Chapter 1 AXIOMS, ALGEBRAS, AND TOPOLOGY Brandon Bennett ∗ School of Computer Studies University of Leeds Leeds LS2 9JT, United Kingdom
[email protected] Ivo D¨untsch † Department of Computer Science Brock University St. Catharines, Ontario, Canada, L2S 3A1
[email protected] 1. Introduction This work explores the interconnections between a number of different perspectives on the formalisation of space. We begin with an informal discussion of the intuitions that motivate these formal representations. 1.1 Axioms vs Algebras Axiomatic theories provide a very general means for specifying the logical properties of formal concepts. From the axiomatic point of view, it is symbolic formulae and the logical relations between them — es- pecially the entailment relation — that form the primary subject of interest. The vocabulary of concepts of any theory can be interpreted in terms of a domain of entities, which exemplify properties, relations and functional mappings corresponding to the formal symbols of the theory. Moreover, by interpreting logical operations as functions of these seman- ∗This work was partially supported by the Engineering and Physical Sciences Research Coun- cil of the UK, under grant EP/D002834/1. †I. D¨untsch gratefully acknowledges support from the Natural Sciences and Engineering Re- search Council of Canada. 2 tic denotations, such an interpretation enables us to evaluate the truth of any logical formula built from these symbols. An interpretation is said to satisfy, or be a model of a theory, if all the axioms of the theory are true according to this evaluation. In general an axiomatic theory can have many different models ex- hibiting diverse structural properties.