Resident Handbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ABCDE Approach
The ABCDE and SAMPLE History Approach Basic Emergency Care Course Objectives • List the hazards that must be considered when approaching an ill or injured person • List the elements to approaching an ill or injured person safely • List the components of the systematic ABCDE approach to emergency patients • Assess an airway • Explain when to use airway devices • Explain when advanced airway management is needed • Assess breathing • Explain when to assist breathing • Assess fluid status (circulation) • Provide appropriate fluid resuscitation • Describe the critical ABCDE actions • List the elements of a SAMPLE history • Perform a relevant SAMPLE history. Essential skills • Assessing ABCDE • Needle-decompression for tension • Cervical spine immobilization pneumothorax • • Full spine immobilization Three-sided dressing for chest wound • • Head-tilt and chin-life/jaw thrust Intravenous (IV) line placement • • Airway suctioning IV fluid resuscitation • • Management of choking Direct pressure/ deep wound packing for haemorrhage control • Recovery position • Tourniquet for haemorrhage control • Nasopharyngeal (NPA) and oropharyngeal • airway (OPA) placement Pelvic binding • • Bag-valve-mask ventilation Wound management • • Skin pinch test Fracture immobilization • • AVPU (alert, voice, pain, unresponsive) Snake bite management assessment • Glucose administration Why the ABCDE approach? • Approach every patient in a systematic way • Recognize life-threatening conditions early • DO most critical interventions first - fix problems before moving on -
Septoplasty, Rhinoplasty, Septorhinoplasty, Turbinoplasty Or
Septoplasty, Rhinoplasty, Septorhinoplasty, 4 Turbinoplasty or Turbinectomy CPAP • If you have obstructive sleep apnea and use CPAP, please speak with your surgeon about how to use it after surgery. Follow-up • Your follow-up visit with the surgeon is about 1 to 2 weeks after Septoplasty, Rhinoplasty, Septorhinoplasty, surgery. You will need to call for an appointment. Turbinoplasty or Turbinectomy • During this visit any nasal packing or stents will be removed. Who can I call if I have questions? For a healthy recovery after surgery, please follow these instructions. • If you have any questions, please contact your surgeon’s office. Septoplasty is a repair of the nasal septum. You may have • For urgent questions after hours, please call the Otolaryngologist some packing up your nose or splints which stay in for – Head & Neck (ENT) surgeon on call at 905-521-5030. 7 to 14 days. They will be removed at your follow up visit. When do I need medical help? Rhinoplasty is a repair of the nasal bones. You will have a small splint or plaster on your nose. • If you have a fever 38.5°C (101.3°F) or higher. • If you have pain not relieved by medication. Septorhinoplasty is a repair of the nasal septum and the nasal bone. You will have a small splint or plaster cast on • If you have a hot or inflamed nose, or pus draining from your nose, your nose. or an odour from your nose. • If you have an increase in bleeding from your nose or on Turbinoplasty surgery reduces the size of the turbinates in your dressing. -
Pre and Post-Thoracostomy Chest X-Ray Taking; Do We Must Do?
www.revhipertension.com Revista Latinoamericana de Hipertensión. Vol. 15 - Nº 1, 2020 Pre and post-thoracostomy chest x-ray taking; do we must do? 71 Radiografía de tórax antes y después de la toracostomía; Qué debemos hacer? Salaminia, Shirvan; Talebi, Shadi; Mehrabi, Saadat 1Assistant Professor of Cardiac Surgery, Clinical Research Development Unit Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran. [email protected], [email protected], [email protected]. 2General Practitioner, Clinical Research Development Unit Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran. 3Assistant Professor of Thoracic Surgery, Clinical Research Development Unit Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran *corresponding author: Saadat Mehrabi, Assistant Professor of Thoracic Surgery, Clinical Research Development Unit Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran. Email: [email protected] https://doi.org/10.5281/zenodo.4074244 Abstract he prevalence of collision accidents is high in Results: Of the 58 chest tubes with the indication for re- Iran, a developing country. Currently, a plain moval, only one patient needed further observation clini- chest radiograph is routine 6 to 8 hours af- cally after removal. The coincident chest x-ray (CXR) led to ter chest tube removal. In recent years, there have been recurrent chest tube insertion. All thoracostomies had per- doubts about the necessity of routine post-removal chest formed by a trained resident or surgeon. Considering vari- x-ray (CXR) in the absence of clinical symptoms. In chil- able clinical decisions, a comparison of the diagnostic value dren, this is especially imperative because they are more of chest x-ray (CXR) to clinical examination did not differ sensitive to radiation exposure. -
Rhinoplasty and Septorhinoplasty These Services May Or May Not Be Covered by Your Healthpartners Plan
Rhinoplasty and septorhinoplasty These services may or may not be covered by your HealthPartners plan. Please see your plan documents for your specific coverage information. If there is a difference between this general information and your plan documents, your plan documents will be used to determine your coverage. Administrative Process Prior authorization is not required for: • Septoplasty • Surgical repair of vestibular stenosis • Rhinoplasty, when it is done to repair a nasal deformity caused by cleft lip/ cleft palate Prior authorization is required for: • Rhinoplasty for any indication other than cleft lip/ cleft palate • Septorhinoplasty Coverage Rhinoplasty is not covered for cosmetic reasons to improve the appearance of the member, but may be covered subject to the criteria listed below and per your plan documents. The service and all related charges for cosmetic services are member responsibility. Indications that are covered 1. Primary rhinoplasty (30400, 30410) may be considered medically necessary when all of the following are met: A. There is anatomical displacement of the nasal bone(s), septum, or other structural abnormality resulting in mechanical nasal airway obstruction, and B. Documentation shows that the obstructive symptoms have not responded to at least 3 months of conservative medical management, including but not limited to nasal steroids or immunotherapy, and C. Photos clearly document the structural abnormality as the primary cause of the nasal airway obstruction, and D. Documentation includes a physician statement regarding why a septoplasty would not resolve the airway obstruction. 2. Secondary rhinoplasty (30430, 30435, 30450) may be considered medically necessary when: A. The secondary rhinoplasty is needed to treat a complication/defect that was caused by a previous surgery (when the previous surgery was not cosmetic), and B. -
Rhinoplasty ARTICLE by PHILIP WILKES, CST/CFA
Rhinoplasty ARTICLE BY PHILIP WILKES, CST/CFA hinoplasty is plastic become lodged in children's noses.3 glabella, laterally with the maxilla, surgery of the nose Fortunately, the art and science of inferiorly with the upper lateral car- for reconstructive, rhinoplasty in the hands of a skilled tilages, and posteriorly with the eth- restorative, or cos- surgical team offers positive alter- moid bone? metic purposes. The natives. The nasal septum is formed by procedure of rhmo- Three general types of rhino- the ethmoid (perpendicular plate) plasty had its beginnings in India plasty will be discussed in this arti- and vomer bones (see Figure 5). The around 800 B.c.,as an ancient art cle. They include partial, complete, cartilaginous part is formed by sep- performed by Koomas Potters.' and finesse rhinoplasties. tal and vomeronasal cartilages. The Crimes were often punished by the anterior portion consists of the amputation of the offender's nose, Anatomy and Physiology of the medial crus of the greater alar carti- creating a market for prosthetic sub- Nose lages, called the columella nasi? stitutes. The skill of the Koomas The nose is the olfactory organ that The vestibule is the cave-like area enabled them to supply this need. In projects from the center of the face modem times, rhinoplasty has and warms, filters, and moistens air developed into a high-technology on the way to the respiratory tract. procedure that combines art with Someone breathing only through the latest scientific advancements.' the mouth delivers a bolus of air During rhinoplastic procedures, with each breath. The components surgeons can change the shape and of the nose allow a thin flow of air size of the nose to improve physical to reach the lungs, which is a more appearance or breathing. -
Iatrogenic Tension Pneumothorax After Surgical Tracheostomy in a Child with Idiopathic Subglottic Stenosis - Case Report
Kosin Medical Journal 2019;34:161-167. https://doi.org/10.7180/kmj.2019.34.2.161 &D VH 5HSRUWV Iatrogenic Tension Pneumothorax after Surgical Tracheostomy in a Child with Idiopathic Subglottic Stenosis - case report Sang Yoong Park, Woo jae Yim, Joon Ho Jeong, Jeongho Kim, Seung-Cheol Lee, So Ron Choi, Jong-Hwan Lee, Chan Jong Chung Department of Anesthesiology and Pain Medicine, Dong-A University College of Medicine, Busan, Korea Tracheostomy is increasingly performed in children for upper airway anomalies. Here, an 18-month-old child (height 84.1 cm, weight 12.5 kg) presented to the emergency department with dyspnea, stridor, and chest retraction. However, exploration of the airways using a bronchoscope failed due to subglottic stenosis. Therefore, a surgical tracheostomy was successfully performed with manual mask ventilation. However, pneumomediastinum was found in the postoperative chest radiograph. Although an oxygen saturation of 99% was initially maintained, oxygen saturation levels dropped, due to sudden dyspnea, after 3 hours. A chest radiograph taken at this time revealed a left tension pneumothorax and small right pneumothorax. Despite a needle thoracostomy, the pneumothorax was aggravated, and cardiac arrest occurred. Car - diopulmonary-cerebral resuscitation was performed, but the patient was declared dead 30 minutes later. This study high - lights the fatal complications that can occur in children during tracheostomy. Therefore, close monitoring, immediate suspicion, recognition, and aggressive management may avoid fatal outcomes. Key Words : Pediatrics, Pneumomediastinum, Tension pneumothorax, Tracheostomy, Thoracostomy Tracheostomy is increasingly being performed swallowing problems, some of which can be in children, leading to improvements in neonatal life-threatening in children. -
Surgical Management of Nasal Airway Obstruction
Surgical Management of Nasal Airway Obstruction John F. Teichgraeber, MDa, Ronald P. Gruber, MDb, Neil Tanna, MD, MBAc,* KEYWORDS Nasal obstruction Nasal breathing Septal deviation Nasal valve narrowing Turbinate hypertrophy KEY POINTS The management and diagnosis of nasal airway obstruction requires an understanding of the form and function of the nose. Nasal airway obstruction can be structural, physiologic, or a combination of both. Anatomic causes of airway obstruction include septal deviation, internal nasal valve narrowing, external nasal valve collapse, and inferior turbinate hypertrophy. Thus, the management of nasal air obstruction must be selective and carefully considered. The goal of surgery is to address the deformity and not just enlarge the nasal cavity. INTRODUCTION vomer, and maxillary crest. The narrowest portion of the nose is the internal nasal valve (10–15), The management and diagnosis of nasal airway which is formed by the septum, the inferior turbi- obstruction requires an understanding of the nate, and the upper lateral cartilage. Short nasal form and function of the nose. Nasal airway bones, a narrow midnasal fold, and malposition obstruction can be structural, physiologic, or a of the alar cartilages all predispose patients to in- combination of both. Thus, the management of ternal valve incompetence. nasal airway obstruction must be selective and The lateral wall of the nose contains 3 to 4 turbi- often involves medical management. The goal of nates (inferior, middle, superior, supreme) and the surgery is to address the deformity and not just corresponding meatuses that drain the paranasal enlarge the nasal cavity. This article reviews airway sinuses. The nasolacrimal duct drains through obstruction and its treatment. -
Donald C. Lanza MD, FACS
Publications By: Donald C. Lanza MD, FACS Original Papers: 1. Lanza DC; Koltai PJ; Parnes SM; Decker JW; Wing P; Fortune JB.: Predictive value of the Glasgow Coma Scale for tracheotomy in head-injured patients. Ann Otol Rhinol Laryngol 1990 Jan;99(1):38-41 2. Lanza DC; Parnes SM; Koltai PJ; Fortune JB.: Early complications of airway management in head-injured patients. Laryngoscope 1990 Sep; 100(9):958-61 3. Piccirillo JF; Lanza DC; Stasio EA; Moloy PJ.: Histiocytic necrotizing lymphadenitis (Kikuchi's disease). Arch Otolaryngol Head Neck Surg 1991 Jul;117(7):800-2 4. Lanza DC; Kennedy DW; Koltai PJ.: Applied nasal anatomy & embryology. Ear Nose Throat J 1991 Jul;70(7):416-22 5. Kennedy, D.W., & Lanza D.C.: “Technical Problems in Endoscopic Sinus Surgery.” Journal of Japanese Rhinologic Soc. 30.1, 60-61, 1991. 6. Lanza DC; Kennedy DW.: Current concepts in the surgical management of chronic and recurrent acute sinusitis. J Allergy Clin Immunol 1992 Sep;90(3 Pt 2):505-10; discussion 511 7. Lanza DC; Kennedy DW.: Current concepts in the surgical management of nasal polyposis. J Allergy Clin Immunol 1992 Sep;90(3 Pt 2):543-5; discussion 546 8. Kennedy DW; Lanza DC.: Technical problems in endoscopic sinus surgery. Rhinol Suppl 1992;14:146-50 9. Lanza, D.C., Farb-Rosin, D., Kennedy, D.W.: “Endoscopic Septal Spur Resection.” American Journal of Rhinology, 7:5, 213-216, October 1993. 10. Lanza, D.C. Kennedy, D.W.: “Chronic Sinusitis: When is Surgery Needed?” Clinical Focus: Patient Care, 25-32, December 1993. -
ANMC Specialty Clinic Services
Cardiology Dermatology Diabetes Endocrinology Ear, Nose and Throat (ENT) Gastroenterology General Medicine General Surgery HIV/Early Intervention Services Infectious Disease Liver Clinic Neurology Neurosurgery/Comprehensive Pain Management Oncology Ophthalmology Orthopedics Orthopedics – Back and Spine Podiatry Pulmonology Rheumatology Urology Cardiology • Cardiology • Adult transthoracic echocardiography • Ambulatory electrocardiology monitor interpretation • Cardioversion, electrical, elective • Central line placement and venous angiography • ECG interpretation, including signal average ECG • Infusion and management of Gp IIb/IIIa agents and thrombolytic agents and antithrombotic agents • Insertion and management of central venous catheters, pulmonary artery catheters, and arterial lines • Insertion and management of automatic implantable cardiac defibrillators • Insertion of permanent pacemaker, including single/dual chamber and biventricular • Interpretation of results of noninvasive testing relevant to arrhythmia diagnoses and treatment • Hemodynamic monitoring with balloon flotation devices • Non-invasive hemodynamic monitoring • Perform history and physical exam • Pericardiocentesis • Placement of temporary transvenous pacemaker • Pacemaker programming/reprogramming and interrogation • Stress echocardiography (exercise and pharmacologic stress) • Tilt table testing • Transcutaneous external pacemaker placement • Transthoracic 2D echocardiography, Doppler, and color flow Dermatology • Chemical face peels • Cryosurgery • Diagnosis -
Complications Associated with the Use of Autologous Costal Cartilage
Rhinoplasty Aesthetic Surgery Journal 2015, Vol 35(6) 644–652 Complications Associated With the Use © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: of Autologous Costal Cartilage in Rhinoplasty: [email protected] DOI: 10.1093/asj/sju117 A Systematic Review www.aestheticsurgeryjournal.com Kiran Varadharajan, MRCS, DOHNS; Priya Sethukumar, MRCS (ENT); Mohiemen Anwar, MRCS, DOHNS; and Kalpesh Patel, FRCS Abstract Background: Autologous costal cartilage grafts are common in rhinoplasty. To date, no formal systematic review of complications associated with autol- ogous costal cartilage grafting in rhinoplasty exists. Objectives: The authors review current literature to examine the rates of donor and recipient site complications associated with autologous costal carti- lage in rhinoplasty. Methods: Databases (EMBASE, PubMed, MEDLINE, and Cochrane Database of Systematic Reviews) and references of pertinent articles were searched between January 1980 to July 2014 to find studies evaluating rates of complications with autologous costal cartilage grafting in rhinoplasty. These studies were then screened with specific inclusion/exclusion criteria, and data were extracted from included studies and pooled for analysis. Results: A total of 21 eligible studies were included. Pooled donor site complication incidence was pneumothorax (0.1%), pleural tear (0.6%), infection (0.6%), seroma (0.6%), scar-related problems (2.9%), and severe donor site pain (0.2%). Pooled recipient site complications were as follows: warping (5.2%), infection (2.5%), displacement/extrusion (0.6%), graft fracture (0.2%), and graft resorption (0.9%). Conclusions: Autologous costal rhinoplasty remains a safe procedure, but is associated with not insignificant rates of minor recipient site complications, such as warping. -
The Greenville Voice Center
The Greenville Voice Center What to Expect: Microlaryngoscopy What is microlaryngoscopy? Surgical microdirect laryngoscopy (MDL) involves putting a hollow metal tube or pipe (called a laryngoscope) into the mouth and down the throat to look at the larynx and the vocal folds. You will be asleep so that you are comfortable. We put a tooth guard over your teeth or a soft pad over your gums if you do not have teeth to protect them from the metal tube. We usually use a microscope or magnifying telescope to allow us to see the vocal cords at high magnification. Thus, the term micro-direct laryngoscopy: we’re using a microscope to look directly at the larynx. Bronchoscopy involves placing a camera between the vocal folds and passing it through the larynx into the airways to look at the trachea and the air passages to the lungs. Esophagoscopy involves placing a metal tube with a camera behind the larynx into the esophagus (swallowing pipe) in order to look at it throughout its length, sometimes as far as the stomach. The day of surgery: The day begins in the preoperative area where you will check in, meet the anesthesia team and OR nurses, speak with me, and have an IV placed in your arm or hand. When it is time for surgery, you will roll back into the operating room where you will see our team there. The instruments will likely be out and waiting for you. Once everything is confirmed and the safety checks are done, the anesthesia team will begin to put you to sleep. -
Advances in Chest Drain Management in Thoracic Disease
Review Article Advances in chest drain management in thoracic disease Robert S. George, Kostas Papagiannopoulos St. James’s University Hospital, Leeds, UK Contributions: (I) Conception and design: None; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Mr. Kostas Papagiannopoulos, MD (CTh), MMed Thorax. St. James’s University Hospital, Department of Thoracic Surgery, Level 3 Bexley Wing, Beckett Street, LS9 7TF, Leeds, UK. Email: [email protected]. Abstract: An adequate chest drainage system aims to drain fluid and air and restore the negative pleural pressure facilitating lung expansion. In thoracic surgery the post-operative use of the conventional underwater seal chest drainage system fulfills these requirements, however they allow great variability amongst practices. In addition they do not offer accurate data and they are often inconvenient to both patients and hospital staff. This article aims to simplify the myths surrounding the management of chest drains following chest surgery, review current experience and explore the advantages of modern digital chest drain systems and address their disease-specific use. Keywords: Chest tube; intercostal drain (ICD); digital devices; air leak; pleural effusion Submitted Oct 15, 2015. Accepted for publication Oct 27, 2015. doi: 10.3978/j.issn.2072-1439.2015.11.19 View this article at: http://dx.doi.org/10.3978/j.issn.2072-1439.2015.11.19 Introduction Historical background The pleural cavity is an air-tight closed space that contains In 1965 Hughes advocated the use of closed tube a small amount of pleural fluid.