Eastern Tibetan Plateau)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sichuan Province
Directory of Important Bird Areas in China (Mainland): Key Sites for Conservation Editors SIMBA CHAN (Editor-in-chief) MIKE CROSBY , SAMSON SO, WANG DEZHI , FION CHEUNG and HUA FANGYUAN Principal compilers and data contributors Prof. Zhang Zhengwang (Beijing Normal University), Prof. Chang Jiachuan (Northeast Forestry University), the late Prof. Zhao Zhengjie (Forestry Institute of Jilin Province), Prof. Xing Lianlian (University of Nei Menggu), Prof. Ma Ming (Ecological and Geographical Institute, Chinese Academy of Sciences, Xinjiang), Prof. Lu Xin (Wuhan University), Prof. Liu Naifa (Lanzhou University), Prof. Yu Zhiwei (China West Normal University), Prof. Yang Lan (Kunming Institute for Zoology), Prof. Wang Qishan (Anhui University), Prof. Ding Changqing (Beijing Forestry University), Prof. Ding Ping (Zhejiang University), the late Prof. Gao Yuren (South China Institute for Endangered Animals), Prof. Zhou Fang (Guangxi University), Prof. Hu Hongxing (Wuhan University), Prof. Chen Shuihua (Zhejiang Natural History Museum), Tsering (Tibet University), Prof. Ma Zhijun (Fudan University), Prof. Guo Yumin (Capital Normal University), Dai Nianhua (Institute of Sciences, Jiangxi), Prof. Han Lianxian (Southwest Forestry University), Yang Xiaojun (Kunming Institute for Zoology), Prof. Wang Zijiang (Kunming Ornithological Association), Prof. Li Zhumei (Institute of Biology, Guizhou), Ma Chaohong (Management Office of Yellow River Wetland National Nature Reserve, Henan), Shen You (Chengdu Bird Watching Society), Wei Qian (Chengdu Bird Watching Society), Zhang Yu (Wild Bird Society of Jiangsu), Kang Hongli (Wild Bird Society of Shanghai). Information on Important Bird Areas in China was compiled with the support of the World Bank using consultant trust funds from the Government of Japan. Surveys of IBAs in western China were funded by Keidanren Nature Conservation Fund (Japan) and the Sekisui Chemical Co. -
On the Lathrobium Fauna of China III. New Species and Additional Records from Various Provinces (Coleoptera: Staphylinidae: Paederinae)
63 (1): 25 – 52 2013 © Senckenberg Gesellschaft für Naturforschung, 2013 On the Lathrobium fauna of China III. New species and additional records from various provinces (Coleoptera: Staphylinidae: Paederinae) With 121 figures and 1 map Volker Assing 1 1 Gabelsberger Straße 2, 30163 Hannover, Germany. – [email protected] Published on 2013-06-14 Summary Material of the paederine genus Lathrobium Gravenhorst, 1802 from the Chinese provinces Sichuan, Chongqing, Beijing, Zhejiang, Fujian, and Jiangxi is examined. Twenty-two species are identified, two of them described previously and nineteen undescribed. Sixteen species are described and illustrated: Lathrobium celere sp. n. (Sichuan: Gongga Shan); L. ventricosum sp. n. (Sichuan: Gongga Shan); L. bibaculatum sp. n. (Sichuan: Erlang Shan); L. bispinigerum sp. n. (Sichuan: Erlang Shan); L. bihastatum sp. n. (Sichuan: Daxiang Ling); L. aspinosum sp. n. (Sichuan: Erlang Shan); L. appendiculatum sp. n. (southern Sichuan); L. fortepunctatum sp. n. (Chongqing: Jinfo Shan); L. jinfoicum sp. n. (Chongqing: Jinfo Shan); L. imminutum sp. n. (Beijing: Dongling Shan); L. parvitergale sp. n. (Zhejiang: Tianmu Shan); L. barbiventre sp. n. (Fujian: Wuyi Shan); L. depravatum sp. n. (Jiangxi: Wuyi Shan: Huanggang Shan); L. cornigerum sp. n. (Jiangxi: Wuyi Shan: Huanggang Shan); L. wuyicum sp. n. (Jiangxi: Wuyi Shan: Huanggang Shan); L. pium sp. n. (Guizhou: Leigong Shan). Four undescribed species from Sichuan, Zhejiang, Jiangxi, and Guizhou remain unnamed, since they are represented exclusively by females. The phylogenetic affiliations of the examined species are discussed. The localities where the newly described species were collected are mapped. Including the newly described taxa, 111 described Lathrobium species are currently known from mainland China. -
II. Synopsis of Ochthebius LEACH from Mainland China, with Descriptions of 23 New Species
© Wiener Coleopterologenverein, Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at JAcil &. Jl (eds.): Water Beetles ofCliina Vol. Ill 313 -369 Wien, April 2003 HYDRAENIDAE: II. Synopsis of Ochthebius LEACH from Mainland China, with descriptions of 23 new species (Coleoptera) M.A. JÄCH Abstract The species of Ochtlwhius LtiACII (Coleoptera: Ilydracnidae) from Mainland China are revised taxonomically; a total of 41 species is recorded; 23 species are described as new to science: O. (Asiobates) Jlagel lifer, O. (Enicocenis) exiguus, O. (£".) nigraspenilus, O. (E.) obesus, O. (E.) rotwulcitus, O. (s.str.) amlreasi, O. (s.str.) andreasoides, O. (s.str.) argentatus, O. (s.str.) asiobatoides, O. (s.str.) asperatus, O. (s.str.) caligatus, O. (s.str.) castellamis, O. (s.str.) enicoceroides, O. (s.str.) fujianensis, O. (s.str.) gonggashanensis, O. (s.str.) guangdongensis, O. (s.str.) hainanensis, O. (s.str.) jilanzhui, O. (s.str.) sichnanensis, O. (s.str.) stastnyi, O. (s.str.) wangmiaoi, O. (s.str.) wuzhishanensis, and O. (s.str.) yaanensis. One new synonymy is proposed: Ochthebius (s.str.) opacipennis CHAMPION, 1920 (= O. exilis Pu, 1958). Ochthebius orientalis JANSSHNS, 1962 is considered as a possible junior synonym of O. flexus PL), 1958. Ochthebius salebrosus Pu is transferred from subgenus Enicocenis STRPHÜNS to Ochthebius s.str. The genus Ochthebius is recorded for the first time from Gansu and Fujian. Ochthebius klapperichi JÄCH is recorded for the first time from China (Yunnan) and Myanmar. Ochthebius unimaculatus Pu is recorded for the first time from Gansu. Ochthebius lobatus Pu is recorded for the first time from Jilin, Liaoning and Yunnan. Ochthebius maiinus (PAYKULI.) is recorded for the first time from Nei Mongol and Shandong. -
Origin Narratives: Reading and Reverence in Late-Ming China
Origin Narratives: Reading and Reverence in Late-Ming China Noga Ganany Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Noga Ganany All rights reserved ABSTRACT Origin Narratives: Reading and Reverence in Late Ming China Noga Ganany In this dissertation, I examine a genre of commercially-published, illustrated hagiographical books. Recounting the life stories of some of China’s most beloved cultural icons, from Confucius to Guanyin, I term these hagiographical books “origin narratives” (chushen zhuan 出身傳). Weaving a plethora of legends and ritual traditions into the new “vernacular” xiaoshuo format, origin narratives offered comprehensive portrayals of gods, sages, and immortals in narrative form, and were marketed to a general, lay readership. Their narratives were often accompanied by additional materials (or “paratexts”), such as worship manuals, advertisements for temples, and messages from the gods themselves, that reveal the intimate connection of these books to contemporaneous cultic reverence of their protagonists. The content and composition of origin narratives reflect the extensive range of possibilities of late-Ming xiaoshuo narrative writing, challenging our understanding of reading. I argue that origin narratives functioned as entertaining and informative encyclopedic sourcebooks that consolidated all knowledge about their protagonists, from their hagiographies to their ritual traditions. Origin narratives also alert us to the hagiographical substrate in late-imperial literature and religious practice, wherein widely-revered figures played multiple roles in the culture. The reverence of these cultural icons was constructed through the relationship between what I call the Three Ps: their personas (and life stories), the practices surrounding their lore, and the places associated with them (or “sacred geographies”). -
2Nd SEG Foothill Exploration Workshop
2nd SEG Foothill Exploration Workshop DATE: 12-14 April 2019 Venue: Wufutang Hall, Wangjiang Hotel, Chengdu, China Address: No.42 Xiashahepu Street (653M away from subway-Dong Da Road Station), Chengdu Recommended Hotel Wangjiang Hotel Address: No.42 Xiashahepu Street (653M away from subway-Dong Da Road Station), Chengdu Contact: Mr. Li Hao Tel: 86-28-8409 0199, 86-28-8409 0060 Note: Please kindly reserve your room in advance due to meeting the peak season, and note" SEG Workshop" while booking. Contact Information If you have any questions regarding with the Workshop, please contact SEG China office: Email: [email protected] Tel: 86 10 5820 5048 ext.805 MEETING SCHEDULE 会议日程 Friday, 12 April 2019 09:00-18:00......Onsite Registration 16:00-16:30......Session Chairs Meeting Saturday, 13 April 2019 07:30-17:00......Onsite Registration Welcome Remarks & Keynote Addresses Session Chairs: Xianhuai Zhu, Xiaobin Zhang (TBC) 08:00-08:05......Dr. Xianhuai Zhu hosts the workshop as technical co-chair to deliver the speech 08:05-08:10......Dr. Alfred Liaw on behalf of SEG delivers the opening speech 08:10-08:15......Mr. Shouli Q u as the General Chairs delivers the opening speech 08:15-08:20......VIP from Southwest Petroleum University delivers the speech 08:20-08:25......Mr. Bangliu Zhao as the Organizer and General Chairs to deliver the opening speech 08:25-08:50......Keynote 1(Remote): 3D Acquisition Realities and Processing Strategies in Mountainous Thrust Areas (Scott MacKay and Nancy House, Integrated Geophysical Interpretation, Inc.USA) 08:50-09:15......Keynote 2: Foothills seismic imaging challenges: Past, present and future (Samuel H. -
Alphabetische Liste Mit Literatur- Und Fundortangaben Nachträge & Korrekturen Zu „Die Caraben Chinas“ 2007 [2008] (Supplement & Corrections)
Alphabetische Liste mit Literatur- und Fundortangaben Nachträge & Korrekturen zu „Die Caraben Chinas“ 2007 [2008] (Supplement & Corrections) Taxa, die bereits in „Die Carabenfauna Chinas“ enthalten sind, werden hier nur mit den neuen Literatur- und Fundortangaben ergänzt und durch ein Asterix (*) gekennzeichnet Stand: 20.01.2015 Update:20.01.2015 achilleanus* Cavazzuti 2002 Xinjiang: Khalyktau MtR, Aksay riv., left (Apotomopterus; sp.) tributyry of Aghiaz riv. W of Kaptynsu riv. Cavazzuti, P./Rapuzzi, I. (2010), Lambillionea (42°30’40’’N/81°18’30’’E) CX2: 155; figs 11-12 Kabak, I. I. (2013), Caucasian Ent. Bull. 9(1): acorep* Lassalle & Prunier 1993 36-37 (Apotomopterus; sp.) Xinjiang: Aghiaz rov, Deuve, T. (2013), Cychrus, Calosoma, 42°55’27’’N/81°38’40’’E; 42°54’53’’N/ Carabus: 90 81°39’14’’E; Buryl riv. 42°48’06’’N/ Hunan: Parc de forestier de Shunhuang 81°41’20’’E; Kokterek riv. 42°51’32’’N/ Shan 81°39’20’’E adductus* Cavazzuti & Ratti 1998 akeliensis Deuve & Tian 2007 (Apotomopterus; C. cantonensis Hauser (Neoplesius; C. nanschanicus Semenow 1918, ssp.) 1898, ssp.) Li, J./Zhang, X. (2008), Coléopteriste 11(3): Deuve, T./Tian, M./Song, Zh. (2007), 213 Coléoptères 13(11): 134; 133fig. 11; 135 fig. Hunan: Binzhou 13 Sichuan: Jinchuan Xian, col entre Sawajiao adjunctus* Csiki 1927 et Akeli (n. nov. pro Apotomopterus cantonensis conjunctus Born 1922) aksuanus* Gottwald 1987 Li, J./Zhang, X. (2008), Coléopteriste 11(3): (Cratocechenus; sp.) 213 Deuve, T. (2013), Cychrus, Calosoma, Guangdong: Shaoguan Carabus: 179 Zhaosu, Hantengri Shan, 30 km SE Shaty aeneocupreus* Hauser 1932 (Apotomopterus; sp.) alexandrae* Semenow 1887 Deuve, T. -
Size Distribution Law of Earthquake-Triggered Landslides in Different Seismic Intensity Zones
Nonlin. Processes Geophys., 28, 167–179, 2021 https://doi.org/10.5194/npg-28-167-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Size distribution law of earthquake-triggered landslides in different seismic intensity zones Yidan Huang1,2,3 and Lingkan Yao1,2,3 1School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China 2MOE Key Laboratory of High-speed Railway Engineering, Chengdu 610031, China 3National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Chengdu 610031, China Correspondence: Lingkan Yao ([email protected]) Received: 10 September 2020 – Discussion started: 14 September 2020 Revised: 19 January 2021 – Accepted: 3 March 2021 – Published: 16 April 2021 Abstract. The Ms 8.0 Wenchuan earthquake in 2008 and 1 Introduction Ms 7.0 Lushan earthquake in 2013 produced thousands of landslides in the southern region of the Longmen Moun- tains in China. We conducted field investigations and ana- Earthquakes have triggered numerous landslides. The 1994 lyzed remote sensing data to determine the distribution law Mw 6.7 Northridge earthquake in the USA triggered more of earthquake-triggered landslides. The results show a strong than 11 000 landslides (Harp and Jibson, 1995, 1996). The negative power law relationship between the size and fre- 2008 Mw 7.9 Wenchuan earthquake in China triggered quency of landslides in VII, VIII, and IX seismic inten- 197 481 landslides (Xu et al., 2014). The 2014 Mw 7.0 Port- sity zones, a weak power law in the X seismic intensity au-Prince earthquake in Haiti triggered 30 828 landslides (Xu zone, and a lognormal distribution in the XI seismic inten- et al., 2014). -
Longmen Shan Fold-Thrust Belt and Its Relation to the Western Sichuan
Longmen Shan fold-thrust AUTHORS Dong Jia Department of Earth Sciences, belt and its relation to the Nanjing University, Nanjing 210093, People’s Republic of China; [email protected] western Sichuan Basin in Dong Jia is a professor in the Department of Earth Sciences of Nanjing University in China. central China: New insights He received his Ph.D. in structural geology from Nanjing University in 1988. His current from hydrocarbon exploration research projects are focused on structural geometries and timing of deformation in the sedimentary basins of China. Dong Jia, Guoqi Wei, Zhuxin Chen, Benliang Li, Qing Zeng, and Guang Yang Guoqi Wei Research Institute of Petro- leum Exploration and Development, Langfang Branch, PetroChina Company Limited, Lang- fang 065007, People’s Republic of China; ABSTRACT [email protected] The Longmen Shan fold-thrust belt is one of the key regions of de- Guoqi Wei is a chief geologist in the Langfang monstrable Mesozoic–Cenozoic tectonic evolution in China, and the Branch of the Research Institute of Petroleum Sichuan Basin was the first natural-gas-producing area in China. In Exploration and Development, PetroChina this article, the structural features of the Longmen Shan belt are Company Limited. He received his Ph.D. from Nanjing University in 2000. His current re- presented, using both seismic profiles and field data. The complex searches are focused on sedimentary basins in structures of the northeast-trending Longmen Shan fold-thrust belt western China. and its foreland in the western Sichuan Basin are formed by southeast-directed thrusting. Several eastward-verging, rootless Zhuxin Chen Department of Earth Sci- thrust sheets and imbricates of Cambrian–Triassic rocks have been ences, Nanjing University, Nanjing 210093, recognized in the northern Longmen Shan belt. -
China (Mainland)
Important Bird Areas in Asia – Mainland China ■ CHINA MAINLAND CHINA LAND AREA 9,574,000 km2 HUMAN POPULATION 1,276,300,000 (133 per km2) NUMBER OF IBAs 445 TOTAL AREA OF IBAs 1,134,546 km2 STATUS OF IBAs 247 protected; 64 partially protected; 134 unprotected The subtropical forests in Fanjing Shan Nature Reserve (IBA 241), Guizhou, support several threatened and restricted-range species, including both Elliot’s Pheasant Syrmaticus ellioti and Reeves’s Pheasant S. reevesii. (PHOTO: MIKE CROSBY/BIRDLIFE) KEY HABITATS AND BIRDS important breeding and passage areas for many waterbirds, including the threatened Relict Gull Larus relictus. • Much of north-east China was formerly forested (Biome AS02: • Most of the natural habitats on the plains of northern and Boreal forest – Taiga and Biome AS03: North-east Asian central China (between the steppes and the Yangtze basin) have temperate forest), but large areas were cleared by commercial long been modified because of thousands of years of human logging and for agriculture during the second half of the settlement. Many species were able to co-exist with man until twentieth century. However, logging is now banned there, and agricultural intensification linked to human population growth a few important forest areas remain with populations of in the late ninetieth and early twentieth centuries disrupted the threatened species including Scaly-sided Merganser Mergus old balance. Agrochemicals and firearms became widely used squamatus and Rufous-backed Bunting Emberiza jankowskii (a and greatly reduced the diversity and numbers of birds in bird of the transitional zone between forest and steppe which agricultural areas, for example the threatened Crested Ibis may now be confined to north-east China). -
On the Growth of National Geoparks in China: Distribution, Interpretation, and Regional Comparison
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 1-1-2011 On the growth of national geoparks in China: distribution, interpretation, and regional comparison Guifang Yang China University of Geosciences Zhenghong Chen China University of Geosciences Wuhan Mingzhong Tian China University of Geosciences Fadong Wu China University of Geosciences Robert A. L Wray University of Wollongong, [email protected] See next page for additional authors Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Yang, Guifang; Chen, Zhenghong; Tian, Mingzhong; Wu, Fadong; Wray, Robert A. L; and Ping, Yamin: On the growth of national geoparks in China: distribution, interpretation, and regional comparison 2011, 157-176. https://ro.uow.edu.au/scipapers/4086 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] On the growth of national geoparks in China: distribution, interpretation, and regional comparison Abstract Since the year 2000 China has created 139 National Geoparks; it started under the guidance of the former UNESCO's Division of Earth Science, and has therefore become one of the pioneers in this aspect. Many National Geoparks in China have been described over the past decade, but an understanding of the range of various landform features and their connection with geological and climatic constraints has not previously been published. Based on an increasing awareness of National Geoparks, the aim of this contribution is to provide a comprehensive overview of the National Geoparks of China by reviewing the geological heritage and their intrinsic linkages with geological and climatic controls. -
Late Cretaceous–Earliest Paleogene Deformation in The
PUBLICATIONS Tectonics RESEARCH ARTICLE Late Cretaceous–earliest Paleogene deformation 10.1002/2016TC004182 in the Longmen Shan fold-and-thrust Key Points: belt, eastern Tibetan Plateau margin: • Late Cretaceous-earliest Paleogene hinterland deformation Pre-Cenozoic thickened crust? • Contemporaneous shortening in the foreland side Yuntao Tian1,2,3, Barry P. Kohn1, David Phillips1, Shengbiao Hu4, Andrew J. W. Gleadow1, • Pre-Cenozoic thickened crust in the 5 eastern Tibetan Plateau margin and Andrew Carter 1School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia, 2Department of Earth Sciences, Supporting Information: University College London, London, UK, 3Department of Earth Sciences and Geological Engineering, Sun Yat-sen University, • Supporting Information S1 Guangzhou, China, 4State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy • Table S1 of Sciences, Beijing, China, 5Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK • Table S2 • Table S3 Abstract This study presents structural and 40Ar/39Ar geochronological data from the southern part of the Correspondence to: Y. Tian, Longmen Shan fold-and-thrust belt that forms the eastern margin of the Tibetan Plateau. Investigations [email protected] focused on hinterland ductile top-to-the-WNW shear deformation, which has been linked previously to late Cenozoic lower crustal flow. Consistent with previous studies, the sense of deformation is mapped as 40 39 Citation: top-to-the-WNW in the Longmen Shan hinterland. The timing of the deformation is constrained by Ar/ Ar Tian, Y., B. P. Kohn, D. Phillips, S. Hu, geochronological data of recrystallized minerals aligned along the shear foliation as Late Cretaceous–earliest A. -
Depth Variation of the Conrad Discontinuity in the Qaidam Basin, Northwestern China, and Its Crustal Dynamic Implications
Earth and Planetary Physics RESEARCH ARTICLE 5: 296–304, 2021 SOLID EARTH: SEISMOLOGY doi: 10.26464/epp2021030 Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications Biao Yang1, YanBin Wang1*, Li Zhao1, LiMing Yang2, and ChengNing Sha2 1Department of Geophysics, School of Earth and Space Sciences, Peking University, Beijing 100871, China; 2Earthquake Administration of Qinghai Province, Xining 810001, China Key Points: ● Broadband records from a dense seismic network were used to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities in the Qaidam Basin. ● The depth of the Conrad discontinuity under the eastern part of the basin is shallower than the western part, which can be attributed to different crustal shortening mechanisms. ● The depth of the Moho discontinuity under the Qilian orogenic belt and Bayan Har block is deeper than under the Qaidam Basin, which is consistent with the previous results. Citation: Yang, B., Wang, Y. B., Zhao, L., Yang, L. M. and Sha, C. N. (2021). Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications. Earth Planet. Phys., 5(3), 296–304. http://doi.org/10.26464/epp2021030 Abstract: We use broadband records from a dense seismic network deployed in and around the Qaidam Basin in northwestern China to analyze the crustal phases and investigate the depth of the Conrad and Moho discontinuities as well as the P-wave velocity. Waveform cross-correlation is used to assist in the identification of the crustal phases and in determining their arrival times.