.09.2000 Gazette 2000/37) (54) Phosphine stabilizers for oxidoreductase enzymes Phosphine Stabilisatoren für oxidoreduktase Enzymen Phosphines stabilisateurs des enzymes ayant une activité comme oxidoreducase (84) Designated Contracting States: (56) References cited: DE FR GB NL US-A- 5 777 008 (30) Priority: 11.03.1999 US 123833 P • ABRIL O ET AL.: "Hybrid organometallic/enzymatic catalyst systems: (43) Date of publication of application: Regeneration of NADH using dihydrogen" 27.02.2002 Bulletin 2002/09 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 104, no. 6, 1982, pages 1552-1554, (60) Divisional application: XP002148357 DC US cited in the application 05021016.0 • BHADURI S ET AL: "Coupling of catalysis by carbonyl clusters and dehydrigenases: (73) Proprietor: EASTMAN CHEMICAL COMPANY Redution of pyruvate to L-lactate by dihydrogen" Kingsport, TN 37660 (US) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY., vol. 120, no. 49, 11 October 1998 (72) Inventors: (1998-10-11), pages 12127-12128, XP002148358 • HEMBRE, Robert, T. DC US cited in the application Johnson City, TN 37601 (US) • OTSUKA K: "Regeneration of NADH and ketone • WAGENKNECHT, Paul, S. hydrogenation by hydrogen with the San Jose, CA 95129 (US) combination of hydrogenase and alcohol • PENNEY, Jonathan, M.
    [Show full text]
  • Vitamin K1 Prevents Diabetic Cataract by Inhibiting Lens Aldose Reductase 2 (ALR2) Activity Received: 21 May 2019 R
    www.nature.com/scientificreports OPEN Vitamin K1 prevents diabetic cataract by inhibiting lens aldose reductase 2 (ALR2) activity Received: 21 May 2019 R. Thiagarajan1,5, M. K. N. Sai Varsha2, V. Srinivasan3, R. Ravichandran4 & K. Saraboji1 Accepted: 24 September 2019 This study investigated the potential of vitamin K1 as a novel lens aldose reductase inhibitor in a Published: xx xx xxxx streptozotocin-induced diabetic cataract model. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, activation of lens aldose reductase 2 (ALR2) and accumulation of sorbitol in eye lens which could have contributed to diabetic cataract formation. However, when diabetic rats were treated with vitamin K1 (5 mg/kg, sc, twice a week) it resulted in lowering of blood glucose and inhibition of lens aldose reductase activity because of which there was a corresponding decrease in lens sorbitol accumulation. These results suggest that vitamin K1 is a potent inhibitor of lens aldose reductase enzyme and we made an attempt to understand the nature of this inhibition using crude lens homogenate as well as recombinant human aldose reductase enzyme. Our results from protein docking and spectrofuorimetric analyses clearly show that vitamin K1 is a potent inhibitor of ALR2 and this inhibition is primarily mediated by the blockage of DL-glyceraldehyde binding to ALR2. At the same time docking also suggests that vitamin K1 overlaps at the NADPH binding site of ALR2, which probably shows that vitamin K1 could possibly bind both these sites in the enzyme. Another deduction that we can derive from the experiments performed with pure protein is that ALR2 has three levels of afnity, frst for NADPH, second for vitamin K1 and third for the substrate DL-glyceraldehyde.
    [Show full text]
  • Clostridium Difficile Exploits a Host Metabolite Produced During Toxin-Mediated Infection
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Clostridium difficile exploits a host metabolite produced during toxin-mediated infection 2 3 Kali M. Pruss and Justin L. Sonnenburg* 4 5 Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford 6 CA, USA 94305 7 *Corresponding author address: [email protected] 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.14.426744; this version posted January 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Several enteric pathogens can gain specific metabolic advantages over other members of 24 the microbiota by inducing host pathology and inflammation. The pathogen Clostridium 25 difficile (Cd) is responsible for a toxin-mediated colitis that causes 15,000 deaths in the U.S. 26 yearly1, yet the molecular mechanisms by which Cd benefits from toxin-induced colitis 27 remain understudied. Up to 21% of healthy adults are asymptomatic carriers of toxigenic 28 Cd2, indicating that Cd can persist as part of a healthy microbiota; antibiotic-induced 29 perturbation of the gut ecosystem is associated with transition to toxin-mediated disease.
    [Show full text]
  • Collateral Glucose-Utlizing Pathwaya in Diabetic Polyneuropathy
    International Journal of Molecular Sciences Review Collateral Glucose-Utlizing Pathwaya in Diabetic Polyneuropathy Hiroki Mizukami 1,* and Sho Osonoi 1,2 1 Department Pathology and Molecular Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan; [email protected] 2 Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan * Correspondence: [email protected]; Tel.: +81-172-39-5025 Abstract: Diabetic polyneuropathy (DPN) is the most common neuropathy manifested in diabetes. Symptoms include allodynia, pain, paralysis, and ulcer formation. There is currently no established radical treatment, although new mechanisms of DPN are being vigorously explored. A pathophysio- logical feature of DPN is abnormal glucose metabolism induced by chronic hyperglycemia in the peripheral nerves. Particularly, activation of collateral glucose-utilizing pathways such as the polyol pathway, protein kinase C, advanced glycation end-product formation, hexosamine biosynthetic pathway, pentose phosphate pathway, and anaerobic glycolytic pathway are reported to contribute to the onset and progression of DPN. Inhibitors of aldose reductase, a rate-limiting enzyme involved in the polyol pathway, are the only compounds clinically permitted for DPN treatment in Japan, although their efficacies are limited. This may indicate that multiple pathways can contribute to the pathophysiology of DPN. Comprehensive metabolic analysis may help to elucidate global changes in the collateral glucose-utilizing pathways during the development of DPN, and highlight therapeutic targets in these pathways. Keywords: diabetic polyneuropathy; glycolysis; oxidative stress; polyol pathway; hexosamine biosynthetic pathway; advanced glycation end-products; PKC; glucosamine; pentose phosphate pathway; anaerobic glycolytic pathway Citation: Mizukami, H.; Osonoi, S.
    [Show full text]
  • Development of Potent and Selective Inhibitors of Aldo−Keto Reductase
    Article pubs.acs.org/jmc Development of Potent and Selective Inhibitors of Aldo−Keto Reductase 1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure−Activity Relationships † § ‡ § † † † ‡ Adegoke O. Adeniji, , Barry M. Twenter, , Michael C. Byrns, Yi Jin, Mo Chen, Jeffrey D. Winkler,*, † and Trevor M. Penning*, † Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 130C John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States ‡ Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States *S Supporting Information ABSTRACT: Aldo−keto reductase 1C3 (AKR1C3; type 5 17β-hydroxy- steroid dehydrogenase) is overexpressed in castration resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required because compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular, are potent but nonselective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}- benzoic acid, as lead compound, five classes of structural analogues were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure−activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads toward new therapeutics for CRPC.
    [Show full text]
  • Aldose Reductase Inhibitors: AT-001: a Next Generation Aldose Reductase Inhibitor in Development for Diabetic Cardiomyopathy (Dbcm) Francesca Lawson, MD, FAHA
    Aldose Reductase Inhibitors: AT-001: a Next Generation Aldose Reductase Inhibitor in Development for Diabetic Cardiomyopathy (DbCM) Francesca Lawson, MD, FAHA Confidential Disclosures • Employee at Applied Therapeutics • Shareholder of Applied Therapeutics 2 Diabetic Cardiomyopathy: Abnormal Cardiac Structure and Functional Capacity Resulting from Diabetes-Associated Metabolic Alterations Approximately, 17-24% of patients with • ~24% of DbCM patients diabetes have DbCM in the absence of other forms of heart disease. 1,2 progress to overt heart failure or death within 1.5 years4 ~77 M patients worldwide have DbCM3 • 37% within 5 years5 • ~ 8.0M in North America • ~ 10.0M in Europe • Patients with diabetes are counseled on HF risk reduction: No Treatment for DbCM Lifestyle modification • No therapies target the metabolic derangement responsible for o o Hyperglycemia o Hypertension DbCM and subsequent worsening to overt HF o Albuminuria • Heart Failure treatment is only initiated upon onset of clinical o Dyslipidemia symptomatology (stage C heart failure) 3 1. Dandamudi et al. J Card Fail. 2014;20(5):304-309. 2. Pham et al. Intl J Endocrinology 3. International Diabetes Foundation, 2017,4. Wang et al. JACC: Cardiovasc Imaging 2018; 5. From et al. JACC 2010 Pathogenesis of DbCM & Hyperactivation of Polyol Pathway1,2 Hexokinase Glucose-6- Glycolitic Glucose Phosphate Pathway Kreb Cycle Hyperglycemia / Ischemia (Polyol Pathway Activated) Aldose Reductase Osmotic stress Sorbitol CELL DEATH Sorbitol Dehydrogenase Redox Imbalance ROS Formation Fructose Advanced Glycation PKC, NF-kB* Activation CELL DEATH *Nf-kB is a protein complex that controls transcription of DNA, cytokine production and cell survival 4 1. Brownlee M. Diabetes Care. 2005;54(6):1615-1625.
    [Show full text]
  • Aldose Reductases Influence Prostaglandin F2 Levels And
    Aldose Reductases Influence Prostaglandin F2α Levels and Adipocyte Differentiation in Male Mouse and Human Species Emilie Pastel, Jean-Christophe Pointud, Gaëlle Loubeau, Christian Dani, Karem Slim, Gwenaëlle Martin, Fanny Volat, Isabelle Sahut-Barnola, Pierre Val, Antoine Martinez, et al. To cite this version: Emilie Pastel, Jean-Christophe Pointud, Gaëlle Loubeau, Christian Dani, Karem Slim, et al.. Aldose Reductases Influence Prostaglandin F2α Levels and Adipocyte Differentiation in Male Mouse and Human Species. Endocrinology, Endocrine Society, 2015, 156 (5), pp.1671-1684. 10.1210/en.2014- 1750. hal-02108053 HAL Id: hal-02108053 https://hal.archives-ouvertes.fr/hal-02108053 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Aldose Reductases Influence Prostaglandin F2␣ Levels and Adipocyte Differentiation in Male Mouse and Human Species Emilie Pastel, Jean-Christophe Pointud, Gaëlle Loubeau, Christian Dani, Karem Slim, Gwenaëlle Martin, Fanny Volat, Isabelle Sahut-Barnola, Pierre Val, Antoine Martinez, and Anne-Marie Lefrançois-Martinez
    [Show full text]
  • ITD 5135 Cellular and Systems Processes
    Biology of Cells and Tissues Vadivel Ganapathy, Ph.D. 5B106 [email protected] Fructose and Galactose metabolism Fructose Fructose is important in humans since it represents 50% of the carbohydrate in sucrose. 1 Fructose --- Fructose-1-phosphate ATP 2 Fructose-1-phosphate --- Dihydroxyacetone phosphate + Glyceraldehyde 3 Glyceraldehyde --- Glyceraldehyde-3-phosphate Reaction #1: Fructokinase Reaction #2: Fructose-1-phosphate aldolase Reaction #3: Triose kinase Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate are intermediates in glycolysis. Galactose Galactose is a component of lactose (milk sugar). 1 Galactose --- Galactose-1-phosphate 2 Galactose-1-phosphate + UDP-glucose ---Glucose-1-phosphate + UDG-galactose 3 UDP-galactose --- UDP-glucose 4 Glucose-1-phosphate --- Glucose-6-phosphate (an intermediate in glycolysis) Reaction #1: Galactokinase Reaction #2: Galactose-1-phosphate uridyl transferase Reaction #3: UDP-galactose 4-epimerase Reaction #4: Phosphoglucomutase Hereditary fructose intolerance 1. Genetic disease associated with a deficiency in liver fructose 1-phosphate aldolase. 2. Ingestion of fructose results in the accumulation of fructose 1-phosphate. 3. This depletes the Pi and ATP in the liver. 4. Fructose 1-phosphate stimulates glucokinase in liver and pancreatic β cells by removing the inhibitory protein. This causes increased uptake of glucose by these tissues and also increased insulin secretion by β cells. The result is hypoglycemia. 5. The disease is also associated with liver disease (jaundice) and renal tubular damage (Fanconi syndrome). 6. Decreased Pi levels leads to increased breakdown of adenine nucleotides (AMP, ADP), causing hyperuricemia (gout). 7. No cataract (Fructose, being a ketose, is not a substrate for aldose reductase). 8. Treated by restricting dietary intake of fructose, sucrose, fruit juices and honey.
    [Show full text]
  • Sugar Metabolism in Germinating Soybean Seeds
    Plant Physiol. (1990) 93,1514-1520 Received for publication January 22, 1990 0032-0889/90/93/151 4/07/$01 .00/0 Accepted April 24, 1990 Sugar Metabolism in Germinating Soybean Seeds Evidence for the Sorbitol Pathway in Soybean Axes Tsung Min Kuo*, Douglas C. Doehlert, and C. Gerald Crawford Seed Biosynthesis Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Northern Regional Research Center, Peoria, Illinois 61604 ABSTRACT contain NADP+-dependent sorbitol dehydrogenase for the Characterization of sugar content and enzyme activity in ger- interconversion between sorbitol and fructose (24). Changes minating soybean (Glycine max L. Merrell) seeds led to the in these enzyme activities have been described in developing discovery of sorbitol accumulating in the axes during germination. apple leaves (16) and fruits (1), and in Japanese pear fruits The identity of sorbitol was confirmed by relative retention times during development and maturation (25). Recently, a ketose on high-performance liquid chromatography and gas liquid chro- reductase, which catalyzes the NADH-dependent intercon- matography and by mass spectra identical with authentic sorbitol. version between fructose and sorbitol, has been isolated and Accumulation of sorbitol in the axes started on day I of germi- partially characterized from developing maize endosperm (9). nation as sucrose decreased and glucose and fructose increased. No information concerning the occurrence and metabolism Sucrose also decreased in the cotyledons, but there was no accumulation of sorbitol, glucose, or fructose. Accumulation of of sorbitol in soybean tissues has been available. sorbitol and hexoses was highly correlated with increased inver- The objectives of this study were to characterize sugar tase activity in the axes, but not with sucrose synthase and metabolism in germinating soybean seeds.
    [Show full text]
  • Functional and Structural Studies of AKR1B15 and AKR1B16: Two Novel Additions to Human and Mouse Aldo-Keto Reductase Superfamily
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Functional and structural studies of AKR1B15 and AKR1B16: Two novel additions to human and mouse aldo-keto reductase superfamily Mem`oriapresentada per JOAN GIMENEZ´ DEJOZ per optar al Grau de Doctor en Bioqu´ımicai Biologia Molecular Treball realitzat al departament de Bioqu´ımicai Biologia Molecular de la Universitat Aut`onomade Barcelona, sota la direcci´odels Doctors SERGIO PORTE´ ORDUNA, JAUME FARRES´ VICEN´ i XAVIER PARES´ CASASAMPERA Sergio Port´eOrduna Jaume Farr´esVic´en Xavier Par´esCasasampera Joan Gim´enezDejoz Bellaterra, 17 de juny de 2016 2 Agra¨ıments En primer lloc vull agrair als caps del grup, el Dr. Jaume Farr´esi el Dr. Xavier Par´esl'oportunitat de posar un peu a la ci`encia,iniciar-me en la carrera cient´ıfica,els seus bons consells i l’obtenci´o final d'aquesta tesi. Tamb´evoldria agrair especialment a tots els ADHs amb qui he compartit laboratori, sense vosaltres aix`ono hauria estat possible. Gr`aciesper aguantar tants dies a les fosques! Al Sergio-せんせい, per tot el que m'has ensenyat durant aquests anys, la bona guia, direcci´o, les inacabables correccions, per ensenyar-me a ser cr´ıticamb la meva pr`opiafeina i intentar sempre ser rigor´osi auto exigent tant amb els experiments com amb la redacci´oi preparaci´ode les figures (repassar cada figura mil cops buscant defectes abans de donar-la per bona ja s'ha convertit en costum) i tots i cada un dels inacabables \Podries..."que tant hem trobat a faltar en la `epoca final.
    [Show full text]
  • The Role of AKR1B10 in Physiology and Pathophysiology
    H OH metabolites OH Review The Role of AKR1B10 in Physiology and Pathophysiology Satoshi Endo 1,* , Toshiyuki Matsunaga 2 and Toru Nishinaka 3 1 Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan 2 Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan; [email protected] 3 Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Osaka, Japan; [email protected] * Correspondence: [email protected] Abstract: AKR1B10 is a human nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductase belonging to the aldo-keto reductase (AKR) 1B subfamily. It catalyzes the reduction of aldehydes, some ketones and quinones, and interacts with acetyl-CoA carboxylase and heat shock protein 90α. The enzyme is highly expressed in epithelial cells of the stomach and intestine, but down-regulated in gastrointestinal cancers and inflammatory bowel diseases. In contrast, AKR1B10 expression is low in other tissues, where the enzyme is upregulated in cancers, as well as in non- alcoholic fatty liver disease and several skin diseases. In addition, the enzyme’s expression is elevated in cancer cells resistant to clinical anti-cancer drugs. Thus, growing evidence supports AKR1B10 as a potential target for diagnosing and treating these diseases. Herein, we reviewed the literature on the roles of AKR1B10 in a healthy gastrointestinal tract, the development and progression of cancers and acquired chemoresistance, in addition to its gene regulation, functions, and inhibitors. Keywords: aldo-keto reductases; AKR1B10; biomarkers Citation: Endo, S.; Matsunaga, T.; Nishinaka, T. The Role of AKR1B10 in 1. Introduction Physiology and Pathophysiology.
    [Show full text]
  • The Fate of Aldose Reductase Inhibition and Sorbitol Dehydrogenase Activation
    Open Access Austin Journal of Endocrinology and Diabetes Special Article - Diabetic Complications The Fate of Aldose Reductase Inhibition and Sorbitol Dehydrogenase Activation Patil KK1 and Gacche RN2* 1School of Life Sciences, Swami Ramanand Teerth Abstract Marathwada University, India Diabetic complications are the unavoidable ailment in hyperglycaemic 2Department of Biotechnology, Savitribai Phule Pune condition. The polyol pathway mediated adverse effects of hyperglycemia are University, India responsible for development of severe health ailments. Aldose reductase and *Corresponding author: Rajesh N Gacche, sorbitol dehydrogenase are the important cytosolic enzymes involved in polyol Department of Biotechnology, Savitribai Phule Pune pathway. In diabetic state, owing to higher glucose flux generates bulk amount of University, India intracellular sorbitol through the polyol pathway. The intracellular accumulation of sorbitol is proved to be deleterious to tissue microenvironment that leads Received: March 27, 2019; Accepted: April 26, 2019; to development of secondary complications of diabetes. The reduction of Published: May 06, 2019 sorbitol level in the tissue is therapeutically important in the management of polyol mediated diabetic complications. A variety of structurally diverse Aldose Reductase Inhibitors (ARIs) have been developed for inhibiting the generation of sorbitol, some are in clinical practice but majority of the newly synthesized molecules failed in clinical trial studies and thus not approved by FDA. On the other hand, Sorbitol dehydrogenase, the second enzyme of polyol pathway has a role of metabolizing harmful sorbitol to fructose is least focused as a therapeutic target. In this review an alternative strategy is proposed for minimizing the tissue sorbitol level that may be useful for the management of diabetes and its related complications.
    [Show full text]