A Review of Necrobacillosis Mell Wostoupal Iowa State College

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Necrobacillosis Mell Wostoupal Iowa State College Volume 19 | Issue 1 Article 4 1957 A Review of Necrobacillosis Mell Wostoupal Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/iowastate_veterinarian Part of the Large or Food Animal and Equine Medicine Commons, and the Veterinary Pathology and Pathobiology Commons Recommended Citation Wostoupal, Mell (1957) "A Review of Necrobacillosis," Iowa State University Veterinarian: Vol. 19 : Iss. 1 , Article 4. Available at: https://lib.dr.iastate.edu/iowastate_veterinarian/vol19/iss1/4 This Article is brought to you for free and open access by the Journals at Iowa State University Digital Repository. It has been accepted for inclusion in Iowa State University Veterinarian by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. A Review of NECROBACILLOSIS Mell Wostoupal ecrobacillosjs is an infectious disease ETIOLOLGY N caused by Spherophorus necrop­ Spherophorus (Actinomyces) necrop­ horus, occurring in most animals as a horus is a slender, non--motile, gram neg­ secondary invader and characterized by ative organism varying from coccoid cells sharply defined areas of liquefaction ne­ to slender filaments. The bacillus is sen­ crosis having hyperemic and hemorrha­ sitive to oxygen and under usual condi­ gic borders. tions does not grow unless good anaero­ The term includes several disease en­ bic conditions are obtained. In many tities which may be designated by var­ types of necrobacillosis it has been shown ious names, depending on the animal in­ that the bacillus is not the primary in­ volved and the tissue affected. These en­ fectious agent, and that the infection must tities are calf diphtheria, foot rot, necro­ be initiated by viruses or other bacteria. tic hepatitis of cattle and sheep, necrotic It is highly possible that other organisms rumenitis of cattle, and bull nose of swine. produce anaerobic conditions in the body Others are intestinal lesions secondary to tissue by cell destruction and normal ox­ enteritis in swine and horses, bite and ygen consumption necessary for their castration wounds, contagious pustular metabolic processes. Thus, having estab­ dermatitis and ulcerative dermatosis of lished vesicles suitable for growth, necro~is f~l­ sheep, necrotic dermatitis, Spherophorus will then proceed to grow lowing pneumonia, thrush, and qmttor III and multiply '"in the anaerobic medium the horse. The condition may also be and commonly penetrates epithelial mem­ present in lesions of avian diphtheria, branes on its way to the secondary le­ secondary to the viral agent, beak ulcer­ sions. ation of chickens and also may be found It should be noted here that the organ­ in the typical "button ulcers" of hog ism has been found in the ceca of normal cholera. swine, and it is likely that it exists in the alimentary tract of other animals also. It is possible that the organism may be in­ [This paper was written by Mell Westoupal, a junior, for a pathology course.] troduced by eating OUT anaerobic condi- Issue 1, 1957 21 tions are produced by other organisms. It there for suitable conditions to occur. does not seem likely that the bacillus mul­ This is one of the reasons for the 3 to 5 tiplies outside the body but it remains day incubation period in the disease. viable in soil and manure for short peri­ The favorite locations of the lesions are ods of time. Marsh and Tunnicliff were on the cheeks adj acent to the molar teeth, able to demonstrate the organism in a wet at the base of the tongue and on the buc­ pasture 10 months after sheep with foot cal mucosa, but in more severe outbreaks rot had run on it, but could not demon­ necrotic lesions may be found in the lar­ strate it after a second 10 month period. ynx, trachea, lungs, esophagus and ru­ They also determined that under these men. At first the lesions resemble small favorable conditions, it could survive one scabs but later coalesce to form a necro­ winter in the rigorous climate of Mon­ tic area surrounded by a reddened zone. tana. A offensive odor similar to that of lim­ Many workers have concluded that an burger cheese and sulfur is present. Yel­ exotoxin is produced by the organism due low to greenish necrotic mateiral is pres­ to the fact that rabbits die after great ent at ,the base of the ulcers and is firm­ emaciation when the only lesion is a ly attached to the underlying tissue. A small area of edema and inflammation. thick wall of granulation tissue usually An endotoxin is also produced and can surrounds the ulcer. The occurrence of be demonstrated by injecting heat killed diphtheritic membranes covering the le­ cells into laboratory animals. A subse­ sions and loss of papillae are common and quent inflammation and necrosis follows the membranes may completely block the intradermal injection in the rabbit which respiratory efforts. is evidence of a heat stable endotoxin. A similar condition occurs in swine Since the tissue changes, regardless of also but usually affects the hard palate their location, are essentially the same, and teeth. It may loosen the teeth and only a few of the more common diseases invade the bones of the head as well as will be described. causing large caseous nodules on the skin of the legs similar to those found in the CALF DIPHTHERIA mouth of the calf. Microscopically, the infection shows This is one of the more common forms coagulation necrosis of the cells and py­ of necrobacillosis which occurs as a fairly knosis and karyolysis of the nuclei. The acute, infectious and highly fatal disease inflammatory exudate is usually of the of young calves. It often attacks whole fibrinous type but at times deep coagu­ herds, affecting only a few animals but lation necrosis of the mucous membrane later in the course of the disease may be­ occurs and a fibro-necrotic or diphtheritic come widespread. The mucosal mem­ membrane is formed. The organism is branes of the throat and mouth are af­ usually located at the edge of the living fected, thus the names necrotic stomati­ tissue in a zone of inflammation where tis, laryngitis, and pharyngitis are used. many white blood cells and fibroblasts Most writers refer to the bacillus as are also found. a secondary invader that attacks only Since the disease is one of young weakened tissue, that won't develop in a calves, the animal often experiences diffi­ mucous membrane, and that enters culty in nursing. Loss of appetite occurs through a slight break in the mucosa. and due to the painful buccal mucosa a Predisposing causes are injuries to the tuft of roughage may be taken, mouthed mucosa from sharp objects, such as stub­ slightly, and then dropped dejectedly to ble and barley beards, exposure to filth and eruption of teeth in calves. Since the the ground. Temperature elevation, sal­ organism is a strict anaerobe, it does not ivation, swelling of the cheeks, protrusion develop on the mucous membranes but of the tongue and drooling are some of burrows into deeper tissues after gaining the early symptoms. Respiration may be­ entrance through abrasions and waits come difficult or accelerated due to a na- 22 Iowa State College Veterinarian sal discharge and coughing occurs if lung portance along with traumatic agents in involvement is present. Calves become serving to weaken and erode the epithe­ very dehydrated, emaciated and stand lial and horny structures of the foot with a slightly arched back. Animals af­ which can later be penetrated by the or­ fected are those confined to areas which ganism if it is brought in contact with the may be contaminated with the organism, foot. Another explanation of the dry pas­ such as stables, while cases on the range ture type of the disease evolves around are few in number. Filth, damp and un­ the fact that Spherophorus itself is not clean stables, and traumatic agents tend capable of producing the lesions unless to increase the incidence of the disease. certain conditions are established. If an animal is subjected to wet conditions in FOOT ROT the spring of the year it may have only Necrobacillosis of the foot as defined by a few organisms penetrating the hoof and Flint and Jensen is a necrotizing infec­ may require several weeks or months to tion of tissues immediately proximal to develop suitable conditions for adequate the coronary band er of interdigital tis­ growth of the organism, in order for le­ sues often complicated by arthritis of the sions to develop. These lesions may not coffin joint, and caused in part by Sphero­ be evident until after the animal is on phous necrophorus, penetrating from the dry pasture later on in the summer or surface. This definition is based on work in the fall. done in Wyoming experiments and does A recent survey in New Zealand not necessarily adequately describe the showed that the incidence of foot rot in primary etiological agent in all parts of pigs was considerably higher in concrete the country. In the Midwest and espe­ piggeries than those pigs raised on dirt cially in Iowa the organism Corynebac­ or board floors. Foot rot appeared to in­ terium pyogenes is found more consis­ crease as the floor surface increased in tently than Spherophorus necrophorus in roughness and was generally the highest, the lesions of foot rot and therefore the about 19 per cent, in those pigs which latter organism is considered by many to were allowed to run "on and off" of the be only a secondary invader. It is possible concrete. The explanation may be that that there is often confusion here between pigs fee1t are worn and injuries develop actual foot rot and similar lesions of the on the concre1te, allowing the bacteria to foot termed foot abcesses or non-contag­ enter the damaged hoof, especially when ious foot rot.
Recommended publications
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • 797 Circulating Tumor DNA and Circulating Tumor Cells for Cancer
    Medical Policy Circulating Tumor DNA and Circulating Tumor Cells for Cancer Management (Liquid Biopsy) Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History • Endnotes Policy Number: 797 BCBSA Reference Number: 2.04.141 Related Policies Biomarkers for the Diagnosis and Cancer Risk Assessment of Prostate Cancer, #336 Policy1 Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Plasma-based comprehensive somatic genomic profiling testing (CGP) using Guardant360® for patients with Stage IIIB/IV non-small cell lung cancer (NSCLC) is considered MEDICALLY NECESSARY when the following criteria have been met: Diagnosis: • When tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP or invasive biopsy is medically contraindicated), AND • When prior results for ALL of the following tests are not available: o EGFR single nucleotide variants (SNVs) and insertions and deletions (indels) o ALK and ROS1 rearrangements o PDL1 expression. Progression: • Patients progressing on or after chemotherapy or immunotherapy who have never been tested for EGFR SNVs and indels, and ALK and ROS1 rearrangements, and for whom tissue-based CGP is infeasible (i.e., quantity not sufficient for tissue-based CGP), OR • For patients progressing on EGFR tyrosine kinase inhibitors (TKIs). If no genetic alteration is detected by Guardant360®, or if circulating tumor DNA (ctDNA) is insufficient/not detected, tissue-based genotyping should be considered. Other plasma-based CGP tests are considered INVESTIGATIONAL. CGP and the use of circulating tumor DNA is considered INVESTIGATIONAL for all other indications. 1 The use of circulating tumor cells is considered INVESTIGATIONAL for all indications.
    [Show full text]
  • A 10 Year Cross Sectional Multicentre Study of Infected Pancreatic Necrosis
    JOP. J Pancreas (Online) 2021 Jan 30; 22(1): 11-20. ORIGINAL PAPER A 10 Year Cross Sectional Multicentre Study of Infected Pancreatic Necrosis. Trends in Management and an Analysis of Factors Predicting Mortality for Interventions in Infected Pancreatic Necrosis Johann Faizal Khan1, Suryati Mokhtar1, Krishnan Raman1, Harjit Singh1, Leow Voon Meng 2,3, Manisekar K Subramaniam1,2 1 2 Department of Hepatopancreatobiliary Surgery and Liver Transplantation, Selayang Hospital, Selangor, Malaysia 3Department of General Surgery, Division of Hepatopancreatobiliary Surgery, Sultanah Bahiyah Hospital, Kedah, Malaysia Malaysia Advanced Medical and Dental Institute (AMDI), Science University of Malaysia (USM), Penang, ABSTRACT Objective To identify trends in management and analyse outcomes of patients undergoing interventions for infected pancreatic necrosis Method A cross sectional study of patients undergoing intervention for IPN with specific reference to factors predictive of mortality. between 2009-2018 were performed at two of the largest hepatopancreatobiliary centres in Malaysia. FinalResults outcome A measuretotal number of complete of 65 resolution was compared against mortality (D). Head to head comparison of percutaneous catheter drainage alone versus Videoscopic Assisted Retroperitoneal Debridement was performed based on final predictive factor on mortality. patients with IPN were identified. Data from 59/65 patients were analysed for final outcome of death (D) versus complete resolution. 6 patients were omitted due to incomplete data
    [Show full text]
  • WA Coding Rule 1215/07 Skin Ulcer Necrosis Versus Gangrene
    WA Coding Rules are a requirement of the Clinical Coding Policy MP0056/17 Western Australian Coding Rule 1215/07 Skin ulcer necrosis versus gangrene WA Coding Rule 0110/06 Skin ulcer necrosis versus gangrene is superseded by ACCD Coding Rule Skin necrosis (Ref No: Q2659) effective 1 January 2014; (log in to view on the ACCD CLIP portal). DECISION WA Coding Rule 0110/06 Skin ulcer necrosis versus gangrene is retired. [Effective 01 Jan 2014, ICD-10-AM/ACHI/ACS 8th Ed.] Page 1 of 3 © Department of Health WA 2018 WA Coding Rules are a requirement of the Clinical Coding Policy MP0056/17 Western Australian Coding Rule 0110/06 Skin ulcer necrosis versus gangrene Q. Often with traumatic wounds or infection there will be documentation of devitalized tissue or necrotic wound edges or just some mention of necrotic tissue, the extent of the necrosis usually not known. No mention of gangrene. The ICD 10 indexing for necrosis defaults to coding R02. For cases with documentation of necrosis irrespective of the extent of necrosis and definitely no mention of gangrene is the coder to assign the code R02 or if documentation suggests the amount of necrosis is small and confined to edges should this be considered part of the traumatic wound and the code not assigned? Necrosis is commonly documented in the patient records with traumatic wounds, burns, pressure sores etc. Necrosis due to lack of oxygen such as with a MI would be considered part of the MI code as would any necrosis with infection in pneumonia. Gangrene would seem to be a complication of necrotic tissue.
    [Show full text]
  • Molecular Pathological Epidemiology in Diabetes Mellitus and Risk of Hepatocellular Carcinoma
    Submit a Manuscript: http://www.wjgnet.com/esps/ World J Hepatol 2016 September 28; 8(27): 1119-1127 Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx ISSN 1948-5182 (online) DOI: 10.4254/wjh.v8.i27.1119 © 2016 Baishideng Publishing Group Inc. All rights reserved. REVIEW Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma Chun Gao Chun Gao, Department of Gastroenterology, China-Japan logy and epidemiology, and investigates the relationship Friendship Hospital, Ministry of Health, Beijing 100029, China between exogenous and endogenous exposure factors, tumor molecular signatures, and tumor initiation, progres- Author contributions: Gao C conceived the topic, performed sion, and response to treatment. Molecular epidemiology research, retrieved concerned literatures and wrote the paper. broadly encompasses MPE and conventional-type mole- cular epidemiology. Hepatocellular carcinoma (HCC) Supported by Beijing NOVA Programme of Beijing Municipal is the third most common cause of cancer-associated Science and Technology Commission, No. Z13110.7000413067. death worldwide and remains as a major public health Conflict-of-interest statement: No conflict of interest. challenge. Over the past few decades, a number of epidemiological studies have demonstrated that diabetes Open-Access: This article is an open-access article which was mellitus (DM) is an established independent risk factor selected by an in-house editor and fully peer-reviewed by external for HCC. However, how DM affects the occurrence and
    [Show full text]
  • Salivary Gland – Necrosis
    Salivary Gland – Necrosis Figure Legend: Figure 1 Salivary gland - Necrosis in a male F344/N rat from a subchronic study. There is necrosis of the acinar cells (arrow) with inflammation. Figure 2 Salivary gland - Necrosis in a male F344/N rat from a subchronic study. There is necrosis of the acinar cells (arrow) with chronic active inflammation. Figure 3 Salivary gland - Necrosis in a female F344/N rat from a subchronic study. There is necrosis of an entire lobe of the salivary gland (arrow), consistent with an infarct. Figure 4 Salivary gland - Necrosis in a female F344/N rat from a subchronic study. There is necrosis of all the components of the salivary gland (consistent with an infarct), with inflammatory cells, mostly neutrophils. Comment: Necrosis may be characterized either by scattered single-cell necrosis or by locally extensive areas of necrosis involving contiguous cells or structures. Single-cell necrosis can present as cell shrinkage, condensation of nuclear chromatin and cytoplasm, convolution of the cell, and the presence of apoptotic bodies. Acinar necrosis can present as focal to multifocal areas characterized by 1 Salivary Gland – Necrosis tissue that is paler than the surrounding viable tissue, consisting of swollen cells with variable degrees of eosinophilia, hyalinized cytoplasm, vacuolated cytoplasm, nuclear pyknosis, karyolysis, and/or karyorrhexis with associated cellular debris (Figure 1 and Figure 2). Secondary inflammation is common. Infarction (Figure 3 and Figure 4) is characterized by a focal to focally extensive area of salivary gland necrosis. One cause of necrosis, inflammation, and atrophy of the salivary gland in the rat is an active sialodacryoadenitis virus infection, but this virus does not affect the mouse salivary gland.
    [Show full text]
  • Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus Jing Zhou University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2012 Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus Jing Zhou University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, Molecular Biology Commons, and the Plant Pathology Commons Recommended Citation Zhou, Jing, "Characterization and Epidemiology of Soybean Vein Necrosis Associated Virus" (2012). Theses and Dissertations. 643. http://scholarworks.uark.edu/etd/643 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. CHARACTERIZATION AND EPIDEMIOLOGY OF SOYBEAN VEIN NECROSIS ASSOCIATED VIRUS CHARACTERIZATION AND EPIDEMIOLOGY OF SOYBEAN VEIN NECROSIS ASSOCIATED VIRUS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Cell and Molecular Biology By Jing Zhou Qingdao Agriculture University, College of Life Sciences Bachelor of Science in Biotechnology, 2008 December 2012 University of Arkansas ABSTRACT Soybean vein necrosis disease (SVND) is widespread in major soybean-producing areas in the U.S. The typical disease symptoms exhibit as vein clearing along the main vein, which turn into chlorosis or necrosis as season progresses. Double-stranded RNA isolation and shot gun cloning of symptomatic tissues revealed the presence of a new tospovirus, provisionally named as Soybean vein necrosis associated virus (SVNaV). The presence of the virus has been confirmed in 12 states: Arkansas, Illinois, Missouri, Kansas, Tennessee, Kentucky, Mississippi, Maryland, Delaware, Virginia and New York.
    [Show full text]
  • Avascular Necrosis (AVN)
    Avascular Necrosis (AVN) Avascular necrosis is an injury to Treatment bones. It is caused when blood cannot flow AVN pain can become chronic, meaning pain that to the bone. Without blood, the bone tissue doesn’t go away completely. However, people can live dies. This may cause the bone to break down. and function with chronic pain by limiting activities and AVN can involve the bones of a joint. If this using pain medicine carefully. happens, the joint can break down or have • Physical Therapy exercises for building strength trouble moving normally. AVN most often and increasing range of motion. affects the hips and shoulders. Other joints • Decrease weight bearing by using crutches, a can be affected. walker, or a wheelchair. • Anti-inflammatory medicines such as ibuprofen or Causes naproxen work well for AVN pain. Please talk to AVN is caused when the blood supply is your medical provider if these medicines are not blocked and cannot get to the bone. Blood working. Opioid medications (oxycodone, gets to the bone through blood vessels. morphine) should only be used rarely. Sickle cells can block the blood vessels • Consultation with a Pain Management specialist leading to the hip joint, shoulder joint, or may be helpful. other bones. Some medicines, such as prednisone, can cause AVN or make it worse. Treatment with Surgery The most common surgery for AVN is hip replacement Symptoms surgery. Surgery is done when pain is severe, a person has • People in the early stages of AVN may limited ability to do normal things, and none of the other not have any symptoms.
    [Show full text]
  • Swine Inflammation and Necrosis Syndrome Is Associated
    animals Article Swine Inflammation and Necrosis Syndrome Is Associated with Plasma Metabolites and Liver Transcriptome in Affected Piglets Robert Ringseis 1,† , Denise K. Gessner 1,† , Frederik Loewenstein 2, Josef Kuehling 2, Sabrina Becker 2, Hermann Willems 2, Mirjam Lechner 3, Klaus Eder 1 and Gerald Reiner 2,* 1 Institute of Animal Nutrition and Nutrition Physiology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; [email protected] (R.R.); [email protected] (D.K.G.); [email protected] (K.E.) 2 Department of Veterinary Clinical Sciences, Clinic for Swine, Justus Liebig University Giessen, Frankfurter Strasse 112, 35392 Giessen, Germany; [email protected] (F.L.); [email protected] (J.K.); [email protected] (S.B.); [email protected] (H.W.) 3 UEG Hohenlohe, Am Wasen 20, 91567 Herrieden, Germany; [email protected] * Correspondence: [email protected] † Authors contributed equally. Simple Summary: Swine inflammation and necrosis syndrome (SINS) is a newly identified syndrome associated with inflammatory and necrotic signs in different body parts of suckling piglets, weaners, and fatteners. While the proven inflammatory basis of the disease and the development of signs in even newborns indicate a primarily endogenous etiology, the mechanisms underlying SINS development are largely unknown. In this study, the hypothesis was tested that SINS is indirectly Citation: Ringseis, R.; Gessner, D.K.; triggered by the translocation of gut-derived microbial components into the liver, thereby causing Loewenstein, F.; Kuehling, J.; Becker, derangements of liver metabolism, by comparing the hepatic transcriptome and plasma metabolome S.; Willems, H.; Lechner, M.; Eder, K.; of SINS-affected and unaffected piglets.
    [Show full text]
  • Lung, Epithelium – Necrosis
    Lung, Epithelium – Necrosis Figure Legend: Figure 1 Lung, Bronchiole, Epithelium, Bronchiole - Necrosis in a female B6C3F1/N mouse from a subchronic study. The epithelial cells are fragmented, with pyknotic and karyorrhectic nuclei. Figure 2 Lung, Epithelium - Necrosis in a male Wistar Han rat from a chronic study. There is a large area of coagulative necrosis surrounded by suppurative inflammation. Figure 3 Lung, Epithelium, Alveolus - Necrosis in a female F344/N rat from a subchronic study. There is loss of epithelial cells, and many of the interstitial cells have pyknotic nuclei. Figure 4 Lung, Epithelium, Alveolus - Necrosis in a female F344/N rat from a subchronic study. In this focal lesion, there is loss of epithelial and interstitial cells. Comment: Necrosis (Figure 1, Figure 2, Figure 3, and Figure 4) and degeneration are considered to be parts of the continuum of cell damage, with necrosis representing irreversible cell damage and 1 Lung, Epithelium – Necrosis degeneration representing reversible cell damage. The light microscopic features of necrosis include nuclear pyknosis, karyorrhexis, or karyolysis, cell swelling, loss of cellular detail, cell fragmentation, and cytoplasmic hypereosinophilia (in which the cytoplasm often has a homogeneous appearance). Large areas of necrosis (Figure 2, Figure 3, and Figure 4) may also have disrupted tissue architecture, large areas of necrotic debris, loss of staining intensity, and inflammatory cells. Necrosis of the epithelial cells lining the airways as a result of toxic injury is often characterized by sloughing of necrotic cells or cellular debris into the lumen. The light microscopic hallmarks of reversible cell damage include cellular swelling, cytoplasmic vacuolation, perinuclear clear spaces, formation of cytoplasmic blebs, loss of normal apical blebs from Clara cells, and loss of cilia.
    [Show full text]
  • Cytomegalic Inclusion Virus Encephalitis in Patients with AIDS: CT, Clinical, and Pathologic Correlation
    275 CytomegaliC Inclusion Virus Encephalitis in Patients with AIDS: CT, Clinical, and Pathologic Correlation M. Judith Donovan Post1 The computed tomographic (CT) scans of 10 patients with acquired immunodeficiency George T. Henslel syndrome who had central nervous system (CNS) involvement by cytomegalovirus (CMV) Lee B. Moskowitz3 were retrospectively reviewed and correlated with clinical data and pathologic findings. Margaret Fischl4 Diagnosis was established in all 10 patients by autopsy, which showed the pathogno­ monic "owl's eye" intracellular inclusions of CMV. In six patients CMV caused an initial CNS infection that was directly responsible for the patient's progressive encephalopathy and death. In four patients CMV caused a superimposed nondominant CNS infection that had no clinical expression in two. Cortical atrophy and mild hydrocephalus ex vacuo were seen on CT in all 10 patients. Positive findings on CT that could be attributed to infection with CMV were present in only three of the 10 patients, and in these three symptomatic cases autopsy correlation revealed that CT underestimated the degree of CNS involvement. In the other three symptomatic patients, CT showed no parenchymal abnormalities, while autopsy demonstrated diffuse cerebral involvement. In the four patients whose CNS was secondarily involved by CMV, CT showed changes proven at autopsy to be related only to the dominant infection with Toxoplasma gondii and to postoperative hematomas. CT did not demonstrate any abnormalities at the sites of CMV involvement, which were found at autopsy in this latter group. It was concluded that CT is not very sensitive for the detection of CMV encephalitis. Cytomegalovirus (CMV), a member of the herpesvirus family , exists in a latent form in a large percentage of the general adult population [1, 2].
    [Show full text]
  • Snake-Eye Myelopathy and Surgical Prognosis: Case Series and Systematic Literature Review
    Journal of Clinical Medicine Review Snake-Eye Myelopathy and Surgical Prognosis: Case Series and Systematic Literature Review Marco Maria Fontanella 1,*, Luca Zanin 1 , Riccardo Bergomi 1, Marco Fazio 2, Costanza Maria Zattra 1, Edoardo Agosti 3, Giorgio Saraceno 1, Silvia Schembari 3, Lucio De Maria 1 , Luisa Quartini 4, Ugo Leggio 5, Massimiliano Filosto 6 , Roberto Gasparotti 7 and Davide Locatelli 3 1 Neurosurgery Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy; [email protected] (L.Z.); [email protected] (R.B.); [email protected] (C.M.Z.); [email protected] (G.S.); [email protected] (L.D.M.) 2 Neurosurgery Unit, Poliambulanza Foundation, 24124 Brescia, Italy; [email protected] 3 Neurosurgery Unit, Department of Biotechnology and Life Sciences (DBSV), University of Insubria, Ospedale di Circolo e Fondazione Macchi, 21100 Varese, Italy; [email protected] (E.A.); [email protected] (S.S.); [email protected] (D.L.) 4 Intensive Care Unit, Department of Anesthesia, Intensive Care and Emergency, ASST Spedali Civili di Brecia, 25123 Brescia, Italy; [email protected] 5 Neurophysiopathology Unit, Department of Neurological Sciences and Vision, ASST Spedali Civili di Brecia, 25123 Brescia, Italy; [email protected] 6 Center for Neuromuscular Diseases, Unit of Neurology, ASST “Spedali Civili”, 25123 Brescia, Italy; massimiliano.fi[email protected] 7 Neuroradiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-030-3995-587 Received: 9 May 2020; Accepted: 9 July 2020; Published: 12 July 2020 Abstract: The prognostic value of “snake-eyes” sign in spinal cord magnetic resonance imaging (MRI) is unclear and the correlation with different pathological conditions has not been completely elucidated.
    [Show full text]