Geometrisch-Morphometrische Analysen Von 3- Dimensionalen Computer-Tomogrammen Des Kopfskeletts Von Buntbarschen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Effects of Dietary Protein and Lipid Levels on Growth Performances of Two African Cichlids (Pseudotropheus Socolofi and Haplochr
www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 635-640 (2012) DOI: 10.4194/1303-2712-v12_3_11 Effects of Dietary Protein and Lipid Levels on Growth Performances of Two African Cichlids (Pseudotropheus socolofi and Haplochromis ahli) Fatime Erdogan1,*, Mete Erdogan1, Erkan Gümüş2 1 Muğla Sıtkı Koçman Üniversitesi, Ortaca Vocational School, Fisheries Programme, 48600, Muğla, Turkey. 2 Akdeniz University, Faculty of Fisheries, 07058, Antalya, Turkey. * Corresponding Author: Tel.:+90.252 2825619, Fax: +90.252 2822579; Received 21 October 2011 E-mail: [email protected] Accepted 24 June 2012 Abstract Effects of experimental diets with varying protein and lipid levels on weight gain (WG), specific growth rate (SGR), survival rate (SR), feed conversion rate (FCR), hepatosomatic and viscerosomatic indices (HSI and VSI) of two popular ornamental cichlid species, omnivorous (Pseudotropheus socolofi) and carnivorous (Haplochromis ahli) were studied for 56 days. Two crude proteins (38%CP and 56%CP) and two crude lipids (9%CL and 16%CL) rates were applied to four formulated diets: R1 (38%CP:16%CL), R2 (38%CP:9%CL), R3 (56%CP:16%CL) and R4 (56%CP:9%CL). The SR was 100% in H. ahli while that of P. socolofi ranged from 66.6% to 93.3% in the two groups, respectively. The highest WG and SGR were seen in the H. ahli and P. socolofi groups fed with R2 feed. The best FCR values were obtained in R2 groups of H. ahli (1.64) and R groups of P. socolofi (1.41). HSI values for H. ahli and P. -
Genome Sequences of Tropheus Moorii and Petrochromis Trewavasae, Two Eco‑Morphologically Divergent Cichlid Fshes Endemic to Lake Tanganyika C
www.nature.com/scientificreports OPEN Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco‑morphologically divergent cichlid fshes endemic to Lake Tanganyika C. Fischer1,2, S. Koblmüller1, C. Börger1, G. Michelitsch3, S. Trajanoski3, C. Schlötterer4, C. Guelly3, G. G. Thallinger2,5* & C. Sturmbauer1,5* With more than 1000 species, East African cichlid fshes represent the fastest and most species‑rich vertebrate radiation known, providing an ideal model to tackle molecular mechanisms underlying recurrent adaptive diversifcation. We add high‑quality genome reconstructions for two phylogenetic key species of a lineage that diverged about ~ 3–9 million years ago (mya), representing the earliest split of the so‑called modern haplochromines that seeded additional radiations such as those in Lake Malawi and Victoria. Along with the annotated genomes we analysed discriminating genomic features of the study species, each representing an extreme trophic morphology, one being an algae browser and the other an algae grazer. The genomes of Tropheus moorii (TM) and Petrochromis trewavasae (PT) comprise 911 and 918 Mbp with 40,300 and 39,600 predicted genes, respectively. Our DNA sequence data are based on 5 and 6 individuals of TM and PT, and the transcriptomic sequences of one individual per species and sex, respectively. Concerning variation, on average we observed 1 variant per 220 bp (interspecifc), and 1 variant per 2540 bp (PT vs PT)/1561 bp (TM vs TM) (intraspecifc). GO enrichment analysis of gene regions afected by variants revealed several candidates which may infuence phenotype modifcations related to facial and jaw morphology, such as genes belonging to the Hedgehog pathway (SHH, SMO, WNT9A) and the BMP and GLI families. -
Morphology, Molecules, and Monogenean Parasites: an Example of an Integrative Approach to Cichlid Biodiversity
RESEARCH ARTICLE Morphology, Molecules, and Monogenean Parasites: An Example of an Integrative Approach to Cichlid Biodiversity Maarten Van Steenberge1,2,3*, Antoine Pariselle4¤a, Tine Huyse1,2, Filip A. M. Volckaert2, Jos Snoeks1,2, Maarten P. M. Vanhove1,2,5¤b 1 Biology Department, Royal Museum for Central Africa, Tervuren, Belgium, 2 Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, University of Leuven, Leuven, Belgium, 3 Institute of Zoology, University of Graz, Graz, Austria, 4 Institut des Sciences de l'Évolution, IRD-CNRS-Université Montpellier, Montpellier, France, 5 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Anavyssos, Greece ¤a Current address: IRD, ISE-M, Yaoundé, Cameroon ¤b Current address: Capacities for Biodiversity and Sustainable Development, Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium * [email protected] OPEN ACCESS Citation: Van Steenberge M, Pariselle A, Huyse T, Abstract Volckaert FAM, Snoeks J, Vanhove MPM (2015) Morphology, Molecules, and Monogenean Parasites: The unparalleled biodiversity of Lake Tanganyika (Africa) has fascinated biologists for over An Example of an Integrative Approach to Cichlid a century; its unique cichlid communities are a preferred model for evolutionary research. Biodiversity. PLoS ONE 10(4): e0124474. doi:10.1371/journal.pone.0124474 Although species delineation is, in most cases, relatively straightforward, higher-order clas- sifications were shown not to agree with monophyletic groups. Here, traditional morphologi- Academic Editor: Robert Guralnick, University of Colorado, UNITED STATES cal methods meet their limitations. A typical example are the tropheine cichlids currently belonging to Simochromis and Pseudosimochromis. The affiliations of these widespread Received: August 19, 2014 and abundant cichlids are poorly understood. -
Hered 347 Master..Hered 347 .. Page702
Heredity 80 (1998) 702–714 Received 3 June 1997 Phylogeny of African cichlid fishes as revealed by molecular markers WERNER E. MAYER*, HERBERT TICHY & JAN KLEIN Max-Planck-Institut f¨ur Biologie, Abteilung Immungenetik, Corrensstr. 42, D-72076 T¨ubingen, Germany The species flocks of cichlid fish in the three great East African Lakes, Victoria, Malawi, and Tanganyika, have arisen in each lake by explosive adaptive radiation. Various questions concerning their phylogeny have not yet been answered. In particular, the identity of the ancestral founder species and the monophyletic origin of the haplochromine cichlids from the East African lakes have not been established conclusively. In the present study, we used the anonymous nuclear DNA marker DXTU1 as a step towards answering these questions. A 280 bp-fragment of the DXTU1 locus was amplified by the polymerase chain reaction from East African lacustrine species, the East African riverine cichlid species Haplochromis bloyeti, H. burtoni and H. sparsidens, and other African cichlids. Sequencing revealed several indels and substitutions that were used as cladistically informative markers to support a phylogenetic tree constructed by the neighbor-joining method. The topology, although not supported by high bootstrap values, corresponds well to the geographical distribution and previous classifica- tion of the cichlids. Markers could be defined that: (i) differentiate East African from West African cichlids; (ii) distinguish the riverine and Lake Victoria/Malawi haplochromines from Lake Tanganyika cichlids; and (iii) indicate the existence of a monophyletic Lake Victoria cichlid superflock which includes haplochromines from satellite lakes and East African rivers. In order to resolve further the relationship of East African riverine and lacustrine species, mtDNA cytochrome b and control region segments were sequenced. -
Exchange April 2018 Area of Concern—Lake Tanganyika Do You CARE
The CARES April 2018 Exchange Area of Concern—Lake Tanganyika Do You CARE Crossword Challenge Data Submission Deadline April 30 Welcome to The CARES Exchange. The primary intent of this publication is to make available a listing of CARES fish from the CARES membership to those that may be searching for CARES species. The Cichlid Room Companion is the most It is important to understand that all transac- comprehensive website for reliable cichlid tions are between the buyer and seller and information in the world. For all things cich- CARES in no way moderates any exchanges lid, including information, photos, and videos including shipping problems, refunds, or bad on most CARES Priority List species, visit blood between the two parties. This directo- CRC at www.cichlidae.com. ry merely provides an avenue to which CARES fish may be located. As with all sales, be certain that all the elements of the The CARES Family exchange are worked out before purchasing American Cichlid Association or shipping. Aquarium Club of Lancaster County Brooklyn Aquarium Society No hybrids will knowingly be listed. Capital Cichlid Association Chatham-Kent Aquarium Society There is no cost to place a for sale ad. Your Cichlid Club of York ad may be submitted by contacting the editor, Columbus Area Fish Enthusiasts Greg Steeves, at [email protected]. Danbury Area Aquarium Society Durham Region Aquarium Society If your organization is interested in partici- Federation of Texas Aquarium Societies pating in CARES, review the CARES Startup Grand Valley Aquarium Club tab on the website CARESforfish.org, then Greater Cincinnati Aquarium Society contact Klaus Steinhaus at Greater City Aquarium Society [email protected]. -
Developmental Mechanisms, Selective Pressures and Evolutionary Consequences
Accepted Manuscript Title: Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences Author: Martine E. Maan Kristina M. Sefc<ce:footnote id="fn1"><ce:note-para id="npar0005">Tel.: +43 0 316 380 5601</ce:note-para></ce:footnote> PII: S1084-9521(13)00069-4 DOI: http://dx.doi.org/doi:10.1016/j.semcdb.2013.05.003 Reference: YSCDB 1450 To appear in: Seminars in Cell & Developmental Biology Received date: 19-11-2012 Revised date: 15-4-2013 Accepted date: 1-5-2013 Please cite this article as: Maan ME, Sefc KM, Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences, Seminars in Cell and Developmental Biology (2013), http://dx.doi.org/10.1016/j.semcdb.2013.05.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences Martine E. Maan1 and Kristina M. Sefc2 1 University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, the Netherlands, +31 (0)50 3632196, [email protected] 2 Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria, +43 (0) 316 380-5601, [email protected] Abstract Cichlid fishes constitute one of the most species-rich families of vertebrates. -
Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa)
Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by M.K. Oliver, Ph.D. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by Michael K. Oliver, Ph.D. Peabody Museum of Natural History, Yale University Updated 24 June 2020 First posted June 1999 The cichlids of Lake Malawi constitute the largest vertebrate species flock and largest lacustrine fish fauna on earth. This list includes all cichlid species, and the few subspecies, that have been formally described and named. Many–several hundred–additional endemic cichlid species are known but still undescribed, and this fact must be considered in assessing the biodiversity of the lake. Recent estimates of the total size of the lake’s cichlid fauna, counting both described and known but undescribed species, range from 700–843 species (Turner et al., 2001; Snoeks, 2001; Konings, 2007) or even 1000 species (Konings 2016). Additional undescribed species are still frequently being discovered, particularly in previously unexplored isolated locations and in deep water. The entire Lake Malawi cichlid metaflock is composed of two, possibly separate, endemic assemblages, the “Hap” group and the Mbuna group. Neither has been convincingly shown to be monophyletic. Membership in one or the other, or nonendemic status, is indicated in the checklist below for each genus, as is the type species of each endemic genus. The classification and synonymies are primarily based on the Catalog of Fishes with a few deviations. All synonymized genera and species should now be listed under their senior synonym. Nearly all species are endemic to L. Malawi, in some cases extending also into the upper Shiré River including Lake Malombe and even into the middle Shiré. -
Depth Segregation and Diet Disparity Revealed by Stable Isotope Analyses
Hata et al. Zoological Letters (2015) 1:15 DOI 10.1186/s40851-015-0016-1 RESEARCH ARTICLE Open Access Depth segregation and diet disparity revealed by stable isotope analyses in sympatric herbivorous cichlids in Lake Tanganyika Hiroki Hata1*, Jyunya Shibata2,3, Koji Omori2, Masanori Kohda4 and Michio Hori5 Abstract Background: Lake Tanganyika in the African Great Rift Valley is known as a site of adaptive radiation in cichlid fishes. Diverse herbivorous fishes coexist on a rocky littoral of the lake. Herbivorous cichlids have acquired multiple feeding ecomorphs, including grazer, browser, scraper, and scooper, and are segregated by dietary niche. Within each ecomorph, however, multiple species apparently coexist sympatrically on a rocky slope. Previous observations of their behavior show that these cichlid species inhabit discrete depths separated by only a few meters. In this paper, using carbon (C) and nitrogen (N) stable isotope ratios as markers, we followed the nutritional uptake of cichlid fishes from periphyton in their feeding territories at various depths. Results: δ15N of fish muscles varied among cichlid ecomorphs; this was significantly lower in grazers than in browsers and scoopers, although δ15N levels in periphyton within territories did not differ among territorial species. This suggests that grazers depend more directly on primary production of periphyton, while others ingest animal matter from higher trophic levels. With respect to δ13C, only plankton eaters exhibited lower values, suggesting that these fishes depend on production of phytoplankton, while the others depend on production of periphyton. Irrespective of cichlid ecomorph, δ13C of periphyton correlated significantly with habitat depth, and decreased as habitat depth became deeper. -
Expression Variations in Ectodysplasin-A Gene (Eda) May Contribute To
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457685; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Expression variations in Ectodysplasin-A gene (eda) may contribute to 2 morphological divergence of scales in Haplochromine cichlids 3 4 Authors 5 Maximilian Wagner1,2* 6 Email: [email protected] 7 8 Sandra Bračun1* 9 Email: [email protected] 10 11 Anna Duenser1, 12 Email: [email protected] 13 14 Christian Sturmbauer1, 15 Email: [email protected] 16 17 Wolfgang Gessl1, 18 Email: [email protected] 19 20 Ehsan Pashay Ahi1,3, 21 Email: [email protected] 22 23 24 1. Institute of Biology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria. 25 26 2. Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, 27 Belgium. 28 29 3. Organismal and Evolutionary Biology Research Programme, University of Helsinki, 30 Viikinkaari 9, 00014, Helsinki, Finland. 31 32 33 Corresponding Authors: 34 35 Ehsan Pashay Ahi, 36 Email: [email protected] 37 38 Christian Sturmbauer, 39 Email: [email protected] 40 41 * The first two authors contributed equally to this study 42 43 44 45 46 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457685; this version posted August 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Testing the Potential of Environmental DNA Methods for Surveying Lake Tanganyika's Highly Diverse Fish Communities Christopher J
Testing the potential of environmental DNA methods for surveying Lake Tanganyika's highly diverse fish communities Christopher James Doble A thesis submitted for the degree of Doctor of Philosophy Department of Genetics, Evolution and Environment University College London April 2020 1 Declaration I, Christopher James Doble, confirm the work presented in this thesis is my own. Where information has been derived from other sources, I confirm this has been indicated in the thesis. Christopher James Doble Date: 27/04/2020 2 Statement of authorship I planned and undertook fieldwork to the Kigoma region of Lake Tanganyika, Tanzania in 2016 and 2017. This included obtaining research permits, collecting environmental DNA samples and undertaking fish community visual survey data used in Chapters three and four. For Chapter two, cichlid reference database sequences were sequenced by Walter Salzburger’s research group at the University of Basel. I extracted required regions from mitochondrial genome alignments during a visit to Walter’s research group. Other reference sequences were obtained by Sanger sequencing. I undertook the DNA extractions and PCR amplifications for all samples, with the clean-up and sequencing undertaken by the UCL Sequencing facility. I undertook the method development, DNA extractions, PCR amplifications and library preparations for each of the next generation sequencing runs in Chapters three and four at the NERC Biomolecular Analysis Facility Sheffield. Following training by Helen Hipperson at the NERC Biomolecular Analysis Facility in Sheffield, I undertook the bioinformatic analysis of sequence data in Chapters three and four. I also carried out all the data analysis within each chapter. Chapters two, three and parts of four have formed a manuscript recently published in Environmental DNA (Doble et al. -
Evolution of the Tribe Tropheini from Lake Tanganyika: Synchronized Explosive Speciation Producing Multiple Evolutionary Parallelism
Hydrobiologia 500: 51–64, 2003. K. Martens (ed.), Aquatic Biodiversity. 51 © 2003 Kluwer Academic Publishers. Printed in the Netherlands. Evolution of the tribe Tropheini from Lake Tanganyika: synchronized explosive speciation producing multiple evolutionary parallelism Christian Sturmbauer1, Ursula Hainz2,SanjaBaric3, Erik Verheyen4 & Walter Salzburger5 1Department of Zoology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria 2Children’s Cancer Research Institute, St. Anna Children’s Hospital, Kinderspitalgasse 6, Labor 2, 1090 Wien, Austria 3Research Center for Agriculture and Forestry Laimburg, I-39040 Auer/Ora, Italy 4Section Taxonomy and Biochemical Systematics, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium 5Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany Tel.: +43 316 380-5595. Fax: +43 316 380 9875. E-mail: [email protected] Received 20 March 2003; in revised form 11 April 2003; accepted 11 April 2003 Key words: mtDNA sequences, adaptive radiation, Lake Tanganyika cichlid fishes, Tropheini, trophic specialization Abstract One of the most surprising outcomes of recent molecular studies on cichlid fishes of the three Great East African Lakes Victoria, Malawi and Tanganyika, was the stunning rapidity of speciation and cladogenesis at early stages of adaptive radiation. Despite their rapid pace, speciation events were so far intuitively assumed to proceed in a bifurcating and tree-like fashion, even if they could not be resolved by gene phylogenies due to a lack of resolution. On the basis of phylogenetic analyses of the Tropheini, a lineage of endemic rock-dwelling cichlid fishes from Lake Tanganyika, we suggest a pathway of explosive speciation that accounts for a non-bifurcating manner of cladogenesis. -
Feeding Selectivity of an Algivore (Tropheus Brichardi) in Lake Tanganyika
Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Feeding Selectivity of an Algivore (Tropheus brichardi) in Lake Tanganyika Robin Richardson-Coy Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Richardson-Coy, Robin, "Feeding Selectivity of an Algivore (Tropheus brichardi) in Lake Tanganyika" (2017). Browse all Theses and Dissertations. 1710. https://corescholar.libraries.wright.edu/etd_all/1710 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. FEEDING SELECTIVITY OF AN ALGIVORE (Tropheus brichardi) IN LAKE TANGANYIKA A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By ROBIN RICHARDSON-COY B.S., Wright State University, 2013 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL January 5, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Robin Richardson-Coy ENTITLED Feeding Selectivity of an Algivore (Tropheus brichardi) in Lake Tanganyika BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Yvonne Vadeboncoeur, Ph.D. Thesis Director David L. Goldstein, Ph.D. Chair, Department of Biological Sciences Committee on Final Examination James Amon, Ph.D. Volker Bahn, Ph.D. Rebecca Teed, Ph.D. Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School ABSTRACT Richardson-Coy, Robin.