Measurement and Calculation of Radon Releases from Uranium Mill Tailings

Total Page:16

File Type:pdf, Size:1020Kb

Measurement and Calculation of Radon Releases from Uranium Mill Tailings I I I I I I I I I io-1 ^*"^^-dL ^-. : tfl ^^ ^-----^_ • . w 2 E 10- _o^ Q • " ^N^^v +-*m "•'•^^N• ^«Nr \ S 10-3 0 • •• VN V it; 0 . • •• *>*v* * O • ^* \ O 10 vV\ \ • 1 ^ • Measured diffusion coefficients # X\ >« CO 3 p = 0.41 • ,\v i\N TJ P - 0.55 (top), 0.26 (bottom) N C 0 10-5 ~ Fitted function: r -, • *• 2 5 QC D = 0.07 exp -4 (m - mn + m ) • • • 10-6 ! I I 1 I I I I I c ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Moisture saturation, m TECHNICAL REPORTS SERIES No 333 Measurement and Calculation of Radon Releases from Uranium Mill Tailings if sk\ \ %}$?J INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1992 MEASUREMENT AND CALCULATION OF RADON RELEASES FROM URANIUM MILL TAILINGS The following States are Members of the Internationa! Atomic Energy Agency: AFGHANISTAN HAITI PANAMA ALBANIA HOLY SEE PARAGUAY ALGERIA HUNGARY PERU ARGENTINA ICELAND PHILIPPINES AUSTRALIA INDIA POLAND AUSTRIA INDONESIA PORTUGAL BANGLADESH IRAN, ISLAMIC REPUBLIC OF QATAR BELARUS IRAQ ROMANIA BELGIUM IRELAND RUSSIAN FEDERATION BOLIVIA ISRAEL SAUDI ARABIA BRAZIL ITALY SENEGAL BULGARIA JAMAICA SIERRA LEONE CAMEROON JAPAN SINGAPORE CANADA JORDAN SOUTH AFRICA CHILE KENYA SPAIN CHINA KOREA, REPUBLIC OF SRI LANKA COLOMBIA KUWAIT SUDAN COSTA RICA LEBANON SWEDEN COTE D'lVOIRE LIBERIA SWITZERLAND CUBA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC CYPRUS LIECHTENSTEIN THAILAND CZECHOSLOVAKIA LUXEMBOURG TUNISIA DEMOCRATIC KAMPUCHEA MADAGASCAR TURKEY DEMOCRATIC PEOPLE'S MALAYSIA UGANDA REPUBLIC OF KOREA MALI UKRAINE DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICAN REPUBLIC MEXICO UNITED KINGDOM OF GREAT ECUADOR MONACO BRITAIN AND NORTHERN EGYPT MONGOLIA IRELAND EL SALVADOR MOROCCO UNITED REPUBLIC OF ESTONIA MYANMAR TANZANIA ETHIOPIA NAMIBIA UNITED STATES OF AMERICA FINLAND NETHERLANDS URUGUAY FRANCE NEW ZEALAND VENEZUELA GABON NICARAGUA VIET NAM GERMANY NIGER YUGOSLAVIA GHANA NIGERIA ZAIRE GREECE NORWAY ZAMBIA GUATEMALA PAKISTAN ZIMBABWE The Agency's Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Head- quarters of the Agency are situated in Vienna. Its principal objective is "to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world". © IAEA, 1992 Permission to reproduce or translate the information contained in this publication may be obtained by writing to the International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400 Vienna, Austria. Printed by the IAEA in Austria May 1992 TECHNICAL REPORTS SERIES No. 333 MEASUREMENT AND CALCULATION OF RADON RELEASES FROM URANIUM MILL TAILINGS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 1992 VIC Library Cataloguing in Publication Data Measurement and calculation of radon releases from uranium mill tailings. — Vienna : International Atomic Energy Agency, 1992. p. ; 24 cm. — (Technical reports series, ISSN 0074-1914 ; 333) STI/DOC/10/333 ISBN 92-0-101092-3 Includes bibliographical references. 1. Uranium mill tailings. 2. Atmospheric radon. 3. Radiation measurement. I. International Atomic Energy Agency. n. Series: Technical reports series (International Atomic Energy Agency) ; 333. VICL 92-00011 FOREWORD The mining and milling of uranium ores produces large quantities of radio- active wastes. Although relatively small in magnitude compared to tailings from metal mining and extraction processes, the present worldwide production of such tailings exceeds 20 million tonnes annually. There is thus a need to ensure that the environmental and health risks from these materials are reduced to an acceptable level. This report has been written as a complement to another publication entitled Current Practices for the Management and Confinement of Uranium Mill Tailings, IAEA Technical Reports Series No. 335, which provides a general overview of all the important factors in the siting, design and construction of tailings impoundments, and in the overall management of tailings with due consideration given to questions of the release of pollutants from tailings piles. The present report provides a comprehensive overview of the release, control and monitoring of radon, including computational methods. The report was first drafted in 1989 and was then reviewed at an Advisory Group meeting in 1990 and subsequently consolidated and finalized by the Scientific Secretary, P.L. De of the IAEA Division of Nuclear Fuel Cycle and Waste Management. The IAEA wishes to express its gratitude to those experts who contributed to the development and completion of this report. CONTENTS NOTATION 1 1. INTRODUCTION 3 2. PURPOSE AND SCOPE 4 2.1. Purpose 4 2.2. Scope 4 3. FACTORS CONTROLLING RADON RELEASES 4 3.1. General 4 3.2. Emanation coefficient 6 3.2.1. Moisture content 7 3.2.2. Effects of mineralogy 8 3.2.3. Particle size 8 3.3. Diffusion coefficient 8 3.4. Surface cover effects 11 3.5. Meteorological effects 11 3.6. Surface vegetation effects 12 4. METHODS FOR CALCULATING RADON RELEASES FROM URANIUM TAILINGS PILES 13 4.1. General 13 4.2. Simplified methods for calculating radon flux 14 4.2.1. Radon flux from uncovered tailings 14 4.2.2. Radon flux from single layer cover tailings 15 4.2.3. Radon flux from multiple layer cover tailings 15 4.3. Computer models 17 4.4. Estimations for input parameters and variables 17 4.4.1. Radium concentration 17 4.4.2. Emanation coefficient 17 4.4.3. Diffusion coefficient 18 4.4.4. Long term moisture 19 5. MEASUREMENT OF RADON CONCENTRATION AND FLUX .... 21 5.1. General 21 5.2. Measurement of radon concentration 21 5.2.1. Mode of measurement 21 5.2.2. Measurement techniques 22 5.3. Measurement of radon flux 25 5.3.1. Accumulation 25 5.3.2. Flow-through 27 5.3.3. Adsorption 28 5.4. Calibration of radon gas instrumentation 29 5.5. Typical values of radon flux 31 5.6. Typical values of radon concentration 31 6. CONDUCTING A RADON MONITORING PROGRAMME 34 6.1. General 34 6.2. Factors to be considered 36 6.3. Monitoring tailings piles 37 6.3.1. Gamma ray surveys 37 6.3.2. Radon flux sampling 37 6.3.3. Time schedule of flux measurements 38 6.4. Monitoring outside the tailings pile 38 7. SUMMARY 39 ANNEX A: MATHEMATICAL DEVELOPMENT OF RADON DIFFUSION EQUATIONS 41 ANNEX B: REFINED METHODS OF RADON FLUX CALCULATION 45 REFERENCES 51 GLOSSARY 55 CONTRIBUTORS TO DRAFTING AND REVIEW 59 NOTATION A Area of container in contact with the surface (m2) C Radon concentration (Bq-m"3) 3 Ct Radon concentration in container (Bq-m" ) 3 Co Initial radon concentration (Bq-m" ) 3 Ca Specified radon concentration (Bq-m~ ) D Diffusion coefficient (m2-s"1) 2 De Effective diffusion coefficient (m -s"') 2 1 DM Molecular diffusion coefficient (m -s" ) 5 DA Molecular diffusion coefficient in air (1.03 X 10" for radon at 20°C) (m2^-1) 9 Dw Molecular diffusion coefficient in water (1.4 X 10~ for radon at 20°C) (m2^-1) dm Mass median particle size (/jm) E Emanation coefficient (dimensionless) F Radon flux (Bq-m"2-s"') 2 L FM Rate of molecular transfer (Bq-m" -s" ) G Average uranium ore grade (per cent U) Heff Effective relaxation length (= VD/X) k Radon distribution coefficient between air and water (about 0.26 at 20°C) m Moisture saturation (porosity filled with water/total porosity) n Porosity P Radon production rate (Bq-kg^'-s"1) Ap Change in atmospheric pressure Q Volumetric flow rate (m3-s~') R Radium concentration (Bq-kg"1) T Radon produced per unit volume per unit time (Bq-m"3-s"') t Time V Volume of accumulator (m3) x Material thickness (m) e Self-confinement factor (fraction of radon atoms released from the ore particles that eventually reach the atmosphere) X Decay constant (2.06 X 10"6 for 222Rn) (s"1) p Material or bulk density (kg-m"3) T Proportionality constant related to the ratio of the thickness of a material to the average path length through it (tortuosity factor) 1 Subscripts i Refers to the ith layer j Refers to the jth layer cl Refers to the first, topmost layer of cover material c2 Refers to the second layer of cover material, etc. t Refers to tailings properties. 1. INTRODUCTION The mining and milling of uranium ores produces large quantities of wastes which must be managed safely. At present, 18 countries are reported to have ura- nium mining and milling capability and eight have a production capacity of at least 1000 tonnes of uranium per annum. These operations currently produce over 20 mil- lion additional tonnes of tailings per annum. In 1981 the IAEA published a technical report reviewing the current practices and options for confinement of uranium mill tailings [1]. During the 1980s, greater efforts were made to understand the processes which are important in uranium mill tailings management in order to model these processes and design well engineered impoundment facilities [2-6]. In addition, effective ways of closing off these impoundment facilities for long term management and for carrying out remedial actions on older tailings piles have been developed [7]. Recently the IAEA prepared a revised version of Ref. [1] which incorporates these new technological developments as well as the operational and managerial experience arising from the application of these methods [8]. The report provides a general overview of important factors in the management of tailings, release mecha- nisms for pollutants, factors controlling these releases, pathways to humans, and the technological factors important in the siting, design and construction of tailings impoundments. Reference [8] also reviews the factors affecting the release of radon from tail- ings in general terms.
Recommended publications
  • THESIS URANIUM CONTAMINATION VALUES and LIMITS Submitted By
    THESIS URANIUM CONTAMINATION VALUES AND LIMITS Submitted by Aaron Paul Miaullis Department of Environmental and Radiological Health Sciences In partial fulfillment of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado Summer 2012 Master’s Committee: Advisor: Thomas Johnson Co-Advisor: Alexander Brandl Thomas Borch Copyright by Aaron Paul Miaullis, 2012 All Rights Reserved ABSTRACT URANIUM CONTAMINATION VALUES AND LIMITS Hypothesis: Current soil contamination limits for non-enriched uranium are not consistent and are not optimized to allow the beneficial use of uranium while protecting the health of the public. Objective: Assess available health impact data regarding non-enriched uranium ingestion and inhalation as well as past soil contamination recommendations to determine if the regulatory limits for uranium are optimized, as recommended by the ICRP. Provide supporting data for keeping current soil contamination limits for non-enriched uranium, or suggest new limits based upon chemical uptake ratios. ii ACKNOWLEDGEMENTS I would like to thank the following persons for their help, guidance, mentoring, and support during the research and compilation of this paper: The Lord God My family: Maureen, Nicholas, Caitlin and Helena Miaullis My parents: J. Bart Miaullis and Laura White The United States Army Dr. Tom Johnson Dr. Alexander Brandl An additional thank you to the following people for providing their time and effort in obtaining and providing much needed reference material: LTC Andrew Scott, PhD, US Army MAJ(R) Carlos Corredor Steve Brown The Armour Archive Finally, thanks to the significant number of other individuals with whom I have conversed and discussed many additional points within this paper.
    [Show full text]
  • Tailings and Their Component Radionuclides from the Biosphere-Some Earth Science Perspectives
    Tailings and Their Component Radionuclides From the Biosphere-Some Earth Science Perspectives Isolation of Uranium Mill Tailings and Their Component Radionuclides From the Biosphere-Some Earth Science Perspectives By Edward Landa GEOLOGICAL SURVEY CIRCULAR 814 A critical review of the literature dealing with uranium mill tailings, with emphasis on the geologic and geochemical processes affecting the long-term containment of radionuclides 1980 United States Department of the Interior CECIL D. ANDRUS, Secretary Geological Survey H. William Menard, Director Library of Congress catalog-card No. 79-600148 Free on application to Branch of Distribution, U.S. Geological Survey 1200 South Eads Street, Arlington, VA 22202 CONTENTS Page Abstract 1 Introduction ------------------------------------------------------------­ 1 Acknowledginents ---------_----------------------------------------------- 2 Quantity and location of the tailings --------------------------------------­ 2 Radioactivity in tailings --------------------------------------------------­ 4 Sources of potential human radiation exposure from uranium mill tailings ------ 6 Radon emanation ----------------------------------------------------- 6 VVind transport ------------------------------------------------------- 6 Surface water transport and leaching ----------------------------------- 7 External gamma radiation -------------------------------------------­ 8 Contamination of terrestrial and aquatic vegetation ---------------------- 8 Seepage ----------------------------------------------------~--------
    [Show full text]
  • REGULATORY GUIDE 3.59 (Task WM 407-4)
    0 U.S. NUCLEAR REGULATORY COMMISSION March 1987 )0C REGULATORY GUIDE 11-1 , ****41r' OFFICE OF NUCLEAR REGULATORY RESEARCH REGULATORY GUIDE 3.59 (Task WM 407-4) METHODS FOR ESTIMATING RADIOACTIVE AND TOXIC AIRBORNE SOURCE TERMS FOR URANIUM MILLING OPERATIONS USNRC REGULATORY GUIDES The guides are issued in the following ten broad divisions: Regulatory Guides are issued to describe and make available to the public methods acceptable to the NRC staff of Implementing 1. Power Reactors 6. Products specific parts of the Commission's regulations, to delineate tech 2. Research and Test Reactors 7. Transportation niques used by the staff In evaluating specific problems or postu 3. Fuels and Materials Facilities 8. Occupational Health lated accidents or to provide guidance to applicants. Regulatory 4. Environmental and Siting 9. Antitrust and Financial Review Guides are not substitutes for regulations, and compliance with 5. Materials and Plant Protection 10. General them is not required. Methods and solutions different from those set out in the guides will be acceptable if they provide a basis for the findings requisite to the issuance or continuance of a permit or Copies of issued guides may be purchased from the Government license by the Commission. Printing Office at the current GPO price. Information on current GPO prices may be obtained by contacting the Superintendent of -This guide was issued after consideration of comments received from Documents, U.S. Government Printing Office, Post Office Box the public. Comments and suggestions for improvements in these 37082, Washington, DC 20013-7082, telephone (202)275-2060 or guides are encouraged at all times, and guides will be revised, as (202)275-2171.
    [Show full text]
  • Uranium Mining in Virginia
    Nontechnical Summary Uranium Mining in Virginia In recent years, there has been renewed interest in mining uranium in the Common- wealth of Virginia. However, before any mining can begin, Virginia’s General Assembly would have to rescind a statewide moratorium on uranium mining that has been in effect since 1982. The National Research Council was commissioned to provide an independent review of the scientific, environmental, human health and safety, and regulatory aspects of uranium mining, processing, and reclamation in Virginia to help inform the public discussion about uranium mining and to assist Virginia’s lawmakers in their deliberations. eneath Virginia’s convene an independent rolling hills, there committee of experts to Bare occurrences of write a report that described uranium—a naturally occur- the scientific, environmental, ring radioactive element that human health and safety, and can be used to make fuel for regulatory aspects of mining nuclear power plants. In the and processing Virginia’s 1970s and early 1980s, work to uranium resources. Addi- explore these resources led to tional letters supporting this the discovery of a request were received from large uranium deposit at Coles U.S. Senators Mark Warner Hill, which is located in and Jim Webb and from Pittsylvania County in southern Governor Kaine. The Virginia. However, in 1982 the National Research Council Commonwealth of Virginia study was funded under a enacted a moratorium on contract with the Virginia uranium mining, and interest in Center for Coal and Energy further exploring the Coles Hill Research at Virginia deposit waned. Polytechnic Institute and In 2007, two families living in the vicinity of State University (Virginia Tech).
    [Show full text]
  • Review of Existing and Proposed Tailings Impoundment Technologies
    Final Report Review of Existing and Proposed Tailings Impoundment Technologies Prepared by S. Cohen & Associates 1608 Spring Hill Road, Suite 400 Vienna, VA 22182 Under Contract Number EP-D-05-002 Work Assignment No. 4-11, Task 5 Prepared for U.S. Environmental Protection Agency Office of Radiation and Indoor Air 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 Reid J. Rosnick Work Assignment Manager September 25, 2008 In accordance with the Quality Assurance Project Plan: Technical and Regulatory Support to Develop a Rulemaking to Modify the NESHAP Subpart W Standard for Radon Emissions from Operating Uranium Mills (40 CFR 61.25), this document has been reviewed and approved by the following individuals: Work Assignment Task Manager: ________________________ Date: __09/25/2008__ Harry Pettengill Project Manager: ________________________ Date: __09/25/2008__ Abe Zeitoun Corporate Quality Assurance Mgr: ________________________ Date: __09/25/2008__ Gregory Beronja Work Assignment QA Manager: ________________________ Date: __09/25/2008__ Stephen Ostrow WA 4-11, Task 4 – NESHAPs History i SC&A – September 25, 2008 TABLE OF CONTENTS 1.0 Historical Conventional Tailings Impoundments ............................................................... 1 2.0 Profile of the Existing Industry........................................................................................... 2 3.0 Anticipated Changes in the Industry Profile....................................................................... 3 4.0 Comparison of Uranium Tailings Disposal
    [Show full text]
  • Environmental Activities in Uranium Mining and Milling
    Nuclear Development Environmental Activities in Uranium Mining and Milling A Joint NEA/IAEAReport NUCLEAR•ENERGY•AGENCY OECD, 1999. Software: 1987-1996, Acrobat is a trademark of ADOBE. All rights reserved. OECD grants you the right to use one copy of this Program for your personal use only. Unauthorised reproduction, lending, hiring, transmission or distribution of any data or software is prohibited. You must treat the Program and associated materials and any elements thereof like any other copyrighted material. All requests should be made to: Head of Publications Service, OECD Publications Service, 2, rue AndrÂe-Pascal, 75775 Paris Cedex 16, France. ENVIRONMENTAL ACTIVITIES IN URANIUM MINING AND MILLING A JOINT REPORT BY THE OECD NUCLEAR ENERGY AGENCY AND THE INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: ± to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining ®nancial stability, and thus to contribute to the development of the world economy; ± to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and ± to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
    [Show full text]
  • Perceptions and Realities in Modern Uranium Mining
    Nuclear Development 2014 Perceptions and Realities in Modern Uranium Mining Extended Summary NEA Nuclear Development Perceptions and Realities in Modern Uranium Mining Extended Summary © OECD 2014 NEA No. 7063 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT PERCEPTIONS AND REALITIES IN MODERN URANIUM MINING Perceptions and Realities in Modern Uranium Mining Introduction Producing uranium in a safe and environmentally responsible manner is not only important to the producers and consumers of the product, but also to society at large. Given expectations of growth in nuclear generating capacity and associated uranium demand in the coming decades – particularly in the developing world – enhancing awareness of leading practice in uranium mining is important. This extended summary of the report Managing Environmental and Health Impacts of Uranium Mining provides a brief outline of the driving forces behind the significant evolution of uranium mining practices from the time that uranium was first mined for military purposes until today. Uranium mining remains controversial principally because of legacy environmental and health issues created during the early phase of the industry. Today, uranium mining is conducted under significantly different circumstances and is now the most regulated and one of the safest forms of mining in the world. The report compares historic uranium mining practices with leading practices in the modern era, and provides an overview of the considerable evolution of regulations and mining practices that have occurred in the last few decades. Case studies of past and current practices are included to highlight these developments and to contrast the outcomes of historic and modern practices. With over 430 reactors operational worldwide at the end of 2013, more than 70 under construction and many more under consideration, providing fuel for these long-lived facilities will be essential for the uninterrupted generation of significant amounts of baseload electricity for decades to come.
    [Show full text]
  • P-05-837 Green Energy for the Wellbeing of Future Generations in Wales – Correspondence from the Petitioner to the Committee, 01.10.18
    P-05-837 Green Energy for the Wellbeing of Future Generations in Wales – Correspondence from the Petitioner to the Committee, 01.10.18 Dear Kayleigh Further to your email of September 24th and attachment I attach our response to the correspondence from the Cabinet Secretary for Energy, Planning and Rural Affairs in line with your deadline of October 2nd for the Petitions Committee meeting on October 9th. Most of the evidence backing our response is outlined under the appropriate section in the attachment but I also attach a further document which to date has not yet been published backing our arguments about uranium mining. The Author is Pete Roche who has prepared the article for Greenpeace International . As you can see it is a complex topic and we would be delighted to attend any future Meetings of the Petitions Committee to present our points in more and illustrative detail. We have kept to the 4 page outline as requested but would be happy to elaborate further . Please confirm you have received and can open both attachments Thank you for your support and I look forward to further information about the process in due course Yours sincerely Mag Richards (Secretariat to Welsh Anti Nuclear Alliance) https://emea01.safelinks.protection.outlook.com/?url=www.wana.wales&data =02%7C01%7CSeneddPetitions%40Assembly.Wales%7Ccbdcdfe58b514fd5b58c08d6 277b2f1b%7C38dc5129340c45148a044e8ef2771564%7C1%7C0%7C63673980840 9606583&sdata=Lx3lXzeOEqjrhhI7Gxnx2kGX3X0LtlG7gPVjOitKdqc%3D&r eserved=0 PO Box 90. Llandrindod Wells. Powys LD1 9BP [email protected]
    [Show full text]
  • FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT for the URANIUM MILL TAILINGS REMEDIAL ACTION GROUND WATER PROJECT Volume I
    DOE/EIS-0198 FINAL PROGRAMMATIC ENVIRONMENTAL IMPACT STATEMENT FOR THE URANIUM MILL TAILINGS REMEDIAL ACTION GROUND WATER PROJECT Volume I October 1996 TABLE OF CONTENTS SUMMARY 1.0 INTRODUCTION 2.0 ALTERNATIVES 3.0 AFFECTED ENVIRONMENT 4.0 ENVIRONMENTAL IMPACTS 5.0 UNAVOIDABLE ADVERSE ENVIRONMENTAL IMPACTS OF THE PROPOSED ACTION 6.0 SHORT-TERM USES AND LONG-TERM PRODUCTIVITY 7.0 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES 8.0 REFERENCES 9.0 GLOSSARY 10.0 ABBREVIATIONS AND ACRONYMS 11.0 PREPARERS OF THE FINAL PEIS 12.0 ORGANIZATIONS CONSULTED DURING PEIS PREPARATION 13.0 AGENCIES, ORGANIZATIONS, AND PERSONS RECEIVING COPIES OF THE PEIS Appendices Appendix A - Comments and Responses Appendix B (electroic copy is unavilable) SUMMARY This programmatic environmental impact statement (PEIS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PEIS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC '7901 et seq. Congress found that uranium mill tailings ". may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S.
    [Show full text]
  • Toxicological Profile for Uranium
    URANIUM 273 5. PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.1 PRODUCTION No information is available in the TRI database on facilities that manufacture or process uranium, because this chemical is not required to be reported under Section 313 of the Emergency Planning and Community Right-to-Know Act (Title III of the Superfund Amendments and Reauthorization Act of 1986) (EPA 1998a). Uranium is present in the earth’s crust at approximately 3 ppm (2 pCi/g) (Clark et al. 2006; du Preez 1989; WNA 2011). Of the more than 100 uranium ores, the primary (brannerite, carnotite, coffinite, davidite, pitchblende, thucholite, uraninite) and secondary (tobernite, autunite, tyuyamunite) are the main ores of commercial interest. The main ores are described in Table 5-1. The most economically attractive uranium ores have uranium concentrations >1,000 ppm (700 pCi/g) (Clayton and Clayton 1981; Weigel 1983; WNA 2011). In the United States, the major ore deposits are located in Colorado, Utah, Arizona, New Mexico, Wyoming, Nebraska, and Texas (EPA 1985a). The steps necessary to produce uranium for its various uses include mining, milling, conversion to uranium hexafluoride (UF6), enrichment, reduction to metal or oxidation to uranium oxide, and fabrication into the desired shape. The steps for preparing commercial reactor grade, submarine reactor grade, or weapons-grade uranium are the same, except the last two require a more aggressive enrichment process. Depleted uranium metal is produced by reducing the depleted uranium hexafluoride byproduct. Conventional fabrication methods are used to configure the uranium for specific uses, such as rectangular solid blocks for helicopter rotor counterbalances and parabolic or cylindrical solids for military depleted uranium projectiles.
    [Show full text]
  • Journal of the Western Slope
    ~~ MESco,A STATE '-"'~G'-"'~ -- JOURNAL OF THE WESTERN SLOPE VOLUME 8, NO. 1 WINTER 1993 NEW IIIEXICO URANIU". MI LLS in I~ ' FOUR CORNERS AREA ~ "" •• "'" ~ "L • •. " •. $ . , ........ ~- JOURNAL OF THE WESTERN SLOPE is published quarterly by two student organizations at Mesa State College: the Mesa State College Historical Society and the A1pha-Gamma-Epsilon Chapter of Phi Alpha Theta. Annual subscriptions are $ I O. ISingle copies are available by contacting the editors of the Journal.) Retailers are encouraged to wrlte for prices. Address subscriptions and orders for back issues to: Mesa State College Journal of the Western Slope P.O. Box 2647 Grand Junction, CO 8 1502 GUIDEUNES FOR CONTRIBUTORS, ~ purpose: of THE JOURf'VoL. OF THE 'W'ESTERN SlOPE is to MCourage scholarly sW<tj of CoIorado's western Slope. ~ prirM!y pis to pre'SeIVe and record ~ hIstoty: however, iIfticIes on antlYopoiogy. economics. governrnent. natural histoIy. and sociology 'Will be considefed. ~ip is open to anyone >Mlo wishes to submit oOgi"la1 and scholarly material about the Westem SIopIe. The editor> encourage ~ of inquily from prospective authors. send materials and ~en; 10 THE JOt..IR~ Of THE ~mRN SLOPE. Mesa College. P.O. Box 2647. Grand Junction. CO 8 1502. I ) ConlIibutors must send two copieS of articles. DO NOT SEND THE ORIGINAL Editors 'Will not ren-n manuscripts. Material ~ be typed, double spaced (inCk.lding footnotes), and footnoted. The editors v.tI glYe preference to submissions of about 25 pages. 2) NDN the editors 60 clays to r~ manuscripls. cung this trne, the editors ask that )'OU not submit the anIde to anothef pubIstIef.
    [Show full text]
  • Final Rule for Radon-222 Emissions from Licensed Uranium Mill Tailings
    ,,,, Fiadisrion ,-,,-, -" Final Rule for Radon - Emissions from Licensed Uranium Mill Tailings Background Information Document 40 CFR Part 61 EPA 520/1-86-009 National Emission Standards for Harzardous Air Pollutants BACKGROUND INFORMATION DOCUMENT STANDARD FOR RADON-222 EMISSIONS FROM LICENSED URANIUM MILL TAILINGS August 15, 1986 U.S. Environmental Protection Agency Office of Radiation Programs Washington, D.C. 20460 Figures v i Tables viii 1. INTRODUCTION 1.1 History of Standard Development 1.2 Content 1.3 Other EPA Standards Affecting Uranium Mills 1.4 Other Regulations Affecting Uranium Mills 2. ESTIMATING THE RISK DUE TO EXPOSURE TO RADON-222 DECAY PRODUCTS 2.1 Introduction 2.2 Radon-222 Exposure Pathways 2.2.1 Physical Considerations 2.2.2 Characterizing Exposures to the General Population Vis-a-vis Underground Miners 2.3 Health Risk From Exposure to Radon-222 Decay Products 2.3.1 Risk Models 2.3.2 The EPA Relative Risk Model 2.3.3 Comparison of Risk Estimates 2.3.4 Selecti.on of Risk Coefficients 2.4 Estimating the Risks 2.4.1 Exposure 2.4.2 Risk Esti.rnation References 3. RADON-222 SOURCES, ENVIRONMENTAL TRANSPORT, AND RISK ESTIMATES 3.1 Introduction 3.2 Origin and Properties of Radon-222 3.3 Sources of Radon-222 Emissions in the Milling Process 3.4 Characterization of Emissions 3.4.1 Ore Handling and Preparation 3.4.2 Mill Emissions 3.4.3 Emissions From Tailings Disposal 3.5 Transport and Risk Assessment 3.5.1 Air Dispersion Estimates 3.5.2 Risk Estimates CONTENTS (cant inued) 3.6 Measurement of Radon-222 3-22 3.6.1 Ambient Air Samplers 3-23 3.6.2 Concentrating Samplers That Measure Radon-222 Emanation From Surfaces 3-23 References 3-25 4.
    [Show full text]