Progressive Orogenic Deformation and Metamorphism Along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps

Total Page:16

File Type:pdf, Size:1020Kb

Progressive Orogenic Deformation and Metamorphism Along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps Progressive orogenic deformation and metamorphism along the Combin Fault and Dent Blanche Basal Thrust in the Swiss-Italian Western Alps Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von FREDERIK KIRST aus Bonn Bonn 2014 Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn. 1. Gutachter: PD Dr. Thorsten Nagel 2. Gutachter: Prof. Dr. Thorsten Geisler-Wierwille Tag der Promotion: 06.02.2015 Erscheinungsjahr: 2015 „I will not live under a shadow of fear, never be crippled by chaos and doubt, fall prey to your madness. I am not shattered, out of the ashes I rise knowing that nothing is stronger than faith, finding hope in our hopeless lives.“ - John Petrucci - Abstract In the Western Alps of Switzerland and Italy, a stack of oceanic and continental units assembled during Late Cretaceous – Paleogene Alpine subduction, exhumation, and accretion. In the study area in the southern Valais and northern Aosta regions, oceanic units from the Piemont-Ligurian (South- Penninic) domain, the Combin zone and Zermatt-Saas zone, and continental units from the Adriatic continental margin, the Dent Blanche nappe, represent the structurally highest units of this nappe pile. These are separated from each other by two major Alpine tectonic contacts, the Combin Fault and the Dent Blanche Basal Thrust (DBBT). Structural and petrological analyses of shear zones along the two contacts were performed to deduce the structural evolution of the tectonic units and the sequence of deformation in the tectonic context of the Western Alps. At Lago di Cignana in the western Valtournenche of Italy, (U)HP rocks of the upper Zermatt-Saas zone are exposed and overlain by greenschist-facies rocks of the Combin zone and the lower Dent Blanche nappe. Structural analyses revealed a progressive structural evolution from (U)HP to greenschist-facies conditions related to Paleogene syn- to post-exhumational deformation. Early exhumation of the Zermatt-Saas zone after the peak of (U)HP metamorphism at ca. 43 Ma occurred during normal-sense top-E shearing under eclogite- to upper greenschist-facies conditions. Exhumation to mid-crustal levels and juxtaposition with the overlying Combin zone occurred along greenschist-facies top-SE shear zones. Strain was mainly localized along the uppermost Zermatt-Saas zone and top-SE structures along the Combin Fault have been partly obliterated by subsequent deformation. Top-SE shearing was followed by a phase of pure shear deformation affecting units in the footwall and hanging wall of the Combin Fault. This phase was followed by top-NW shearing associated with renewed thrusting along the DBBT which continued until low-grade greenschist-facies conditions. A phase of dominant pure shear deformation after juxtaposition of the Combin and Zermatt-Saas zones may have led to the development of conjugate top-SE and top-NW shear zones on a regional scale within the Combin zone. This offers an explanation for contradicting views regarding the nature of the Combin Fault and the Combin zone, i.e. whether they represent thrust-related or normal-sense shear zones. Whereas deformation under (U)HP conditions can be well studied within rocks of the Zermatt-Saas zone, the overlying Combin zone and lower Dent Blanche nappe show a strong greenschist-facies overprint which largely obliterated early HP-related deformation and metamorphism. The Becca d’Aver continental sliver (BACS) in the western Valtournenche of Italy represents a continental fragment from the former Piemont-Ligurian/Adriatic ocean-continent transition and is structurally located at the Combin/Dent Blanche boundary. Prograde blueschist-facies assemblages are partly preserved within metasediments of the BACS and yield peak conditions around 1.7 GPa and 500° C. Petrological, microstructural, and thermodynamic investigations suggest that prograde metamorphism was linked to progressive breakdown of lawsonite, associated water release, and fluid-mediated element transfer and mineral growth. Kinematic indicators suggest top-NW shearing during prograde metamorphism and SE-directed subduction. Deformation structures within the BACS and the underlying Combin zone suggest a common structural evolution and complex kinematics on the retrograde path related to greenschist-facies top-(W)NW and top-(E)SE shearing. The last ductile deformation was related to top-NW shearing which evolved into brittle NW-SE extension. Most of the deformation observed in the study area occurred under greenschist-facies conditions and variably affected the northwestern and southeastern realms. The overall sequence of deformation and structural evolution of the tectonic units has been deduced from analyses of shear zones along the Combin Fault and DBBT and partly within the Combin zone. The main stage of nappe stacking and ductile top-(N)W shearing between ca. 48 and 44 Ma (D1) was related to exhumation of the Dent Blanche nappe and Combin zone, formation of greenschist-facies mylonites along the DBBT, and a pervasive greenschist-facies overprint. This phase was followed by transpressional to orogen-parallel top-(S)W shearing between ca. 43 and 40 Ma (D2). Top-(S)W shearing especially affected the northwestern Combin Fault and occurred during ongoing exhumation of the Combin zone. The DBBT was probably characterized by continuing top-W shearing during early stages of this phase. Normal- sense top-SE shearing between ca. 39 and 37 Ma (D3) affected the northwestern Combin zone but only very locally the DBBT. Top-SE shear senses are subordinate in the southeastern realm and can locally be observed along the Combin Fault and at higher structural levels within the Combin zone. Top-SE shearing is held responsible for juxtaposition of the Combin zone and underlying (U)HP rocks of the Zermatt-Saas zone at crustal levels. It was followed by renewed top-NW shearing and folding from ca. 35 Ma onwards (D4) as a result of reactivation of the DBBT as out-of-sequence thrust. This phase was followed by brittle NW-SE extension after ca. 30 Ma (D5) due to updoming of the Vanzone antiform southeast of the study area. This study suggests that progressive orogenic deformation and metamorphism are recorded within shear zones along the Combin Fault and DBBT. However, early stages of the Alpine orogenic cycle have been largely obliterated by subsequent greenschist-facies deformation and retrogression. The proposed structural evolution suggests that the Combin zone and Dent Blanche nappe experienced a common retrograde evolution and penetrative top-(N)W shearing after an early blueschist-facies imprint and subduction-related top-NW shearing. Subsequent exhumation of the Zermatt-Saas zone from (U)HP depths occurred during normal-sense top-E shearing. Juxtaposition with the overlying Combin zone at crustal levels occurred along greenschist-facies top-SE shear zones. The relative chronology between greenschist-facies top-NW and top-SE shearing is often difficult to establish. Structural observations suggest that top-NW and top-SE shear zones may have partly overlapped in space and time due to a large pure shear component during greenschist-facies deformation, especially around 36 Ma during the transition from normal-sense shearing to renewed thrusting. A late phase of top-NW shearing due to out-of-sequence reactivation of the DBBT affected units in the study area before the onset of brittle deformation. Contents - CHAPTER 1 - Introduction ……………………………………………………………………… 1 1.1 Progressive deformation and metamorphism in Alpine-type orogens …… 1 1.2 The study area in the Swiss-Italian Western Alps ………………………… 3 1.3 Research question, methods, and organization of the thesis ……………… 7 - CHAPTER 2 - Structural evolution of the Penninic units at Lago di Cignana (Western Alps, Italy): constraining progressive orogenic deformation from (ultra)high-pressure to greenschist-facies conditions ………………………………………………… 11 2.1 Abstract ……………………………………..……………………………. 11 2.2 Introduction ………………………….…………………………………… 12 2.3 Geological setting ………………………………………………………… 13 2.4 Field relations …………………………………………………………….. 16 2.5 Deformation structures ……………………………………………………. 17 2.5.1 Zermatt-Saas zone ………………………………………………… 18 2.5.2 Combin zone ………………………………………………………. 23 2.5.3 Dent Blanche nappe ………………………………………………. 25 2.6 Discussion ………………………………………………………………… 27 2.6.1 Kinematics and geometry of deformation ………………………… 27 2.6.2 Previously published structural works ……………………………. 29 2.6.3 Structural and tectonic evolution …………………………………. 31 2.7 Conclusions ………………………………………………………………. 34 - CHAPTER 3 - Tectonometamorphic evolution of the Becca d’Aver continental sliver in the Western Alps (Valtournenche, Italy) …………………………………………… 36 3.1 Abstract ……………………………………………………………………. 36 3.2 Introduction ………………………………………………………………. 36 3.3 Geological setting …………………………………………………………. 37 3.3.1 Regional geology …………………………………………………. 37 3.3.2 Field relations ……………………………………………………... 40 3.4 Sample description ………………………………………………………… 42 3.4.1 Petrology and mineralogy …………………………………………. 42 3.4.2 Inclusions patterns …………………………………………………. 45 3.4.3 Microstructures and kinematics …………………………………… 46 3.5 Thermodynamic modelling and PT conditions ……………………………. 49 3.6 Discussion …………………………………………………………………. 52 3.7 Conclusions ………………………………………………………………. .. 57 - CHAPTER 4 - Kinematics and geometry of shear zones along the Combin Fault and Dent Blanche
Recommended publications
  • Thermal Structure and Metamorphic Evolution of the Piemont-Ligurian Metasediments in the Northern Western Alps
    Swiss J Geosci (2013) 106:63–78 DOI 10.1007/s00015-013-0119-7 Thermal structure and metamorphic evolution of the Piemont-Ligurian metasediments in the northern Western Alps Franc¸ois Negro • Romain Bousquet • Flurin Vils • Clara-Marine Pellet • Jeanette Ha¨nggi-Schaub Received: 11 July 2012 / Accepted: 9 February 2013 / Published online: 8 May 2013 Ó Swiss Geological Society 2013 Abstract In the Western Alps, the Piemont-Ligurian juxtaposition along shear zones at a temperature of oceanic domain records blueschist to eclogite metamorphic *500 °C during the Middle Eocene. This juxtaposition conditions during the Alpine orogeny. This domain is probably occurred at shallow crustal levels (*15–20 km) classically divided into two ‘‘zones’’ (Combin and Zermatt- within a subduction channel. We finally propose that the Saas), with contrasting metamorphic evolution, and sepa- Piemont-Ligurian Domain should not be viewed as two rated tectonically by the Combin fault. This study presents distinct ‘‘zones’’, but rather as a stack of several tectonic new metamorphic and temperature (RSCM thermometry) slices. data obtained in Piemont-Ligurian metasediments and proposes a reevaluation of the P–T evolution of this Keywords RSCM thermometry Á Zermatt-Saas Á domain. In the upper unit (or ‘‘Combin zone’’) tempera- Combin Á Cignana Á HP and UHP metamorphism tures are in the range of 420–530 °C, with an increase of temperature from upper to lower structural levels. Petro- logical evidences show that these temperatures are related 1 Introduction to the retrograde path and to deformation at greenschist metamorphic conditions. This highlights heating during The northern part of the Western Alps, located between the exhumation of HP metamorphic rocks.
    [Show full text]
  • IFP 1707 Dent Blanche – Matterhorn – Monte Rosa
    Inventaire fédéral des paysages, sites et monuments naturels d'importance nationale IFP IFP 1707 Dent Blanche – Matterhorn – Monte Rosa Canton Communes Surface Valais Evolène, Zermatt 26 951 ha Le Gornergletscher et le Grenzgletscher IFP 1707 Dent Blanche – Matterhorn – Monte Rosa Stellisee Hameau de Zmutt Dent Blanche avec glacier de Ferpècle 1 IFP 1707 Dent Blanche – Matterhorn – Monte Rosa 1 Justification de l’importance nationale 1.1 Région de haute montagne au caractère naturel et sauvage, avec nombreux sommets de plus de 4000 m d’altitude 1.2 Mont Rose, massif alpin avec le plus haut sommet de Suisse 1.3 Mont Cervin, montagne emblématique à forme pyramidale 1.4 Plusieurs glaciers de grande étendue avec marges proglaciaires intactes, en particulier le Gornergletscher, l’un des plus grands systèmes glaciaires de Suisse 1.5 Marmites glaciaires, roches polies et stries glaciaires, structures représentatives des diverses formes glaciaires 1.6 Situation tectonique unique dans les Alpes suisses, superposant des unités tectoniques et des roches de provenances paléogéographiques très variées 1.7 Vastes forêts naturelles de mélèzes et d’aroles 1.8 Phénomènes glaciaires et stades morainiques remarquables et diversifiés 1.9 Zones riches en cours d’eau et lacs d’altitude 1.10 Grande richesse floristique et faunistique, comprenant de nombreuses espèces rares et endémiques 1.11 Zmutt, hameau avec des bâtiments traditionnels bien conservés 2 Description 2.1 Caractère du paysage Le site Dent Blanche-Matterhorn-Monte Rosa est une zone de haute montagne encadrée de massifs montagneux imposants dans la partie méridionale du Valais et à la frontière avec l’Italie.
    [Show full text]
  • Lithostratigraphy and U-Pb Zircon Dating in the Overturned Limb of the Siviez-Mischabel Nappe: a New Key for Middle Penninic Nappe Geometry
    1661-8726/08/020431-22 Swiss J. Geosci. 101 (2008) 431–452 DOI 10.1007/s00015-008-1261-5 Birkhäuser Verlag, Basel, 2008 Lithostratigraphy and U-Pb zircon dating in the overturned limb of the Siviez-Mischabel nappe: a new key for Middle Penninic nappe geometry FLORIAN GENIER1, JEAN-LUC EPARD 1, FRANÇOIS BUSSY 2 & TOMAS MAGNA2 Key words: alps, Middle Penninic, Siviez-Mischabel nappe, Permo-Carboniferous, Randa orthogneiss, zircon typology, U-Pb geochronology ABSTRACT Detailed field work and zircon analysis have improved the knowledge of the This coherent overturned sequence can be observed from the St-Niklaus area to lithostratigraphy at the base of the Siviez-Mischabel nappe in the Mattertal the Moosalp pass to the north. Detailed mapping revealed that the St-Niklaus (St-Niklaus-Törbel area). They confirm the existence of an overturned limb syncline is symmetrical and connects the overturned limb of the Siviez-Mischa- and clarify the structure of the St-Niklaus syncline. The following formations bel nappe to the normal series of the Upper Stalden zone. U-Pb zircon geo- can be observed: chronology on magmatic and detrital zircons allowed constraining ages of these formations. Detrital zircons display ages ranging from 2900 ± 50 to 520 ± 4 Ma • Polymetamorphic gneisses; composed of paragneisses, amphibolites and in the Törbel Formation, and from 514 ± 6 to 292 ± 9 Ma in the Moosalp Forma- micaschists (Bielen Unit, pre-Ordovician). tion. In addition, the Permian Randa orthogneiss is intrusive into the polymeta- • Fine-grained, greyish quartzite and graywacke with kerogen-rich hori- morphic gneisses and into the Permo-Carboniferous metasediments of the zons (Törbel Formation, presumed Carboniferous).
    [Show full text]
  • Zermatt, Switzerland)
    Institut für Geologie Media release / 6 June 2018 Water transport to the Earth’s interior: Clues from high-pressure Alpine rocks (Zermatt, Switzerland) Water in the Earth’s interior influences many geological processes. The evolution of our planet and the development of life is tightly linked to the deep water cycle. Rocks from Zermatt (Switzerland) document formation at the ocean floor, followed by subduction to 80 km depth prior their incorporation into the Alpine belt. The detailed investigation of these rocks by researchers from the University of Bern provides evidence how and how much water can be incorporated in minerals at these subduction zone conditions and how water might be transported to even greater depth. The results are published in the journal “Geology”. The shallow water cycle that links atmosphere and hydrosphere is crucial for life on Earth. However, there exists also a deep water cycle in which water is transported over millions of years through the Earth’s interior. Hydrothermal alteration of oceanic crust results in the formation of minerals that incorporate water into the crystal structure. Through plate tectonics and subduction of such oceanic crust, the hydrous minerals are transported to increasingly greater depths. As the rocks are heated up during burial, the hydrous minerals break down at 50-100 km depth and are replaced by anhydrous minerals resulting in the liberation of the stored water. Would it be possible that traces of water are still incorporated into these newly formed minerals? Would this provide a mechanism to transport water to even greater depth and how would this influence the very long term, hundred million years water cycle? To answer these questions, PhD student Elias Kempf and Prof.
    [Show full text]
  • 1 Response to Review #1 by D. J. J. Van Hinsbergen We Thank Douwe
    Response to Review #1 by D. J. J. van Hinsbergen We thank Douwe J.J. van Hinsbergen for his review, which highlights the active debate on this topic, especially for the motion of Iberia. Their reconstruction published in 2020 is an amazing compilation of geological and kinematical data for the entire Mediterranean realm. It is not our aim to propose such a reconstruction again. Our aim is to study the detailed kinematics of opening of the Piemont-Liguria Ocean and to quantify precisely the former extent of the PL Ocean and its rifted margins between Europe and Northern Adria. We however disagree with their model for the motion of Iberia and Sardinia as it implies more than 500 km of convergence between Iberia and Sardinia. Instead, we present here an alternative scenario and show that this scenario is in good agreement with records of rifting and subduction in the Alps and that it is thermo-mechanically viable. We do believe that our work provides new quantitative estimates and alternative view that are useful for the scientific debate to better understand the geodynamic evolution of this area. I find it difficult, however, to see why this paper would be better than previous attempts to restore the Mediterranean region for the following reasons. 1. The authors provide no reason in their introduction why they found it necessary to make a new reconstruction and how their reconstruction systematically differs from previous attempts, or why they expect fundamentally different conclusions for the evolution of the Alpine Tethys with their approach. Our model brings new quantitative estimates on the kinematic of opening of the PL Ocean, its former spatial extent including the width of the hyper-extended margins, which is new and crucial to understand the geological and geodynamic processes of subduction and exhumation in the Alps, as well as for rifting processes along magma-poor rifted margins.
    [Show full text]
  • Tours À Ski St-Luc - Bella Tola - Borterpass - Massstafel - Senntum – Cab
    Tours à ski St-Luc - Bella Tola - Borterpass - Massstafel - Senntum – Cab. de Tourtemagne (Chemin normal en hiver) Depuis St-Luc, prendre les remonte-pentes jusqu’à la Bella Tola à 3'000 m. De là suivre les pistes de ski et quitter ces dernières avant que celles-ci ne reconduisent en plaine par le Pas de Bœuf. De là, à peaux de phoque, traverser jusqu’au Borterpass 2'838 m (20 min). Redescendre ensuite par le Meidtälli jusqu’à environ 2'400 m puis traverser vers l’Augstolu jusqu’au premier marquage à 2'360 m (coord. 619'100/117'700). Depuis ce point, suivre les autres marquages jusqu’à Massstafel. Depuis Massstafel suivre la route forestière jusqu’à Haarnadelkurve à 2'041 m. Suivre encore 300 m la route puis tourner à droite dans la forêt et rejoindre Senntum. Suivre ensuite la route qui monte jusqu’au barrage, contourner le lac et le traverser pour rejoindre un peu plus loin le petit monte-charge. Suivre la moraine contre le sud puis monter à la cabane de Tourtemagne. Compter 4 heures depuis la Bella Tola. St-Luc - Gämsschwart - Gälushaupt - Massstafel - Senntum – Cabane de Tourtemagne (5-6h) Depuis l’hôtel Weisshorn ou la cabane Bella Tola monter par le lac de Cambevert au Gämsschwart à 2'794 m. Traverser en légère pente le col à l’est du Gälus Häupt. Depuis le col redescendre par l’Äugsttälli à Massstafel. Depuis Massstafel suivre la route forestière jusqu’à Haarnadelkurve à 2'041 m. Suivre encore 300 m la route puis tourner à droite dans la forêt et rejoindre Senntum.
    [Show full text]
  • Een Kleine Vallei Met Een Groots Verhaal
    Een kleine vallei met een groots verhaal. Valle d’Aosta is de kleinste regio van Italië. Ze is omringd door de hoogste toppen van Europa en bestaat uit het centrale dal van de Dora Baltea, van- waar 13 kleinere zijdalen lopen die worden doorkruist door gletsjers en stro- men. Sinds de oudheid is het een belangrijk kruispunt van de westelijke Alpen. Op dit moment is het verbonden met Frankrijk via de Mont Blanc-tunnel en de Kleine Sint-Bernhardpas en met Zwitserland via de Grote Sint-Bernhardpas en -tunnel. De vallei was al in de prehistorie bewoond en werd bezet door de Salassi, een Gallo-Keltische bevolkingsgroep die na een lange strijd werd verdreven door de Romeinen in de 1ste eeuw v.Chr. De Romeinen vestigden zich in de regio en stichtten de stad Augusta Praetoria in 25 v.Chr. De vallei kwam later in handen van de Bourgondiërs, de Longobarden en de Karolin- gers tot ze de eigendom werd van het vorstenhuis Savoye. In 1191 verleende Thomas I van Savoye de “Carta delle Franchigie”, die het politieke en admi- nistratieve zelfbestuur erkende en van kracht bleef tot 1770. De vallei kende een vorm van autonomie met eigen wetten en werd bestuurd door de Staten Generaal, en vanaf 1536 door het Conseil des Commis, een soort bestuursraad die uit 24 leden bestond. Napoleon trok tijdens zijn campagne in Italië door de regio in 1800 en bracht de idealen van de revolutie met zich mee. Dit wekte sympathie en haat, bewondering en angst op en vormde de aanleiding voor legendes en verhalen die vandaag de dag nog steeds in de vallei worden verteld.
    [Show full text]
  • Ivrea Mantle Wedge, Arc of the Western Alps, and Kinematic Evolution of the Alps–Apennines Orogenic System
    Swiss J Geosci DOI 10.1007/s00015-016-0237-0 Ivrea mantle wedge, arc of the Western Alps, and kinematic evolution of the Alps–Apennines orogenic system 1 1 1 2 Stefan M. Schmid • Eduard Kissling • Tobias Diehl • Douwe J. J. van Hinsbergen • Giancarlo Molli3 Received: 6 June 2016 / Accepted: 9 December 2016 Ó Swiss Geological Society 2017 Abstract The construction of five crustal-scale profiles related to the lateral indentation of the Ivrea mantle slice across the Western Alps and the Ivrea mantle wedge towards WNW by some 100–150 km. (4) The final stage of integrates up-to-date geological and geophysical informa- arc formation (25–0 Ma) is associated with orogeny in the tion and reveals important along strike changes in the Apennines leading to oroclinal bending in the southern- overall structure of the crust of the Western Alpine arc. most Western Alps in connection with the 50° counter- Tectonic analysis of the profiles, together with a review of clockwise rotation of the Corsica-Sardinia block and the the existing literature allows for proposing the following Ligurian Alps. Analysis of existing literature data on the multistage evolution of the arc of the Western Alps: (1) Alps–Apennines transition zone reveals that substantial exhumation of the mantle beneath the Ivrea Zone to shal- parts of the Northern Apennines formerly suffered Alpine- low crustal depths during Mesozoic is a prerequisite for the type shortening associated with an E-dipping Alpine sub- formation of a strong Ivrea mantle wedge whose strength duction zone and were backthrusted to the NE during exceeds that of surrounding mostly quartz-bearing units, Apenninic orogeny that commences in the Oligocene.
    [Show full text]
  • Kinematics and Extent of the Piemont-Liguria Basin
    https://doi.org/10.5194/se-2020-161 Preprint. Discussion started: 8 October 2020 c Author(s) 2020. CC BY 4.0 License. Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps Eline Le Breton1, Sascha Brune2,3, Kamil Ustaszewski4, Sabin Zahirovic5, Maria Seton5, R. Dietmar Müller5 5 1Department of Earth Sciences, Freie Universität Berlin, Germany 2Geodynamic Modelling Section, German Research Centre for Geosciences, GFZ Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Institute for Geological Sciences, Friedrich-Schiller-Universität Jena, Germany 10 5EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia Correspondence to: Eline Le Breton ([email protected]) Abstract. Assessing the size of a former ocean, of which only remnants are found in mountain belts, is challenging but crucial to understand subduction and exhumation processes. Here we present new constraints on the opening and width of the Piemont- Liguria (PL) Ocean, known as the Alpine Tethys together with the Valais Basin. We use a regional tectonic reconstruction of 15 the Western Mediterranean-Alpine area, implemented into a global plate motion model with lithospheric deformation, and 2D thermo-mechanical modelling of the rifting phase to test our kinematic reconstructions for geodynamic consistency. Our model fits well with independent datasets (i.e. ages of syn-rift sediments, rift-related fault activity and mafic rocks) and shows that the PL Basin opened in four stages: (1) Rifting of the proximal continental margin in Early Jurassic (200-180 Ma), (2) Hyper- extension of the distal margin in Early-Middle Jurassic (180-165 Ma), (3) Ocean-Continent Transition (OCT) formation with 20 mantle exhumation and MORB-type magmatism in Middle-Late Jurassic (165-154 Ma), (4) Break-up and “mature” oceanic spreading mostly in Late Jurassic (154-145 Ma).
    [Show full text]
  • Einige Wandervorschläge
    Einige Wandervorschläge Nordend Doufourspitze Liskamm Castor Pollux Breithorn Klein Matterhorn Matterhorn 4609 m 4633 m 4527 m 4228 m 4029 m 4164 m 3883 m 4478 m Rechte Talseite Europaweg Grächen–Zermatt 12 Std. 1 Höhenweg Grächen–SaasFee 6 ⁄2 Std. Grächen–Bordierhütte 5 Std. Plateau Rosa Gasenried–Bordierhütte 5 Std. 1 Monte-Rosa-Hütte Seetalhorn–Plattja–Gasenried–Grächen 4 ⁄4 Std. Stockhorn Hörnli-Hütte Grächen–Gasenried–Schallbetten–Mattsand 3 Std. 3352 m 3260 m Rimpfischhorn Theodulgletscher 1 Strahlhorn 4198 m Grächen–Egga–Bergji–Hohtschugge 1 ⁄4 Std. 4190 m Gandegghütte Trockener Steg Waldrandspaziergang 1 Std. Gornergrat 3030 m 3100 m Dom Täschhorn Ober-Rothorn Furgg (Station) 4490 m Linke Talseite 4545 m 3415 m Schwarzsee Allalin Unt. Äschhorn 1 4027 m Unter-Rothorn St. Niklaus–Jungen–Augstbordpass–Gruben 7 ⁄2 Std. Riffelberg 3618 m Kinhorn 3103 m Sunnegga 2288 m Riffelalp Jungen–Jungtal Wasulicka–Topali–Randa 12 Std. 3752 m Mettelhorn Lenzspitze 1 St. Niklaus–Schwidernen–Hüttenweg Topali 4 ⁄2 Std. 4294 m Täschhütte 3406 m 2701 m 1 Nadelhorn Zermatt St. Niklaus–Mattsand–Randa–Täsch–Zermatt 5 ⁄2 Std. 4327 m Hohberghorn 1600 m Leiterspitzen Jungen–Schalb–Moosalpe 4 Std. 4219 m Weisshorn Metro Alpin Stecknadelhorn Dürrenhorn Europaweghütte St. Niklaus–Sparren–Jungtal 4 Std. Ulrichshorn 4505 m 4241 m 4034 m 1 3929 m Täschalpe St. Niklaus–Jungen 2 ⁄2 Std. Balfrin 1 Saas Fee 3795 m Rundweg in Jungen 2 ⁄2 Std. Feegletscher Mischabelhütte Weisshornhütte Embd–Schalb 1 Std. Kinhütte 2932 m 2584 m Kalpetran–Embd 1 Std. Täsch Bishorn 1 Domhütte Bisgletscher Törbel–Embd 1 ⁄2 Std.
    [Show full text]
  • The African Mattherhorn : Yes Or No? : a Structural, Geodynamical and Paleogeographical Overview
    The African Mattherhorn : yes or no? : A structural, geodynamical and paleogeographical overview Autor(en): Marthaler, Michel Objekttyp: Article Zeitschrift: Bulletin für angewandte Geologie Band (Jahr): 13 (2008) Heft 2 PDF erstellt am: 25.09.2021 Persistenter Link: http://doi.org/10.5169/seals-226680 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Bull. angew. Geol. Vol. 13/2,2008 S. 11-16 The African Matterhorn: yes or no? – a structural, geodynamical and paleogeographical overview Michel Marthaler1 Summary of a presentation given at the VSP/ASP annual convention, Sion, Switzerland, June 2008. The geological landscape in the Zermatt than a klippe the Dent Blanche nappe), a Region shows that the pyramid of the small remnant of the Lower Austro-Alpine Matterhorn appears as a small continental raft unit, from Apulian or Adiatic) origin.
    [Show full text]
  • GENUSS-WANDERUNGEN UM ZERMATT UND MATTERHORN – OPTION BREITHORN, 4164 M Neu 2022: Programm Jetzt 8 Tage Mit Wanderalternative Zur Breithorntour
    Genuss-Touren / Wanderungen mit festem Stützpunkt / Europa / Schweiz / Wallis GENUSS-WANDERUNGEN UM ZERMATT UND MATTERHORN – OPTION BREITHORN, 4164 M Neu 2022: Programm jetzt 8 Tage mit Wanderalternative zur Breithorntour Beschreibung Wallis, Zermatt–Furi Höchster Wanderberg Europas: Oberrothorn, 3415 m Traumhafte Sicht vom Gornergrat und Fahrt mit der zweithöchsten Bergbahn in Europa Mit Matterhorn-Blick über den Europaweg Drei-Sterne-Hotel Silvana – das Summit Basecamp am Fuße des Matterhorns Option: Viertausenderbesteigung Breithorn, 4164 m (Teilnehmer: 4 – 6 Personen) Programm Zermatt ist immer eine Reise wert und das Matterhorn muss man einfach mal gesehen haben! Doch so einzigartig das Matterhorn ist, so beeindruckend ist die gigantische Viertausenderkulisse um das Bergsteigerdorf Zermatt. Dieser Ort ist nicht nur ein Mekka für Bergsteiger, sondern auch Anziehungspunkt für Touristen aus aller Welt. Entsprechend belebt geht es in dem autofreien Zermatt zu. Ganz bewusst haben wir das Drei-Sterne-Hotel Silvana im Weiler Furi gewählt. Wer Lust auf Trubel hat, kann Zermatt gut erreichen, alle anderen genießen die Ruhe am Hotel, wo mit einem schönem Wellnessbereich und einem Erlebnishallenbad für Abwechslung gesorgt ist. Weiterer Pluspunkt dieses Hauses ist das hervorragende Essen. Fünf bis sieben Stunden Gehzeit täglich sind geplant. Einige Wander- Highlights: Oberrothorn, 3415 m, einer der höchsten Wandergipfel Europas, sowie Gornergrat, 3090 m, beeindruckender Aussichtspunkt mit Blick auf die Monte-Rosa-Gruppe und viele weitere Viertausender. Im Lauf der Woche haben Sie zudem die Möglichkeit, selbst einen zu besteigen: Das Breithorn mit 4164 Metern. Erläuterungen: Gz 5 h Die Gehzeit ohne Pausen beträgt fünf Stunden. Hm ↑ 100 ↓ 200 Höhenmeter im Aufstieg bzw. im Abstieg. 1. Tag: Begrüßung um 16 Uhr am Bahnhof Zermatt beim Tourist Office durch Ihren Bergwanderführer Sie übergeben Ihr Gepäck für den Transport ins Hotel Silvana, 1900 m, gemeinsame Auahrt mit der Seilbahn zu dem kleinen Weiler Furi oberhalb von Zermatt.
    [Show full text]