Tumor Necrosis Factor-Α-Induced Protein 8-Like-2 Is Involved in the Activation of Macrophages by Astragalus Polysaccharides in Vitro

Total Page:16

File Type:pdf, Size:1020Kb

Tumor Necrosis Factor-Α-Induced Protein 8-Like-2 Is Involved in the Activation of Macrophages by Astragalus Polysaccharides in Vitro 7428 MOLECULAR MEDICINE REPORTS 17: 7428-7434, 2018 Tumor necrosis factor-α-induced protein 8-like-2 is involved in the activation of macrophages by Astragalus polysaccharides in vitro JIE ZHU1, YUANYUAN ZHANG2, FANGHUA FAN1, GUOYOU WU1, ZHEN XIAO1 and HUANQIN ZHOU1 1Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013; 2Department of Pulmonology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China Received April 6, 2017; Accepted September 11, 2017 DOI: 10.3892/mmr.2018.8730 Abstract. In previous years, studies have shown that Introduction Astragalus polysaccharides (APS) can improve cellular immu- nity and humoral immune function, which has become a focus Macrophages are important immune cells, which are involved of investigations. Tumor necrosis factor-α-induced protein in the stimulation of the innate immune system, including the 8-like 2 (TIPE2) is a negative regulator of immune reactions. release of inflammatory cytokines and inflammatory molecules, However, the effect and underlying mechanisms of TIPE2 on including tumor necrosis-factor (TNF)-α, interleukin (IL)-1β, the APS-induced immune response remains to be fully eluci- IL-6 and nitric oxide (NO) (1,2). These cytokines and inflam- dated. The present study aimed to examine the role of TIPE2 matory molecules are often regulated by the mitogen-activated and its underlying mechanisms in the APS-induced immune protein kinase (MAPK) signaling pathway (3,4). response. The production of nitric oxide (NO) was detected TNF-α-induced protein-8 like 2 (TNFAIP8L2, also known in macrophages in vitro following APS stimulation. In addi- as TIPE2), is a novel member of the TNFAIP8 (TIPE) family. tion, the present study interfered with the expression of TIPE2 TIPE2 was originally identified as a negative regulator of in macrophages, and examined the production of cytokines, immune homeostasis, being expressed mainly in lymphoid NO and components of the mitogen-activate protein kinase tissues, inflammatory tissues and immune cells, including (MAPK) signaling pathway following APS stimulation. The macrophages (5). results showed that APS was able to activate macrophages by Astragalus, a well-known Chinese traditional medicine inducing the production of interleukin (IL)-1β, tumor necrosis and edible food, has multiple effects in pharmacological factor (TNF)-α, IL-6 and NO. Furthermore, RAW264.7 cells and biological processes. One of its bioactive components is were stimulated with APS when TIPE2 was silenced, and Astragalus polysaccharides (APS), which can improve cellular it was found that the production of TNF-α, IL-6, IL-1β and and humoral immunity, and regulate certain cytokines (6-8). NO were upregulated, and the signaling pathway of MAPK Although it is well known that APS is an immune regulator, was activated. Taken together, these results demonstrated that few studies have reported on the molecular mechanism under- TIPE2 had an important negative effect on the APS-induced lying the effect of APS on the immune system. MAPKs are a production of inflammatory cytokines and NO via the MAPK family of serine/threonine protein kinases, which are respon- signaling pathway. sible for the majority of cellular responses to cytokines and are crucial for regulating the production of inflammation media- tors. A small number of natural extracts have been shown to inhibit the expression of inflammatory genes by regulating the phosphorylation of MAPK pathways (3-4,9). The present study aimed to determine what effect TIPE2 has on activating macrophages induced by APS in vitro. Materials and methods Correspondence to: Miss Huanqin Zhou, Department of Clinical Laboratory, Zhejiang Hospital, 12 Linying Road, Hangzhou, Drugs. APS (cat. no. 151001B) for clinical application with Zhejiang 310013, P.R. China E-mail: [email protected] an endotoxin content of <0.1 Eu/mg was purchased from Pharmagenesis, Inc. (Palo Alto, CA, USA); it is a polysaccharide Abbreviations: APS, Astragalus polysaccharides; TIPE2, tumor with a molecular weight of 20,000-60,000, and the polysac- necrosis factor-α-induced protein 8-like-2; NO, nitric oxide; MAPK, charides consist of α-1, 4 (1,6) glucan, arabinose-galactose mitogen-activated protein kinase polysaccharides, hamnose-galacturonic acid polysaccharides and arabinose-galactose protein polysaccharides. Key words: Astragalus polysaccharides, macrophages, activation, downregulation, tumor necrosis factor-α-induced protein 8-like-2 Cell line and culture. Murine macrophage RAW264.7 cells (Institute of Biochemistry and Cell Biology, Shanghai, China) ZHU et al: APS-INDUCED ACTIVATION OF MACROPHAGES 7429 were grown in RPMI-1640 medium (Invitrogen; Thermo extracted from cells using TRIzol (Takara Bio, Inc., Otsu, Fisher Scientific, Inc., Waltham, MA, USA) with penicillin Japan) according to the manufacturer's protocol. Single-strand 100 IU/ml, streptomycin 100 IU/ml and 2 mM/l-glutamine cDNA (100 ng) was generated from total RNA using reverse supplemented with 10% bovine serum albumin (PPA, Ferlach, transcriptase (Toyobo Co., Ltd., Osaka, Japan). RT-qPCR Austria). The cells were maintained subconfluent at 37˚C in analysis, using 5 µl SYBR-Green detection chemistry mix humidified air containing 5% CO2. The RAW264.7 cells were (Roche Diagnostics, Basel, Switzerland), was performed on a harvested by gentle scraping, washed in PBS, resuspended in 7500 Real-Time PCR system (Applied Biosystems; Thermo culture medium and plated. Non-adherent cells were removed Fisher Scientific, Inc.). For mouse TIPE2, 1 µl qPCR primers by repeated washing following incubation at 37˚C for 4 h. were: Forward, 5'-TCT CAG AAA CAT CCA AGG CC-3' and Each experimental unit comprised 5x105/ml cells. reverse, 5'-TTT GAG CTG AAG GAC TCC ATG-3'. For mouse β-actin, the qPCR primers were: Forward, 5'-AGT GTG ACG RNA interference. The TIPE2-specific small interfering TTG ACA TCC GT-3' and reverse, 5'-GCA GCT CAG TAA (si)RNA-517 (GenePharma Co., Ltd., Shanghai, China) CAG TCC GC‑3'. PCR amplification program was performed sequences were as follows: Sense 5'-GCA UCA GGC ACG UGU under the following two steps. Stage 1: 50˚C for 2 min, 95˚C UUG ATT-3' and antisense 5'-UCA AAC ACG UGC CUG AUG for 10 min (1 cycle). Stage 2: 95˚C for 15 sec, 60˚C for 35 sec CTT‑3'. The TIPE2‑specific siRNA‑166 (GenePharma Co., Ltd.) (39 cycles). Relative expression fold change was calculated sequences were as follows: Sense 5'-CCG UGG CGC AUC UCU by the 2∆∆Cq method, and β-actin was used as the endogenous CUU UAU TT-3' and antisense 5'-AUA AAG AGA UGC GCC reference gene to normalize the expression level of target gene. ACG GTT‑3'. The TIPE2‑specific siRNA‑351 (GenePharma Co., Ltd.) sequences were as follows: Sense 5'-GCU ACA CGA Western blot analysis. The cells were washed twice with cold UUU CGU CAG ATT-3' and antisense 5'-UCU GAC GAA AUC PBS and lysed with cell lysis buffer (Cell Signaling Technology, GUG UAG CTT-3'. The control siRNA sequences (GenePharma Inc., Boston, MA, USA) supplemented with protease inhibitor Co., Ltd.) were as follows: Sense 5'-UUC UCC GAA CGU GUC mixture (Beyotime Institute of Biotechnology, Shanghai, ACG UTT-3' and antisense 5'-ACG UGA CAC GUU CGG AGA China). The protein concentrations of the cell lysis extracts ATT-3'. For each well, 8.4 ng of siRNA duplexes was diluted were measured using a BCA assay (Pierce; Thermo Fisher into 100 µl of medium and mixed. INTERFERin (4 µl) was Scientific, Inc.) and equalized with the extraction reagent. added to the mixture, which was immediately homogenize by Protein extracts (30 µg) were loaded and subjected to vortexing for 10 sec. It was then incubated for 10 min at room separation on an 10% SDS-PAGE gel, following which they temperature to allow transfection complexes to form between were transferred onto a PVDF membrane. The membrane siRNA duplexes and INTERFERin. During complex forma- was blocked with 5% skim milk in TBST for 1 h at 25˚C and tion, the growth medium was removed and 0.5 ml of fresh then incubated with rabbit anti murine ERK (cat. no. 9102), pre-warmed complete medium added per well. Then, 100 µl of JNK (cat. no. 9252), P38 (cat. no. 8690), phosphorylated transfection mix was added to the cells and homogenized by ERK (cat. no. 9101), phosphorylated JNK (cat. no. 9251), and gently swirling the plate. The final volume was 600 µl, and the phosphorylated P38 antibody (cat. no. 9215; Cell Signaling siRNA concentration 20 nM. The plate was incubated at 37˚C Technology, Inc.) for 1 h at 25˚C. Following washing three and gene silencing measured after 48 h. times in TBST for 10 min each time, the membrane was incubated with HRP conjugated goat anti rabbit-IgG (cat. NO assay. The quantity of stable NO generated by activated no. 18-8816-33; Rockland, Gilbertsville, Philadelphia, PA, macrophages was determined using Griess reagent (Promega USA) for 1 h and the antibody‑specific protein was visualized Corp., Madison, WI, USA). The TIPE2 siRNA- or control by using an ECL kit (Biological Industries, Kibbutz Beit siRNA-transfected RAW264.7 cells (5x105/ml) were treated Haemek, Israel) in the enhanced chemiluminescence detection with different concentrations of APS (10, 100, 200 and 400 µg) system as previously described (10). The intensities of the and LPS (10 µg/ml) at room temperature for different dura- protein bands were analyzed by Gel-Pro Analyzer software. tions (4, 8, 16, 24, 32, 40 and 48 h). Subsequently, 50 µl of the All of the above antibodies were diluted to 1:1,000. cell culture supernatant was mixed with an equal volume of Griess reagent and incubated at room temperature for 15 min. Statistical analysis. The results are expressed as the The absorbance was measured at 550 nm using a microplate mean ± standard deviation of the indicated number of experi- reader, and a standard curve was plotted using a serial known ments.
Recommended publications
  • Tumor Necrosis Factor‑Α‑Induced Protein‑8 Like 2 Regulates
    6346 MOLECULAR MEDICINE REPORTS 16: 6346-6353, 2017 Tumor necrosis factor‑α‑induced protein‑8 like 2 regulates lipopolysaccharide‑induced rat rheumatoid arthritis immune responses and is associated with Rac activation and interferon regulatory factor 3 phosphorylation CHUNYAN SHI1,2*, YUE WANG1*, GUOHONG ZHUANG1*, ZHONGQUAN QI1, YANPING LI1 and PING YIN3 1Organ Transplantation Institute, Anti‑Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100; 2The Department of Oncology, Jiujiang People's Hospital, Jiujiang, Jiangxi 332000; 3Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361100, P.R. China Received October 28, 2016; Accepted June 19, 2017 DOI: 10.3892/mmr.2017.7311 Abstract. The endogenously activated rheumatoid arthritis Introduction (R A) synovial fibroblasts (RSFs) a re li kely to be the key to cur ing the disease. RSFs express Toll‑like receptors (TLRs) rendering Rheumatoid arthritis (RA) is a chronic inflammatory disease them prone to activation by exogenous and endogenous TLR characterized by articular inflammation and leads to joint ligands, resulting in the production of chemokines and cyto- destruction (1,2). RA pathogenesis involves a complex kines Germline deletion of tumor necrosis factor‑α-induced humoral and cellular immune response, including the infiltra- protein‑8 like 2 (TIPE2, also known as TNFAIP8L2) results tion of lymphocytes and monocytes into the synovium. These in fatal inflammation and hypersensitivity to TLR and T cell infiltrating cells and synoviocytes release numerous proin- receptor stimulation. The present study demonstrates an flammatory cytokine and chemokines, including interleukin inverse association between TIPE2 and cytokine gene expres- IL‑6, IL‑1 and tumor necrosis factor‑α (TNF‑α), which may sion in RSFs following lipopolysaccharide (LPS) stimulation.
    [Show full text]
  • Protein Interactions in the Cancer Proteome† Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • TNFAIP8L2/TIPE2 Polyclonal Antibody, FITC Conjugated Catalog No
    Product Name: TNFAIP8L2/TIPE2 Polyclonal Antibody, FITC Conjugated Catalog No. : TAP01-88965R-FITC Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation FITC Subcellular Locations Applications IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from human TNFAIP8L2/TIPE2 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background TNF Alpha-IP 8L2 (tumor necrosis factor, alpha-induced protein 8-like 2), also known as TIPE2, is a 184 amino acid protein that shares 94% identity with its mouse counterpart and belongs to the TNFAIP8 family. Expressed in spleen, thymus, small intestineand lymph node with lower levels present in colon, lung and skin, TNF Alpha-IP 8L2 plays a role in maintaining immune homeostasis, specifically by acting as a negative regulator of both innate and adaptive immunity. In addition, TNF?IP 8L2 functions as anegative regulator of T-cell receptor function and is thought to promote Fas-induced apoptosis. The gene encoding TNF?IP 8L2 maps to human chromosome 1, which spans 260 million base pairs, contains over 3,000 genes and comprises nearly 8% of the human genome. Synonyms Tumor necrosis factor alpha-induced protein 8-like protein 2; Inflammation factor protein 20; TIPE 2; TIPE-2; TNF alpha-induced protein 8-like protein 2; TNFAIP8-like protein 2; TNFAIP8L2; TP8L2_HUMAN; Tumor necrosis factor alpha-induced protein 8-like protein 2; AW610835; FLJ23467. Storage Aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide.
    [Show full text]
  • KRAS Mutations Are Negatively Correlated with Immunity in Colon Cancer
    www.aging-us.com AGING 2021, Vol. 13, No. 1 Research Paper KRAS mutations are negatively correlated with immunity in colon cancer Xiaorui Fu1,2,*, Xinyi Wang1,2,*, Jinzhong Duanmu1, Taiyuan Li1, Qunguang Jiang1 1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China 2Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, People's Republic of China *Equal contribution Correspondence to: Qunguang Jiang; email: [email protected] Keywords: KRAS mutations, immunity, colon cancer, tumor-infiltrating immune cells, inflammation Received: March 27, 2020 Accepted: October 8, 2020 Published: November 26, 2020 Copyright: © 2020 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The heterogeneity of colon cancer tumors suggests that therapeutics targeting specific molecules may be effective in only a few patients. It is therefore necessary to explore gene mutations in colon cancer. In this study, we obtained colon cancer samples from The Cancer Genome Atlas, and the International Cancer Genome Consortium. We evaluated the landscape of somatic mutations in colon cancer and found that KRAS mutations, particularly rs121913529, were frequent and had prognostic value. Using ESTIMATE analysis, we observed that the KRAS-mutated group had higher tumor purity, lower immune score, and lower stromal score than the wild- type group. Through single-sample Gene Set Enrichment Analysis and Gene Set Enrichment Analysis, we found that KRAS mutations negatively correlated with enrichment levels of tumor infiltrating lymphocytes, inflammation, and cytolytic activities.
    [Show full text]
  • Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry Audrey Hoyle University of Maine
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2018 Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry Audrey Hoyle University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Hoyle, Audrey, "Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry" (2018). Honors College. 335. https://digitalcommons.library.umaine.edu/honors/335 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. IDENTIFICATION OF TNFAIP8L1 BINDING PARTNERS THROUGH CO- IMMUNOPRECIPITATION AND MASS SPECTROMETRY by Audrey Hoyle A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biochemistry and Microbiology) The Honors College University of Maine May 2018 Advisory Committee: Con Sullivan, Ph.D., Assistant Research Professor (Advisor) Benjamin L. King, Ph.D., Assistant Professor of Bioinformatics Melissa S. Maginnis, Ph.D., Assistant Professor of Microbiology Sally Molloy, Ph.D., Assistant Professor of Genomics Mary S. Tyler, PhD., Professor of Zoology ©2018 Audrey Hoyle All Rights Reserved ABSTRACT The expanded understanding of the gene families and mechanisms governing tumorigenesis pathways has enormous potential for improving current cancer therapies and patient prognoses. One such gene family that participates in the regulation of tumorigenesis is the tumor necrosis factor alpha-induced protein 8 (TNFAIP8) gene family, which is comprised of four members: TNFAIP8, TNFAIP8L1, TNFAIP8L2, and TNFAIP8L3.
    [Show full text]
  • Evolutionary Divergence of the Vertebrate TNFAIP8 Gene Family: Applying the Spotted Gar Orthology Bridge to Understand Ohnolog Loss in Teleosts
    RESEARCH ARTICLE Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts Con Sullivan1,2*, Christopher R. Lage3, Jeffrey A. Yoder4, John H. Postlethwait5, Carol H. Kim1,2* a1111111111 1 Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America, 2 Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, a1111111111 United States of America, 3 Program in Biology, University of Maine - Augusta, Augusta, Maine, United a1111111111 States of America, 4 Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, a1111111111 North Carolina, United States of America, 5 Institute of Neuroscience, University of Oregon, Eugene, Oregon, a1111111111 United States of America * [email protected] (CS); [email protected] (CHK) OPEN ACCESS Abstract Citation: Sullivan C, Lage CR, Yoder JA, Postlethwait JH, Kim CH (2017) Evolutionary Comparative functional genomic studies require the proper identification of gene orthologs divergence of the vertebrate TNFAIP8 gene family: to properly exploit animal biomedical research models. To identify gene orthologs, compre- Applying the spotted gar orthology bridge to hensive, conserved gene synteny analyses are necessary to unwind gene histories that understand ohnolog loss in teleosts. PLoS ONE 12 are convoluted by two rounds of early vertebrate genome duplication, and in the case of the (6): e0179517. https://doi.org/10.1371/journal. pone.0179517 teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome Editor: Pierre Boudinot, INRA, FRANCE duplication, was sequenced and applied as an orthology bridge to facilitate the identification Received: February 3, 2017 of teleost orthologs to human genes and to enhance the power of teleosts as biomedical Accepted: May 30, 2017 models.
    [Show full text]
  • Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis Thomas Porturas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Porturas, Thomas, "Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis" (2014). Publicly Accessible Penn Dissertations. 1409. https://repository.upenn.edu/edissertations/1409 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1409 For more information, please contact [email protected]. Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis Abstract TNF-alpha-induced protein 8 (TNFAIP8 or TIPE) is a newly described regulator of cancer and infection. However, its precise roles and mechanisms of actions are not well understood. Here I report the generation of TNFAIP8 knockout mice and describe their increased responsiveness to colonic inflammation and esistancer to lethal Listeria monocytogenes infection. TNFAIP8 knockout mice were generated by germ line gene targeting and were born without noticeable developmental abnormalities. Their major organs including those of the immune and digestive systems were macroscopically and microscopically normal. However, compared to wild type mice, TNFAIP8 knockout mice exhibited significant differences in the development of listeriosis and experimentally induced colitis. I discovered that TNFAIP8 regulates L. monocytogenes infection by controlling pathogen invasion and host cell apoptosis potentially in a RAC1 GTPase-dependent manner. TNFAIP8 knockout mice had reduced bacterial load in the liver and spleen and TNFAIP8 knockdown in murine liver HEPA1-6 cells increased apoptosis, reduced bacterial invasion into cells, and resulted in dysregulated RAC1 activation.
    [Show full text]
  • Pan-Cancer Analysis of Frequent DNA Co-Methylation Patterns Reveals
    The Author(s) BMC Genomics 2017, 18(Suppl 1):1045 DOI 10.1186/s12864-016-3259-0 RESEARCH Open Access Pan-cancer analysis of frequent DNA co- methylation patterns reveals consistent epigenetic landscape changes in multiple cancers Jie Zhang and Kun Huang* From The 27th International Conference on Genome Informatics Shanghai, China. 3-5 October 2016 Abstract Background: DNA methylation is the major form of epigenetic modifications through which the cell regulates the gene expression and silencing. There have been extensive studies on the roles of DNA methylation in cancers, and several cancer drugs were developed targeting this process. However, DNA co-methylation cluster has not been examined in depth, and co-methylation in multiple cancer types has never been studied previously. Results: In this study, we applied newly developed lmQCM algorithm to mine co-methylation clusters using methylome data from 11 cancer types in TCGA database, and found frequent co-methylated gene clusters exist in these cancer types. Among the four identified frequent clusters, two of them separate the tumor sample from normal sample in 10 out of 11 cancer types, which indicates that consistent epigenetic landscape changes exist in multiple cancer types. Conclusion: This discovery provides new insight on the epigenetic regulation in cancers and leads to potential new direction for epigenetic biomarker and cancer drug discovery. We also found that genes commonly believed to be silenced via hypermethylation in cancers may still display highly variable methylation levels among cancer cells, and should be considered while using them as epigenetic biomarkers. Keywords: DNA co-methylation, Pan-cancer methylation, Frequent network mining, Epigenetics Background methylome) is affected by cell age, tissue types, and DNA methylation is the most extensively studied form many environmental factors such as nutrients and car- of epigenetic modification in the cell.
    [Show full text]
  • Rare Disruptive Variants in the DISC1 Interactome and Regulome: Association with Cognitive Ability and Schizophrenia
    OPEN Molecular Psychiatry (2018) 23, 1270–1277 www.nature.com/mp ORIGINAL ARTICLE Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia S Teng1,2,10, PA Thomson3,4,10, S McCarthy1,10, M Kramer1, S Muller1, J Lihm1, S Morris3, DC Soares3, W Hennah5, S Harris3,4, LM Camargo6, V Malkov7, AM McIntosh8, JK Millar3, DH Blackwood8, KL Evans4, IJ Deary4,9, DJ Porteous3,4 and WR McCombie1 Schizophrenia (SCZ), bipolar disorder (BD) and recurrent major depressive disorder (rMDD) are common psychiatric illnesses. All have been associated with lower cognitive ability, and show evidence of genetic overlap and substantial evidence of pleiotropy with cognitive function and neuroticism. Disrupted in schizophrenia 1 (DISC1) protein directly interacts with a large set of proteins (DISC1 Interactome) that are involved in brain development and signaling. Modulation of DISC1 expression alters the expression of a circumscribed set of genes (DISC1 Regulome) that are also implicated in brain biology and disorder. Here we report targeted sequencing of 59 DISC1 Interactome genes and 154 Regulome genes in 654 psychiatric patients and 889 cognitively-phenotyped control subjects, on whom we previously reported evidence for trait association from complete sequencing of the DISC1 locus. Burden analyses of rare and singleton variants predicted to be damaging were performed for psychiatric disorders, cognitive variables and personality traits. The DISC1 Interactome and Regulome showed differential association across the phenotypes tested. After family-wise error correction across all traits (FWERacross), an increased burden of singleton disruptive variants in the Regulome was associated with SCZ (FWERacross P=0.0339).
    [Show full text]
  • Epigenetic Changes in Human Model KMT2A Leukemias Highlight Early Events During Leukemogenesis
    Epigenetic changes in human model KMT2A leukemias highlight early events during leukemogenesis Thomas Milan1, Magalie Celton1, Karine Lagacé1, Élodie Roques1, Safia Safa-Tahar-Henni1, Eva Bresson2,3,4, Anne Bergeron2,3,4, Josée Hebert5,6, Soheil Meshinchi7, Sonia Cellot8, Frédéric Barabé2,3,4, 1,6 Brian T Wilhelm Author contributions: BTW and TM designed the study, analyzed data and drafted the manuscript. TM and KL performed ChIP-seq and ATAC-seq, analysed the data and generated figures. MC performed Methyl-seq experiments, analysed data, generated figures and drafted the manuscript. SS-T-H assisted with the ATAC-seq analysis and generation of figures. KL, ER, EB, and AB helped with molecular biology work, cloning and cell culture. EB, AB and FB generated the model on mice from CD34+ cells. SM provided expression and clinical data for patient samples and JH and SC collected, characterized, and banked the local patient samples used in this study. Affiliations: 1Laboratory for High Throughput Biology, Institute for Research in Immunology and Cancer, Montréal, QC, Canada 2Centre de recherche en infectiologie du CHUL, Centre de recherche du CHU de Québec – Université Laval, Québec City, QC, Canada, 3CHU de Québec – Université Laval – Hôpital Enfant-Jésus; Québec City, QC, Canada; 4Department of Medicine, Université Laval, Quebec City, QC, Canada 5Division of Hematology-Oncology and Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC, Canada, 6Department of Medicine, Université de Montréal, Montréal, QC, Canada, 7Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA 8Department of pediatrics, division of Hematology, Ste-Justine Hospital, Montréal, QC, Canada Running head: Early epigenetic changes in KM3-AML *Correspondence to: Brian T Wilhelm Institute for Research in Immunology and Cancer Université de Montréal P.O.
    [Show full text]