NREL{fP-253-4278 • UC Category: 248 • DE91002143

Synthesis of and Xylenols from Benzene and

H.W. Prengle, Jr., F.A. Bricout, and S. Alam University of Houston Houston, Texas

NREL Technical Monitor: R. Gerald Nix

National Renewable Energy Laboratory (fonnerly the Solar Energy Research Institute) 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093

Prepared under Subcontract No. :XX-7-07028-1

April 1992 of the author[s]. This report describes subcontracted research. The report is unreviewed and expresses only the opinions It has been prepared for reproduction from the best available copy. L

I ' i'

__ [

r ! l

r

NOTICE

This report was prepared as an account of work sponsored by an agency of the government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark. manufacturer. or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation. or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

Price: Microfiche A01 Printed Copy A03

Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index (GRA and I); Scientific and Technical Abstract Reports (STAR); and publication NTIS-PR-360 available from NTIS at the above address.

L- - EXECUTIVE SUMMARY • (2) ne o'-jectin of tbe vor.t. is to compaxe tvo processes for manufactUiillg cresols :z:yJeDOJs: a) eonventional catalytieprocess� and h) -a photo-theiDUll ud -a. catalytic p ss � onler detenaine process ecoBOmics. i'OC8 in 1D the relative The prod aed primm:ily in11:111U:dia11::s 11CU are a:r chemical for :mmufac:tan: of antioxidants. . poi:ym.eiizatio:a inhibitors. resw. aDd other prodli.Cts. 500 ne DW'ket is approximately million pou.nds per yeu. nd nis report is the seco of tvo repor13, presenting results of a process

enl118.tiollman for ufacto.Iillg the products by a pho1D-thennal catalyticpmce :r.��..

At the 011tset. as expelimental data. ue DOtyet a91lila.'-le to pmride a defillitin

design 'basis. a series of asslUD.ptions "V'ere made iD. old.er to proceed vith the enl118.tioa. regud.s eapacity. uhittal)' base case plant size (fresh feed) of A!l aD. approximately 7.06 millioll :tgly (15.6 JDillion lbmly) chosell, Ya and tllen the

eCoDOmics scaled to '-real:.-enn size. CalclllatioD:S iDdicated the folloving comp818.tive B.lUD.hers:

BASH CASH: 1) 7.056 5.192 1!6 PlaD.t Size. fresh feed= 1!6 :tgly; pmdv.cts= :tgly 2) PlaJtt Capital Cost $2.111 H6 3) Plu.t OperatiDg Cost (POC) $3.361 1!6 4) PJ.au.t IBCome (PI) $7.267 H6 ( 5) PIIPOC 2.162 ' 6) Minim11DlQ•lu 168 :tW BRHAIC-HYJ!H CASH: 1) 1.652 1!6 1.215 PJaat Size,fresk fe ed= :tgly; pmdv.cts= E6 :tgly 2) Plant Capital Cost $ 0.8833 K6 3) $1. 701 1!6 PJ.au.tOpeia.tiDg andCost IBCome 40tW

The ahove capital costs ue for process eq llipme�t only. aDd do not iDdode

equipment to deJinrso lar energy to the top of the reactor

ne eruuation indicates that for the photo-catalytic process. tbe break-even 24� capacity is only aho11t of the base case. and aboat the same perceatage of the 11}. conventionalcatalytic process (Report Ass11JBiDg the total capital cost vowld double, v1lic1l is 11111ikely, vhen the solar eDergy equipment is included. I the overall condasio:a. iD fawr of the photo-catalytic process vo1lld DOt chaDge.

[ iii TABLE OF CONTENTS page Executive Summary ii

Introduction 1

1.00 Process Description and Design Basis 2 ligW"e 1. Process flov - Reaction Section 4 figure 2. Process f1ov- Separation Section :s

2.00 Chemical Reaction/Reactor Section 6 Table 1. Stream Masses. Compositions. Conditions 7 a: Enthalpies Table 2. Reactor Specifications andEstimated Cost 9

3.00 Equipment Sizing and Cost 10 Table 3. S &rTof Equipment Costs 10 WDJil Table Beat Exchanger S ary 11 4. umm Table :Sa-:Sc. Columns 1J Table 6. Pump Summary 16 Table 7. Storttge TMlkSummary 16 ([, I

4.00 Estimated Capital and Operating Costs 17 Table 8. Capital Cost Summary 17 Table 9. OperatingCost Summary 18

5.00 Profitability Analysis 19 Table 10. P1Mlt Incom.e from Products 19 11. Table Calculation of first-Year Break-Even Point 20

References Cited 21

APPENDIX Physical andThermodynamic Properties at

Reactant andProduct Prices bl Plant Utilities a: Costs ct Economic Indicators 41 Sym.bols a: Homenclature el

{9-J0-89) iv J \

_ INTRODUCTION -

I tvo T:hU report is the :second of report concerning the manufacture of cre:sol3 xylenol3 by 1) -a. conventional ca.1alytic proces:r Z} :ro.lar-themtal ud .. .. and -a ( p.lwto-ca.ta.lytic process. The tvo reports vhen complete vill rovide preliminary p a \a:ri:r for compari:ron of the relative process ecooomk:s. The tJm t pUipose of report is to presen the vorl:. accomplished on sizillg ud costing a solar photo-thennal ca1al'Ytic process to proclli.Ce the produts from

.I 'be:ueae m.etha.Dol. No process coafiguation, siziDg, and costi.Dg ) ud vee a'f'8i1a,Ie; tbexefoxe,. a series of US1Dilption:s made o e to cany out the vee in rd r uec ssuy cakula.tion:s ob1aiD. process d t:aili: econo s The method e to e and the mic . tvo vas for comparison of the proces:res to determine the •break-even• capacity for each proce:rs.

At the outset the reader s:bould. become fammar vith the structures of the

prod.w:t compounds, iD. order to visualize the :rynthe3i:r . In the p:boto-catalytic xeaetion, co ted large excess mcthu.nol, the benzene JUI:uc Yith a provides the ring structure the metJum.ol provides the ('by t 8Dd alkylation) and tke hydroxyl group (by ).

! The reactants: methanol benzene H3C-OH �1=32. 042 CsHs t M=78.113. 0

and { the prod11Cts:

[ cresols oO CeHt .C7HsO M=l22.17 M=l08.14

I or tho- meta - para- 2,6-xylenol

Cresol and xyJenol isom.en are "USed prima.rily as chemical intennedi.ates.

Piincipal a.pplica.tion:s include liSe for: anti- oxidants. pesticides polymeliza.tion .. iDJuldtors.. resw and. other ees. The con�mm.ption of .. misceJ.l.aDeou annual the products (2] presented report,. price hi:rtory; '¥'8.3 iD. the first as vell u the U.S. a.n.d t ric arc current reactant produc p es presented in Appendix B .

-1- t.oo PROCESS DESCRIPTION AND DESIGN BASIS

At the outset� as e:z:perimental data are not yet aT8i.lable to proTide a definitive design basis.. the folloYing assumptions yere madein order to l.- proeeed Yith an economic evaluationof the process.

;r-0 1. The overall reaction for the process is.. I L

C6H6 + 5 CHJOH --> 0.50 o-C1H80 + 0.50 m.. p-C7H80

0.50 3-50 3.00 + CsHtoO + H20 + H2 Ior this endothermic reaction the 6Hr0(2981:) = 595.. 100 kJ/kgmole benzene. 2. The Reaction Section of the plant Yill operate only during ·sun hours·= 2500 h/y; Yhile the Separation Section of the plant Yill operate 24 h/

4. Solar energy input� in an amount necessaryto supply the reaction L energy requirement� Yill be sufficient to proTide the necessary VIS-UV energy to activate the catalyst.

5- The plant is a process unit "rithin an existing chemic:at plant Yhere utilities andother services area'9"8itable_ The reader is referred to figure 1 (p4) Pro IloY - Reaction cess Section� and figure 2 (p6) Proeess floY - Separation Section. A moss balance at key points through the process, as ll....e as process conditions .. are shovn on the diagrams. Because the Reaction Section YOuld operate on a reduced number of hours/day, Yhereas the Separation Section YOuld operate 24 h/d� a ·solar scale factor .. Sf= 3.J6- has been included.. vhich means that on a yearly-average the Reaction Section vould operate 2i/J.J6 = 7.14 hid. The process nov for the Reaction Section (refer to 'figure 1) proceeds as folloYS. fresh as liquid (benzene and methanol) enters as strewn feed I L is pumped as stream �through heat exchanger El to recover heat from the cresot-xytenol bottoms stream (14} from the primary fractionator (PI}. The feed stream.. ], novs through exchanger E2 to pick up -2- ad

the fioyto the Separation Section is stream 17 _ The process fioy tor the Separation Section .. 'figure 2 (p5}.. proceeds 17 as toUo"VS. The accumulated material in At is pumped as stream 21. Yhere it is divided into streams .!D, 20 and Stream 18 fioYS through heat exchanger E5 to reco"'rer heat from the o"'rerhea

separate o-cresol as o"'rerhead stream and ..p-cresol and xytenol ! 21 m. as bottoms stream 29. Stream. 27 is cooled in E5 and enters the o-cresol storage tank as stream The OCI bottoms stream is pumped as stream { 28. ! JD. vhere it enters the cresol-xytenol separation column (CI). The �- primary tunc:tion of CI is to remove m ..p-cresols as overhead stream l!. xyteno1 Stream. is c:ooled in E7 and exits to and as bottoms stream. Ji- l!. the xytenol storage tank as stream. :g_ Stream 11 is cooled in E6 and r enters the m ..p-cresol storage tank as stream]l. The major pieces of equipment are:

1-reactor, 3-tractionators, 4-accum.ulators.. 11-heat exchangers.. 7-pum.ps.. and 5-storage tanks.

-3- 44 c (g) 1.00 l:ar r­

- 679,900 Q3 t

IlEAC ' 44 c (1) bar 1.00

35 c (1) 1.00 bar ,, iI

35 c 2.00 bar 1?1 \.

Solar Factor, s = 3.36 streams flow rates, f and kg/h I Comoonent 1 5 14,15 8 11 17 IL M.W. a) BENZENE 78.113 925.17 0.0000 0.0000 0.0000 o.oooo o.oooo b) MEniANOL 32.024 1897.5 0.0000 0.0000 0.0000 0.0000 o.oooo I c) o-CRESOL 108.14 640.41 640.41 190.59 I o.oooo o.oooo o.oooo L m-CRESOL 108.14 320.20 320.20 0.0000 95.293 d) o.oooo o.oooo e) p-CRESOL 108.14 0.0000 320.20 320.20 95.293 o.oooo o.oooo XYLENOLS 122.17 723.49 723.49 215.31 f) �fiXED o.oooo o.oooo o.oooo 18.02 747.04 3.2300 747.04 g) o.oooo o.oooo o.oooo HYDROGEN 2.016 0.0000 71.633 32.302 0.0000 h) o.oooo o.oooo 2822.7 2823.0 2004.3 123.326 747.04 596.49

Figure 1. PROCESS FLOW- REACTION SECTION (Note: Q-Valuesare kJ/h)

-4- ---, _____, ---, ,..-- ,....._...__,.,,

6 6 = Q = 1 .633 X 10 Q 1.341 x 10 ocx 8 10

207 c

168 c

. 40 98.5 c c

Q = 24,650 : 71,980 5 Q7 IL'I l;? I I J.;l'! • .. 41 I � 40 ====:> -- • I • I c

40 c

streams f1owrates, and kg/h Co!!!Eonent 17,26 27,28 29,30 31,32 34,35 �f.W. R 18.02 1.1118 1.1118 0.0000 g) WATE o.oooo o.oooo o-CRESOL 108.14 190.33 188.42 1.9033 1.9033 c) o.oooo m-CRESOL 108.14 95.300 0.0953 95.208 94.254 0.9521 d) e) p-CRESOL 108.14 95.300 0.1062 95.197 94.518 0.6768

f) MIXED XYLENOLS 122.17 215.32 215.32 0,4306 214.89 o.oooo

597.4 189.7 407,6 191,1 216.5

Figure 2. PROCESS FLOW· SEPARATION SECTION (Note: Q-Values are kJ/h)

-5- 2.oo CHEMICAL REACTION/REACTOR SECTION Reaction Section is the most important part of the plant as it j The 1 carries out the conversion of feedsto�k to S'fllthesized products. In this f part of the report the details of the Rea�tion Section are presented. l '-I The reader is referred to the nov diagram. :figure L vhere the stream. numbers, temperatures.. pressures, and heat ex�hanger Q-TBlues are shoYD. on the diagram. Table 1 presents the stream masses. compositions, �nditions, and enthalpies for key stre in the Reaction r ams \ Section. It "Fill be noted that the solar energy input can be �al�ulated L by, (

Qsolar = m.oH = m5H5 - m4H4 = -9.579 E6 - (- 10. 183 E6) 6 = 0.605 E6 kJ/h (endothermic) = 1 8 k.W vhi�h assumes that vithin this total •thermo

r\ Sizing and �sting calculations 'lret'e made for the shallov (h/D = L 1/4) Ouidize

-6- , - ---- ....___.._, � �-..,,

Table 1. Stream Masses� Compositions� Conditions & Enthalpies

Datum state: enthalpies and entropies = 0, for th e ch emical elements in th eir naturally occuring ph ys ical state at 298. 16 K. Liquid ph as e mixing enthalpies are as sumed small cf. formation enthalpies .

Components : benzene (a), methanol (b), a-cres ol (c), m -cres ol (d), p -cres ol (e), mixed xyle nols (f) , water (g), and hydrogen (h ).

Reac tion Section (S = 3.36) f

kg/h compos ition conditions enthalpies

Stream kgmols If!_ _ _ P kJ /kgmol J / x y T, k h

2 (L) 2822.1 a 0.1667 25 C = 298 K H = - 188,407 m H = - 13. 386E6 2 2 2 I 5.00 bars ..... 71.050 b 0.8333 I

( II 3 ( " ) ) 70.2 C = 343.2 K H = - 179 336 m H =-12.74E6 (L) 3 ' 3 3 3.00 bars

4 ( ) a 0. 1667 185.3 C = 458.3 K H = - 143,320 H - 10.183E6 (G) " 4 m 4 b 0.8333 1.70 bars 4

= H = - 101,082 m H = - 9.5796E6 5 (G) 2823.4 c 0.0625 400 C 673 K 5 5 5 94.769 0.0313 1. 50 bars d e 0.0313 f 0.0625 g 0.4375 h 0. 3750 Table 1. (continued)

kg/h composition conditions enthalpies Stream kgmols)'h X y T,P kJ/kgmol kJ/h

(L+G) ( II ) 0.1139 0.0018 80 C = 353 H = - 128,086 m H = - 12� 14E6 _§_ c K 6 d 0.0595 0.0005 1.00 bar 6 6 e 0.0633 0.0005 f 0.1216 0.009 g 0.5785 0.2767 h 0.0727 0. 7197

(G) 71.60 0.0909 44 C = 317 K H =- 21, 399 m H =- 0.7604E6 � g 8 . 8 8 35.532 h 0 0 9091 1.00 bar I co I (L) 746.81 1.0000 44 = 317 K H = - 281,281 m H =-11. 66E6. _!l g C 11 11 ll 41.455 1.00 bar

14 (L) 2004.9 0.3333 470 C = 743 K H = - 146,411 m H = - 2.6002E6 c 14 14 14 17.772 d 0. 1667 1.00 bar e 0.1667 f 0.3333

15 (L) 596.69 I ( II ) 35 C = 308 K H = - 182 691 m H = 3.247E6 15 ' 15 15 - 5.289 1.00 bar

17 (L) ( II ) ( II ) 35 C = 308 K H = -182,691 m H =- 09663E6 17 17 17 2.00 bars

1 bar = 14.504 psia 1 BTU = 1.055 kJ

------f --. -"' -� ...... --·! -- .,...-...:__ ,,., ...... ;!-_;;;; , r- , r --� ;·-1 - .., ' r·· .. Table 2. REACTOR SPECIFICAT IONS

Item Description 1) Type Fliuidized Bed w/top entry solar energy; w/cyclone separator on discharge 2) Catalyst 124 kg; 3 w% v o on Si0 support 2 5 2 2 60-80 micron particle size; 300 m surf. area r 3 3 catalyst bed = 0.431 g/cm = 26. 9 lbm/ft Bed dimensions 1.134 m dia 0.284 m ht. 3) x l 3 3 volume = 0.2863 m = 10.11 ft 2 2 c.s. area = 1.010 m = 10.87 ft r 4) Vessel dimens. 45" i.d. s to s; 2' dia top quartz window, x 12' catalyst bed support grid; conical bottom; two-stage cyclone separator

. Operating Conditions . entrance exit. 5) Flow rate 71.063 kgmols/h 94.763 2822.7 kg/h =

6) T,P 185 c, 1. 70 bar 400 c, 1.50 bar 3 3 7) Gas density 1. 774 kg/m 0.7989 kg/m

8) Space velocity 22.76 kg/h kg cat. 2 9) Mass velocity 2795 kg/h m 2 10) Min. fluidization 1982 kg/h m mass velocity

H) Q solar* 0.604 kJ/h = 168 kW

12) Material of construction: shell, catalyst grid support, hi-temp refractory cement lining, top quartz window; carbon steel (\�/liner) cyclone

13) Estimated Cost: $ 31,210

* Based on thermodynamic requirement

-9- 3.00 EQUIPMENT SIZING AND COST ) l Specifications and costs for the individual pieces of equipment are presented in Tables 4-7 incl. Costs 'Vere estimated using the functions and charts given by Guthrie (5] based on 1974

The costs by equipment catagory are swam.arized in Table 3 .. follo"VS. as

Table 3- SUMMARY OF EQUIPMENT COSTS

(fresh feed = 7.056 million kg/y = 15.56 million 1bm./y) f �- catagory number Cost($)

1) Reactor v/2 -stage Cyclone (1) 31,210

2) Beat exchangers (11) 126.. 435

3) Distillation columns (3) 118.. 230 ,,' 4) Accumulators (At .. 54 storage) (4) 61.. 110 h

];" 5) Pumps 'Vith spares (7) 18 ..100 :' r 6) Storage tanks (4) 191.. 100 L

' (5468245) \ I' - 7) Process Instruments Controls (1541.) 81.. 937 a: f 8) Computer (

9) Catalyst.. initial charge (1) 1.. 000

Total Equipment $739,200

L

- 10- � � -� \� ------"'1 ------,

Table 4 - HEAT EXCHANGER SUMMARY t.T Lm Duty Fluids U Estimated kJ/h TS/SS T. (C) T Area MC Cost 1n t OU

El Feed Heat Exchanger 0.645E6 Feed 25 70.2 46.7 K - 304 ss $ 7445 PF Btm 200 35 1020 cs 2 2 13.54 m = 145.7 ft

E2 Reactor Economizer 2.559E6 Feed 70.2 185.3 66.83 304 ss $ 12,342 Reac. Pro. 400 80 2860 cs

13.48 = 145

E3 PF Col, Condenser 0.6799E6 cw 32 49 41.93 304 ss $ 7611 PF Ovhd 83 83 2247 cs

7.22 = 77.7

I 1-' 1-' I E4 PF Col. Reboiler 1.421E6 Steam 242 242 71.00 304 ss $ i'451 PF Btm 171 171 2860 cs

7.00 = 75.3

ES OCX Heat Exchanger 0.02465E6 PF Btm 35 93 5.25 304 ss $ 3519 o-Cresol 98.5 40 1022 cs

4,59 = 49.43

E6 Xyl. Heat Exchanger 0.09132E6 PF Btm 35 197 5.00 304 ss $. 9549 Cresol 202 40 1022 cs

17.87 = 192.3 Table 4 - HEAT EXCHANGER SUMMARY (continued) llT Lm Duty Fluids u Estimated kJ/h TS/SS T. (C) T Area MC Cost ln t OU

E7 CX Heat Exchanger 0. 07198E6 PF Btrn 35 207 5.00 304 ss $ 7703 Xylenol 212 40 1022 cs

14.09 = 151.6

E8 OCX Col. Condenser 1.633E6 cw 32 49 57.58 304 ss $ 14,884 OCX Ovhd 98.5 98.5 1737 cs

16.33 = 175.7

E9 OCX Col. Reboiler i,647E6 Stearn 242 242 35.00 304 ss $ 25,262 OCX Btrn 207 207 1430 cs

32.91 = 354.1

I ...... h.l I ElO CX Colo Condenser 1.341E6 cw 32 49 162.4 304 ss $ 6262 ex Ovhd 203 203 1737 cs 4.75 = 51.15

Ell CX Col. Reboi1er 1. 342E6 Stearn 242 242 30.00 304 ss $ 24,407 ex Btrn 212 212 1430 cs 31.28 = 336��6

Total ($) O.l264E6

--w, pr-<;:·--·--· .,r.::-c:---.,...� (·-- --- "i r-- �-·-� - -,-1 , r'"'�...,.,.....-···<-1 r-·-"T-"� ! r- - "' F Table Sa. PF Distillation Column Feed stream �; overhead stream I; bottoms stream 12

Top of Bottom of Pa:;rameter column column

Z, comp. factor 1 1 Temperature c 83 171 Pressure atm 1 1 3 Liq. density kg/m 969.8. 936.124 3 Gas density kg/m 0.3596 3.0267 Gas av. mol. wt. 10.622 111.73 Liq. dyn/cm 19.66 25.04 Feed flow kg/h 2823 r Vapor fraction in feed o. 726 Reflux ratio 0.2108 Dist. flow kg/h 815.61 l Gas flow kg/h 987.56 1062 Liq. flow kg/h 171.95 3069 0 5 (L/G) (p / p ) • 0.0034 0.1643 L g I Tray spacing in. 18 18 K ft/s o.2ns 0.220S Vmax m/s 4.1 1.17 2 Gmax kg/hm 5311 12777 2 "Active" area m 0.17 0.08

Calc. column dia. 0.5 m = 1.64 ft

Condenser type partial Feed flow kg/h 2823 Feed temperature c 80 LK/HK water/o-cresol Recovery of LK in overhead % 99.5 Recovery of HK in overhead % 0.1 Actual stages 40 Operating reflux ratio 0.2108 Feed stage 23 top down Condenser duty kJ/h 6.799E5 Reboiler duty kJ/h 1.421E6 Overhead temperature c 83 Bottom temperature c 171 Distillate flow kg/h 815.61 Bottom flow kg/h 2008 Design pressure psig 200

Column dimensions [ d x h ( s to s ) ] 2' id 68.5' X MC CS/304 SS Estimated Cost $26' 640

-11- ( I

Table 5b. OCX Distillation Column

Feed stream 26; overhead stream 27; bottoms stream 29

Top of Bottom of Parameter column column L Z, comp. factor 0.9747 1 Temperature c 98.5 207 Pressure atm 1 3 1 Liq. density kg/m 965.488 917.56 3 Gas density kg/m 2.802 2.8848 Gas av. mol. wt. 105.061 115.124 Liq. surface tension dyn/cm 19.66 25.04 Feed flow kg/h 597.367 r Vapor fraction in feed o.oo Reflux ratio 12.68 Dist. flow kg/h 189.735 Gas flow kg/h 2073.2 2073.2 Liq. flow . kg/h 0 5 1883.4 2480.8 (L/G) (p / p ) • 0.0489 0.0671 L g t Tray spacing in. 18 18 t K ft/s 0.2573 .0.2510 Vmax m/s 2 1.38 1.35 Gmax kg/hm 13883 .14058 2 "Active" area m 0.15 0.15

Calc. column dia. 0.44 m = 1.44 ft i �-

Condenser type total Feed flow kg/h 597.4 Feed temperature c 168 LK/HK �-cresol/m-creso1 Recovery of LK in overhead % 99 Recovery-of HK in overhead % 0.1

Actual stages 82 Operating reflux ratio 12.684 Feed stage SO top down Condenser duty kJ/h 1.633E6 Reboiler duty k.T/h 1.647E6 · Overhead temperature c 99 Bottom temperature c 207 Distillate flow kg/h 189.7 Bottom flow kg/h 407.6 Design pressure psig 200

Column dimensions [ d x h ( s to s ) ] 2 t id 131.5 1 X MC CS/304 SS Estimated Cost $47, 890 l_

-14- L_ r l r \ Table Sc. CX Distillation Column l Feed stream 30; overhead stream 31; bottoms stream 33

Top of Bottom of t Parameter column column Z, camp. factor 0.9734 1 Temperature c 203 212 r Pressure atm 1 3 1 Liq. density kg/m 861.148 973.194 3 { Gas density kg/m 2.8099 3.0584 Gas av. mol. wt. 108.168 122.051 Liq. surface tension dyn/cm 23.88 25.26 Feed flow kg/h 407.627 l Vapor fraction in feed 0.00 Reflux ratio 14.467 Dist. flow kg/h 191.106 Gas flow kg/h 2974.9 2974.9 Liq. flow kg/h 0. 5 2783.8 31"91. 5 (L/G) (p /p ) L g 0.0535 0.0601 18 Tray spaci:rtg in. 18 K ft/s 0.2557 0.2534 Vmax m/s 1.34 L37 2 Gmax kg/hm 13555 15084 2 "Active" area m 0.22 0.20 Calc. column dia. 0.53 m=l.74 ft

Condenser type total Feed flow kg/h 407.6 Feed temperature c 207 LK/HK m-cresol/xylenol Recovery of LK in overhead %· 99 Recovery· of HK in overhead % 0.2

Actual stages 70 Operating reflux ratio 14.567 Feed stage 42 top dm·m Condenser duty kJ/h 1.341E6 Reboiler duty kJ/h 1.342E6 Overhead temperature c 203 Bottom temperature c 212 Distillate flow kg/h 191.1 Bottom flow kg/h 216.5 Design pressure psig 200

Column dimensions [ x h ( s to s ) ] 2' id 113.5' d X MC CS/304 SS Estimated Cost $43,700

-15- \r f Table 6. PUMP SUMMARY

(Centrifugal, stainless; costs for pump spare motor) + +

Inlet Capacity Pump stream (gpm) t.P(ps i) BHP Cost ($) r l Pl 1 16 500 5.62 5973

P2 9 3 135 0.29 1928 r l P3 16 3 135 0.24 1892

P4 from E8 2 135 0.86 2109

P5 29 9 135 0.16 1904

P6 from E10 13 135 1.25 2402

P7 33 1 135 0.08 1908

Total $18, 100

Table 7. STOARAGE TANK SUMUARY r (Based on approximate 10-day storage time, except 5 days for methanol) L.

Density Capacity Estimated rI Tank Su ls tance (kg/liter) (U. S • Gallons ) MC Cost(l988) L

T1 Benzene 0.879 67,000 cs $71, 900

T2 Methanol 0.792 75,000 cs 80, 500

T3 a-Cresol 1.048 12, 000 cs 12, 900

T4 m, p-Cresol 1.035 12, 000 cs 12, 900 T5 Xylenol 1.1695 12, 000 cs 12, 900

Total �191,100 ( 4.00 ESTIMATED CAPITAL AND OPERATING COSTS I The methods used to ealeulate the proeess eeonomies follov standard ehemieal engineering proeedures as presented by Guthrie (5 L Peters f and Timmerhaus (6 L and Perry·s Handbook (7]_ 1 Table a. Estimated Capital Cost (fresh feed = 7.056 million kg/y = 15.56 million lbm/y)

Item fa<:tor $/1000

A. Equipment (Table 3) 739.Z r B. Intereonne<:ting piping, flanges, fittings, 110.9 (1541. A) Yalves \ C. Assembly and Installation of Equipment purehasing,materials, labor and superrision (40� A) 295.7 1 foundations and struc:tures (30� A) ZZ1.8 running pipe, steam. traeing, insulation, painting (20� A) 147.8 eleetrieal (10� A) 73.9

(1589.3)

D. Design andEngineering {87. A+B+C) 1Z7.1

E. BASE SYSTEM COST (BSC) 1716.4

I_ Contraetors fee (81'. BSC) 137-3

G _ Contingeney (151'. BSC) Z57 -5

H. TOTAL IB'STALLED PLAJIT COST S 2.111 E6

It has been shovn by a number of authors [5,6,7) that plant eapital eost <:an be eorrelated by a 6-tenths-pover relationship. for this plant (I= 7.056 x106 kg/y� I<: {1989) = 1.931] the equation beeomes,

0 60 0.60 F - = ) Ic p c ($) = Co Ic (55.029 vhieh <:an be used as the <:spital eost sealing-equation for different size for for ff the estimated eost is plants. example, a plant o = 1 i E6 kg/y S 3.184 E6 _

The estimated plant operating eost is presented in Table 9. It is assum.e

-17- Table 9. Plant Operating Cost (2500 sun hours; 8400 operating h/y)

Item Sly

1) R.avMaterials (benzene. methanoL supplies. 1.648 E6 make-up catalyst) r L 0.5292 2) Operating labor a supervision ()-operators.. 1-technicial.. 1/2 foreman. per shift)

3 0.09125 ) Utilities (nat"l gas. steam.. cooling vater. elec- tric pover)

0.1478 'i} Maintenance a: Repair (7� of capital costly) 5) Plant 0'9'erhead (75� operating labor) 0.3969

6} Plant G/A (25% operating labor} 0.1323

7) Depreciation (15 T .. loan pa..,.ent) 0.1407 8} Inter�t on borrov capital (10�/y.. 15 y.. on 0.2111 declining balance)

9) Tues and Insurance (jit of capital costly) 0.0633 10) TOTAL OPER.ATIR'G COST S 3.361 E6

r 11) Unit COST of PRODUCTS SOLD (3.361/ll.ii)) S 0.2937 /Ibm s 0.6475 1-:tg L

The profitability analysis and break-e"9"en capacity nov can be calculated!

- 18-

'- 5.00 PROFITABILITY ANALYSIS

Bov it is necessary to determine vhether or not the base case plant size YDuld be a profitable YCnture_ first, the plant income from. sale of prodU<:ts can be calculated, as shovn in Table 10.

Table 1 0_ Plant Income from Products prodU<:t lbm/y $/Ibm $/y 1) hydrogen 0.3948 E6 0.0307 12120

2) o-Cresol 3-530 E6 0-580 2.0i7 E6

3) m,p-cresols 3.350 E6 0.820 2.895 E6

i) mixed lylenols 3.988 E6 0.580 2.313 E6

5) Totals 1Li43 E.6 7.267 E6

6) ATerage unit income (7 .267/1 Li'i3) $ 0.6351/lb S LiOO/k:g

Comparing the average $/Ibm. income vith the cost/Ibm. (Table 9) it is obvious that the base case is beyond break-even, and the capacity vill have to be redU<:ed to find the break-even point. The operating cost items in Table 9 be vritten in equation form and programed as a tu.nction of plantcan capacity; some items are directly proportional and some less than proportional to size (e_g_ capital cost), vhile others are constant_ Table 11 presents a print-out for determination of the tint-year break- even point, giving the folloving values:

1) fresh feed 1.652 kg /y (7.056 E6)(0.2341) = E6 [ 2) ProdU<:ts (5.192 E6)(0.2341) = 1.215 E6 kg/y r 3) Capital Cost $0.8833 E6 4) Op-Cost a: Income $ 1.701 E6/y The qlJalifier ·rirst-year• is used because the interest payment declines l each year as the principal is redU<:e

Finally, the vork described herein permits the folloving evaluative conclusions to be dravn for the process:

L-a plant prodU<:ing greater than 2.679 E6 lbm/y = 1.215 E6 kg/y of pro

2. -the configuration or the process indicates the equipment complexity, vhich directly streets the capital investment required.

3- -the major item of operating cost is rav materials - 49� or total_

4. -the report provides a basis for comparison vith the Conventional Catalytic Process described in the first report_ Because or lover rav

-19- Table Fir Year Break.-Even Capacity 11. Calculation of st- ======r NOt1ENCLATLIRE SYt·1BOLS & L C plant cost ($) FJ Fo fresh feed, base case fresh feed Ckg/y) Inc co e ($/y) r annua 1 i n m Rm raw material cost 0./;t) t Sf plant capacity scale factor, F/Fo Top plant operating cost ($/y) L

TABLE 1 - Base Case Size Fo< kg/y)

7056000

TABLE 2 -Profitability Analysis as f(plant capacity) Sf C($) Rm($) T p($) Inc(·!) Inc/Top J o

1 0.1842 765095 303628 1582891 1338875 0.8458 2 0 01984 799883 326984 1616818 1441865 0.8918 3 0.2126 833689 350340 1650484 1544855 0.9360 4 0.2268 866606 373696 1683912 1647846 0.9786 5 0.2341 883300 385771 1701108 1701092 1.0000 6 0.2551 930064 420408 1750134 1853827 1 .0592 7 0.2834 990758 467120 1815620 2059807 1 .1345 0 5 2444875 4119614 8 . 669 1501708 934240 1.6850 9 0.8503 1915315 1401361 3048169 6179422 2.0273 10 1.0000 2110983 1648000 3360649 7267000 2.1624 ======Out of Data END OF CALCULATION <9-26-89)

r\

cI material cost and higher income, the break-even size significantly '"'V8S lover for the Solar-Catalyti-c Process.

:>. -the capital cost estimate is for the chemical process equipment, an

ri - 2 0 - r l REFERENCES CITED

( ( 1) COADE-CHEMSTATIONS Inc., Engineering Software; 10375 Richmond Ave, Suite 1225; Houston.. Texas 77042: CHEMCAD r I I - Process Flowsheet Simulator. May 1939. [2] K.M.Guthrie, Process Plant Estimating Evaluation and Control. I Craftsman Boot. Company of America, Solana Beach, CA 92075, ( 1974). r (3] M.S. Peters and K.D.Timmerhaus, Plant Design and Economics for Chemical Engineers. third edition, McGraw-Hill Book. Company, NY ( 1930)_

(4) F.A. Holland, F.A. Watson, and J.K. Wilkinson, Section 25: Process Economics - Perry's Chemical Engineers· Handbook. sixth edition; McGraw-Hill Book. Company.. NY ( 1934). [ (51 Schnell Publishing Co ... Inc... Chemical Marketing Reporter. 19 r June 1939 issue.

l !

I

-21- APPENDIX A -PHYSICAL THERMODYNAHIC PROPERTIES & r i I l

r L AI -B enzene, c H 6 6 1) Molecular Weigh t, M 78.113 r L 3 2) T (K), (atm), (em /gmol), z 562.16, 48.34, 258.94, 0.274 c P c v c c r w 3) Acentric factor; moment = 0.209, � = 0.0 D I'--

4) T (K), T (K) 278.66, 353.3 tp b 3 5) At 293.16K, (g/cm ) 0.879 pl 6) At 298.16K Cp (l) f!H !J.G f o f o

a) 32.11 19.52 64.34 7.352 19.82 30.99 (cals /gmol, K) (kcals/ gmol)

t) 134.35 81.71 269.33 30,761 82,926 129,662 ' (kJ /kgmol, K) (kJ/kgmol) i l

Equations 3 = / 1) Liquid volume, v 12.26 (5.7 3T )' (cm gmol) 1 + r 0 27357 r 2) Liquid density, ln =-0.024098 1.344347 [1 + (1 -T/0.56216E3) • ], p1 + cr 3 (kgmol/m ) f 3) : ln P (torr) 16.1753- 2948.78/ (T -44.563) 2 ln P (atm) 10.0114 - 3291.87/T- 84994.9/T 2 4) Mole Cp0/R =-2.69988 4.83994E-2 T -2.06081E-5 T +

5) Mole Cp (l) = 32o3793 0.342T, (kJ/kgmol, K) + v 2 6) !J.H = RT !J.Z (d ln P/dT) 1 2389 7) Surface tension, cr = Oo07195 (1 -T ) . , (N/m) r � .. 8) , vs: log (cp) = 545.64 (1/T -1/265.34) vs iL

- a1- r l

r APPE NDIX A (�ontinued) \

A2- Methanol, CH 0H \ 3 1) Mplecular Weight, M 32.042 3 2) T (K), P (atrn), V (ern /grnol), Z 512.58, 79.9, 117.8, 0.222 \ c c c c r 3) Acent ic factor; dipole moment w = 0.5656, � = 1.70 D

f 4) T (K), T (K) 175.7, 337.8 tp b 3 5) At 293.16 K, p (g/crn ) 0.792 [ 1 6) At 298.16 K Cp(l) AH 0 AG 0 f f

a) 46.52 10.49 57.29 8.426 -48.08 -38.84 (cals/gmol, K) (kcal/grnol)

b) 194.7 43.9 239.8 35, 271 -201, 263 -162, 584 (kJ/kgrnol, K) (kJ/kgrnol)

Equations 3 1) Liquid olume, V = 5.4628 (_5.7 3T ), (ern /gmol) 1 v l + r 0• 17272 2) Liquid density, ln = 0. 18706 1.62055 [1 + (1 - T/O.Sl263E3) ], p1 + 3 ! (kgmo1/rn )

3) Vapor pressure: ln P (torr) = 18.5097 - 3593.39/(T - 35.225) 2 l ln P (atrn) = 11.9921 - 3679.33/T- 126059/T

0 2 4) Mole Cp /R = 1.85::>19 0.0124255 T - 3.49129E-6 .T +

5) Mole Cp (l) =-39.9665 0.787208 T, (kJ/kgrnol, K) + v 2 l 6) AH = RT AZ (d ln P/dT) 0 7676 7) Surface tern ion, 0.04327 (1 - T ) • (N/rn) . . a = r ' 8) Viscosity, log (cp) = 555.3 (1/T - 1/26').64) vs: vs

- a2 - APPENDIX A (continued) r L __

A3- o·- Cresol, H c·7 80 1) Molecular Weigpt, M 108.14 3 2) T (K), P (atm), (em /gmol), z 697.55, 49.4, 282.0, 0.249 c c v c c

3) Acentric factor; dipole moment w =0 .434, = 1.60 ll D

4) T (K), T (K) 304.0, 464.2 tp b 3 5) At 293.16 K, (g/cm ) 1.048 pl 6) At 298.16 K Cp(l) l::.Hv l::.H l::.G so f o f o

a) 55.29 31.15 85.47 10 • 80 ..;.·X) • 7 4 -8.86 (cals I gmol, K) (kcal/gmol)

b) 231.4 131J • 4 35 7 • 8 45,�9 -128,678 -37,088 fI (kJ/kgmol, K) (kJ/kgmol) L

Equations 3 I) Liquid olume; = 14.9288 (5.7 3T ), (em /gmol) v v1 + r r ! 0 .XJ99 '- 2) Liquid density, ln 0.58912 1.18685 [1 (1 - T/0.69755E 3) ]. p1 = + + 3 (kgmol/m )

3) Vapor press ure: ln P (torr) 16.2829 - 3552.74/(T- 95.975) 2 ln P (atm) 11.1411 - 4406.52/T - 351528/T 2 4) Mole Cp0/R 1.40132 0.0552621 T- 2.28792E-5 T = + 2 5) Mole Cp(l) 559.336- 1.86259 T 0.2258292E-2 T , (kJ/kgmol, K) = + Z 6) l::.Hv RT l::.Z (d ln P/dT) =

7) V:is cosity • vs: log vs (cp) 1785.6 (1/T - 1/370.75)

L

! ) L

- a3- ( I APPE NDIX A (continued) ( A4 - Water, HP 1 1) · Molecular Wei!tt t, M 18.02 3· 2) T (K), P (atm), V (em /gmol), Z 647.35, 218.29, 63.494, 0. 2)') c c c c

3) Acentric factor dipole moment U) = 0 348' 1.00 � • ll = D

4) 273.16, 373.15 3 5) At 277.16 K, p (g/cm) 1.00 1 6) At 298.16 Cp (1) V 6H 0 6G 0 so MI f f

a) 18.02 8.03 . 45.11 9.717 -57.8 -54.64 (cals /gmol, K) (kcal/gmol)

b) 75.4 33.6 188.8 40,675 -241,951 -228,723 (kJ/kgmol, K) (kJ/kgmol)

Eq uations 3 1) Liquid olume, V 2.552 (5.7 3T )' (em /grnol) v 1 = + r 0 23)72 2) Liquid dernity, ln p = 1.52903 1.33888 [1 (1- T/0.64729E 3) • ], 1 + + 3 (kgmol/m )

3) Vapor press ure: ln P (torr) 18.3036 � 3816.44/(t - 46.13) 2 [ ln P (atm) = 11.6572- 3761.58/T - 218339/T 2 4) Mole Cp0/R 2.37293 0.01Ell161 T- 7.40155E-6 -;r = +

5) Mole Cp(l) 32.4953 0.124601 T, (kJ/kgrnol, K) = + 2 6) v 6H = RT 6Z (d ln P/dT) 1 6866 7) Surface tension, 0.1386 (1 - T ) • , (N/m) a= r 8) Vis cosity, s: log s (cp) 656.25 (1/T- 1/238.16) v v =

- el.- APPENDIX A (continued) fL r L

,--- 1 1) Molecular Weight, M 108.14 L 3 2) T (K), P (atm), (em /gmol), z 705.8, 45.0, 310 0.248 c c vc c .o,

3) Acentric factor; dipole moment w = 0.464, l1 = 1.00 D

4) T (K ), T (K) 284.1, 475.4 tp b 3 5) At 293.16 K, p (g/cm ) 1.034 l 6) At 298.16 K Cp(l) b.Hv b.Ho b.G so f f o

a) 55.29 29.27 85.27 11.33 -31.63 -9.69 (caJS /gmol, K) (kcal/gmol)

w b) 231.4 122.5 356.9 47,427 -132,403 -40,562 I: (kJ/kgmol, K) (kJ/kgmol) L

Equatiorn 3 1) Liquid olume, v = 15.0581 (5.7 3T ), (em /gmol) v 1 + r

2) Vapor pressure: ln P (torr) = 18.3036- 3816.44/(T - 46.13) 2 ln P (atm) =7.66037 1479.07/T- 10.30280/T

0 2 3) Mole Cp /R = - 0.366755 0.0587816 T- 2.42517E-5 T + 2 4) Mole Cp(l) = 559.336 - 1.86259 T 0.2258292E-2 T , (kJ/kgmol, K) + (assumed s arne o - Cresol) as v 2 5) b.H = RT b.Z ( d ln P/dT)

6) Vis coo ity, log (cp) 1785.6 (1/T - 1/370.75) vs : VS

L.

L

,-­

' L

- a5 - r APPENDIX A (continued)

r \ A6 - - Cresol, c H o p 7 8 1) Molecular Wei� t, M 108.14 3 2) T (K) , P (atrn) , V (em /gmo1), Z 704.6, 50.8, 318.0, 0.246 I c c c c =LEO 3) Acentric factor; dipole moment w =0.515, 1J D

4) T (K) , T (K) 3:>8.7, 475.1 I tp b 3 5) At 293.16 K, p1 (g/cm ) 1.035

( 6) At 298.16 K Cp(l) �H o �G o f f

a) 55.29 29.75 83.09 11.34 -29.97 -7.38 (cals /gmol, K) (kcal/ grnol)

b) 231.4 124.5 347.8 47,469 -125,454 -30,893 (kJ/kgrnol, K) (kJ/kgmol)

Equations · 3 1) Liquid olume, V = 15.0 (5. 7 3T ), (cm / gmol) l v 1 �)1 + r · 2) Vapor pressure: ln P (torr) = 16.1989 - 3479.39/ (T- 111.3) 2 I ln P (atrn) = 8.9J052- 2416.26/T - 861641/T 2 3) Mole Cp0 /R = 0 .105993 0.0572001 T- 2.31614E-5 T + 2 4) Mole Cp(l) = 559.336- 1.86259 T. +0 .2258292E -2 T , (kJ/kgmol, K) (a:;sumed s arne o - Cresol) as 2 5) �Hv =RT �z ( d ln P/dT)

6) Vis ccs ity, log (cp) 1826.9 (1/T - 1/372.68) '-5 : vs

- a6- APPENDIX A (continued) [ L

ft ! L

f 1) Molecular Wei!ft t, M 122.17 L 3 2) T (K), P {atm), (em /gmol), z 722.9, 48.0, 310.0, 0.251 c c vc c r 3) Acentric factor; dipole moment w = 0.464, � = 1.80 D t

4) T (K) , T (K) 348.2, 491. 2 tp b 3 5) At 298.16 K, p (g/cm ) 1.1695 l o o 6) At 298.16 K Cp{l) Cp LlH 0 I::.G f f

a) 62.34 25.66 93.51 11.33 -37-.57 -9.69 ( calsI gmol, K) (kcal/gmol)

b) 261.0 107.4 391.4 47,427 -157,268 -40,562 � (kJ/kgmol, K) (kJ/kgmol) I. r L

Eq uations r l 3 1) Liquid olume, 15.0581 (5.7 3T )' (em /gmol) v v1 = + r 2) Vapor pressure: ln P (torr) =17.2878 - 4274.42/(T- 74.09) . . 2 ln P .(atm) = 9.53837 - 3239.93/T - 657234/T 2 3 3) Mole Cp0/R = 5.40946 8.73061E-2T- 7.24616E-5 T 2.49691E-8 T + +

4) Mole Cp (l) 145.723 0.386692 T, (kJ/kgmol, K) = + v 2 5) I::.H = RT I::.Z ( d ln P/dT)

6) Vis cosity, vs: log vs (cp) 1785.6 (1/T- 1/370.75) =

f l

- a7 - I

APPENDIX A (continued)

( AS -Hydrogen, H 2

1) Molecular �veigh t, M 2.016 3 2) T (K), P (atm), V (em /gmol), Z 33 . 27, 12.79, 65.001, 0.292 l c c c c 3) Acentric factor; dipole moment w = -0.22, 0.0 ]J = D

4) T (K), T (K) 14.06, 20 .40 ! tp b / 3 5) At 20 .46 K, p1 (g cm ) 0.070 9 o o v o o 6) At 298.1 6 K Cp S b.H b.H G f !:J. f

a) 6.89 31.21 0.216 0 0 (cals /gm:ol, K) (kcal/gmol)

b) 28 .85 130 .65 903.74 0 0 (kJ/kgmol, K) (kJ/kgmol)

Equations 3 1) Liquid volume, 0.955 (5.7 3T )' (em /gmol) v1 = + r 0 272 2) iquid dens ity, 1.60 1406 1.1026 [1 (1 -T/33 .25) • ] , L p1 = + + 3 (kgmo1/m )

3) Vapor pressure: ln P (torr) 14.7996 -232 .321/ (T -8.08) 2 ln P (atm) 2.0656 1 82 .9148/T - 2604.56/T + 2 4) Mole Cp0/R 3.44471 8.38932E -5 T 9.16277E -8 T = + + v 2 / 5) b.H = RT !:J.Z (d ln P dT) l.074 6) Surface tens ion, cr 0.5363E -2 (1 -T ) , (N/m) = r 7) Vis cos ity, vs : log vs (cp) = 13.82 (1/T -1 /5.39)

- a8 - Gas es (current Gulf Coast Erices): 6 Subs tance Mi $/10 Btu $/lb

Hy drogen (H ) 2.016 1.30 0.0792 2 (CH ) 16.042 1.30 0.0310 \_ 4 r ! L

r - b1 - l. (

APPENDIX C: PLANT UT ILITIES COST r & (Operating hours/y : Reaction Section = 2500 ; Separation Section = 8400)

[ Reaction Section f Utility Amount Unit Cost $/h $/y 1) C\11 2. 103E4 lbm/h $0. 10/1000 gal 0. 2519 6. 298E2 2.519E3 gal/h

2) Steam, 500 psia 1.784E3 lbm/h $2. 20/1000 lbm 3.925 9. 812E3

3) Electrical power,* a) pumps 1.587E4 kJ/h $0. 041/kWh 0. 1807 4. 519E2

b) lights , instru., 1.587E4 kJ/h $0. 041/k\llh 0. 1807 4. 519E2 camp.

(for 2500 h) $4. 538/h $11,345/y [ [ Separation Section

Utility Amount · Unit Cost $/h $/y

I) C\11 9.197E4 lbm/h $0. 10/1000 gal 1. 102 9. 257E3 1.102E4 gal/h

2) Steam, 500 psia 3. 751E3 lbm/h $2. 20/1000 lbm 8.252 6. 932E4

3) Electrical power, * a) pumps 6.953E3 kJ/h $0.041/k\llh 0. 07919 6. 652E2

b) lights , instru. , 6. 953E3 kJ/h $0. 041/kWh 0. 07919 6. 652E2 camp.

(for 8400 h) $9. 512/h 9 $79, 07/y

$0.09125E6/y

* plant generated - cl - ECONOMIC INDICATORS

--- 1988 INDEX CHEMICAL ENGINEERNG PLANT COST 360 (1957-59 = 100) Apr.'69 Mar.'69 Apr.'66 Prelim. Final Final 370 CE INDEX 354.2 354.2 340.1 391.0 390.7 369.4 360 Equipment 372.6 372.5 352.6 Heal exchangers & tanks 360.4 360.5 342.6 Annual Index Process machinely 350 • 427.5 = f � - Pipe, valves & fillings 463.6 463.5 � 1983 316.9 L !· Process instruments 351.9 353.0 336.9 = 1984 322.7 I Pumps compressors 479.4 476.4 443.3 340 & = � I' � equipment 284.4 285.8 266.2 1985 325.3 Electrical = I Structural misc. 375.2 372.5 373.0 1986 318.4 r suppoi1S& = 330 ' 267.0 267.7 L Construction labor 264..5 1987 323.8 h 325.9 325.9 318.3 = I I Buildings 1988 342.5 320 I & 343.5 M M Engineering supervision 341.3 341.4 r J F A J J A s 0 N 0 L . MARSHALL.& EQUIPMENT-COST INDEX SWIFT (1926 = 100) 890 1111 0 4th Q 1stQ 1989_ 1966 1966

' · ; 660 869.5 I M&S Index 884.7 835.3 Process ·· · . .· . 851.4 Industries, average ----'---'-. 902.7 8891 , 898.9 " 884.2 .. . 851.7 eemwrt��------�··1---­ 892.9 879.1 " 840.0 � ------��-­ 884.6•• -870.3 ' .;837.7 -��--�--��- :., 839.1' 824.6 790.4 Glass ----...,...-....,------....,-....,-· ,...-· �Wnt ______---':-�.-��- 7· �- . Annual index 850.5_,9

.,,.,;;:5ii,CURflENTfBUSINESSINDIC ATORS · · · · · ;;: · · 1 · . . � ·:' ;_ :�>:�- 1 ��----�x/;�:::��--��,� : :. .' : ..£ ; � - ��,� '�t ,_: ; • - . . , LATEST . · PREVIOUS AGO ,. ' :: .f;,.. ·. , , .•.<,.-it-: . '1i�- YEAR ,. . . Mai.'66=1 37.4 -.:; � ., :::����-��F:;,:; . -��;� .. ..-�·:"- � . _, i:: :::;��:�: ::: ::::;::�: , �::::::::; ::�: ·Mar.'88=66{i ._:-:,· . Mar. '88=87.5 ·; o·• ,May. '66=4493.2 :': ; �� :�1;,.;�: :l�r'oE��}!t §�. §�:, Apr. '66=103.3 '·;. ' 8, '88=17.1.5 . May HOI.Wly eami�� chemicai& l Mid (l9n - 100) Apr. '89=200.1 Mar.'89 =200.9 Feb. '89-200.4 Apr. '88 =195:4 -. a i'productsproducts (19n = 1oor.O""�'"""·Mar.� '89=159.2 '89=157.0 '89 =156.5 Mar. '88 =149.5''' Productilliiy indiixtche micals'&alroed Feb. •• Jan. OUTPUT INDE)((1977 OUTPUTVAL UE OPERATING RATE (%) CPI = 100) CPI ($Billions) CPI

170 740 100

160 720 95_ 150 700 ; I 140 I I ' 680 � i r b I L 130 I' ! I 660 i I I r 120 i I i 640 II .i i i J F M A M J J A S 0 N 0 J F M A M J J A S 0 N 0 J F M A M J J A S 0 N 0

•ro convert to 1967 = 100 base, muUipty by 1.675. Aevtsed as of Jan. 1987 - mult1ply values from Jan 1982 to Jan. 1987 by 0.9586 to convert to values start•ng with Jan. 1987; To conver1 to = base, multiply by o convert to = base, mulhply by =- A an explanatton and add1t1onal information call: r 1967 100 3.524; 1967 100 3.524 1. P Prcltminary; "' Rev•sed. FOf" (212) 512·6931 Of (212) 512-6793 §r i CHEMICAL ENGINEEniNG/JUNE 1989 - dl - SYMBOLS & NOMENCLATURE

.!P.P.ei case (chemical element symbols notin cluded) A heat transfer area [ plant capital cost, correlation con:Jta.D.t liq11id heat capacity, pelfect gas state heat capacity ! cresol-xylenol fractioDa.tor P, Po fresh feed, base case fresh feed

AGfO Gibbs free energy of follll8.tion

G mole nov rate.. llid liq mole nov rate .. L gas Gmu: :maximum gas nov rate

AHt0, AH'� enthalpy of fonna.tion.. enthalpy of n.poiization

Ic., Inc, PI cost iB.dex, income, p1ant income LK, HK light key.. heaY}'key components

Mi molecular veight MC material of construction ocx o-cresol xylenol ftactionator P, Pe pressure, critiA:al pressure PP pl'imar:y f:ractiona.tor POC, Top plant ope18.tiDg cost, 1Dtal operating cost

Q .. Qsolar heat transfer rate .. solar energy inpu.t Re ReJD.Olds number RHAC, Rm reac10r, rav material cost

so peifect gasstate entropy Sf .. SS.. TS scale factor.. shell-side.. tube-side Te , Tt:t fi, n-boiling poi:D.t, critical tempe18.tare.. triple point

ATI.H log-mean tempe18.ta:ce difference u ovel8ll heat transfer coeficient Y, Y(l) , Ve volume , 1iqllid volume, critical volume Ymu: mu:imum vapor velocity Xi, Yi liquid a.nd n.por mole fractions

Z, Ze compressibility fac1Dr, critical value

lover case

h indi.Yidu.al heat traD!Jfer coefficient vs liquid viscosity

-e l- Greek

Jl dipole moment f gu de:o:dty, liquid d.e:osity L

:sma.ce tell3ion (J [ a.centtic factor OJ r L

I! L

r l

r i l

,- 1

-e2- L SEAl Report No. NTIS Accession No. Recipient's Accession No. Document Control 1. 2. 3. Page [ SERI/TP-253-4278 DE91002143 Title and Subtitle Publication Date 4. 5. f Synthesis of Cresols and Xylenols from Benzene and Methanol April 1992 6.

Author(s) 8. Performing Organization Rept. [- 7. No. H.W. Prengle, Jr., F.A. Bricout, S. Alam

Performing Organization Name and Address Project/Task/Work Unit No. 9. 10. University of Houston -· 4800 Calhoun Houston, Texas 77004 Contract (C) or Grant (G) No. 11.

(C) XX -7-07028-1

(G)

Sponsoring Organization Name and Address Type of Report Period 12. 13. & �- Solar Energy Research Institute Covered 1617 Cole Boulevard Technical Report Golden, Colorado 80401-3393 . 14

15. Supplementary Notes SERI Technical Monitor: R. Gerald Nix, (303)231-1757

16. Abstract (Limit: 200 words) This is the second of two reports that compare the manufacture of cresols and xylenols using two processes--a conventional catalytic process and a solar photothermal catalytic process--to determine the relative process economics. This report presents results of a process evaluation for the photothermal catalytic process. (The first report, Synthesis of Cresols and Xylenols from and Methanol, evaluates the conventional catalytic process.) An arbitrary base case plant size (fresh fe ed) of about 7.06 million kg/y (15.6 million lbm/y) was chosen and then scaled to a breakeven size. The evaluation indicates that the breakeven capacity is only about 24% of the base case and about the same percentage of the conventional catalytic process evaluated in the ft rst report. Assuming the total capital cost would double, which is unlikely, when the solar equipment is included, the overall conclusion in favor of the photocatalytic process would not change.

Document Analysis 17. a. Descriptors i_ Photothermal catalytic; cresols; xylenols; benzene; methanol; synthesis

b. Identifiers/Open-Ended Terms

c. UC Categories 248

18. Availability Statement No. of Pages 19. National Technical Information Service 39 U.S. Department of Commerce

5285 Port Royal Road Price 20. Springfield, VA 22161 A03

Form No. 0069E (6-30-87)