Monica Paola Higuera

Total Page:16

File Type:pdf, Size:1020Kb

Monica Paola Higuera Pollination biology and transcriptomics of Cleomaceae species exhibiting different pollination systems by Monica Paola Higuera A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy in Systematics & Evolution Department of Biological Sciences University of Alberta © Monica Paola Higuera, 2018 Abstract Pollinator mediated-selection is responsible for much of the phenotypic diversity exhibited by flowers. Flowering plants that attract a diverse range of pollinators represent a generalist pollination system in which selection is exerted by many different pollinators. However, generalist pollination systems are difficult to study. They are frequently overlooked, because directional selection may be limited and diffuse selection exerted by pollinators in floral traits is hard to test. Thus, specialist flowering plants attract specific pollinator guilds, which mediates directional or stabilizing selection on floral traits. Selection by a guild of pollinators, such as bees, birds or bats, has led to the convergence of floral phenotypes, known as pollination syndromes. Flowering plants associated to pollination syndromes belong to a specialist pollination system. While, flowering plants that attract a diverse range of pollinators represent a generalist pollination system in which selection is exerted by many different pollinators. However, generalist pollination systems are difficult to study. They are frequently overlooked, because directional selection may be limited and diffuse selection exerted by pollinators in floral traits is hard to asses. One way to understand the evolution of floral traits and pollination systems involves exploring the genes encoding floral traits subject to pollinator-mediated selection. One good family for exploration of these topics is the Cleomaceae, which exhibits variation in floral traits, has species displaying generalist and specialist pollination systems and is an emerging model system for studying floral evolution. In this thesis, I used natural history of Cleomaceae species and molecular methods to compare the pollination biology and genes encoding floral traits from plants exhibiting generalized or specialized floral traits. I observed plants with floral traits that could be subject to pollinator-mediated selection such as color, and nectar glands, ii and then I used transcriptomics to identify candidate genes that may be responsible for differences in these floral traits. My thesis begins by proposing a comprehensive framework that incorporates both ecological and genetic pollination studies, which I have defined as integrative pollination studies. I reviewed genetic techniques used to explore genes underlying floral traits and discuss the use of next generation sequencing to study pollination. Second, I studied the pollination biology of two Cleomaceae species present in Alberta, which differ in main floral traits: Cleomella serrulata (Pursh) E.H. Roalson and J.C. Hall and Polanisia dodecandra (L.) DC to determine their pollination systems. I determined that both species have a generalist pollination system, but there were differences in the richness and composition of pollinators between them, due to main differences in floral traits and population locations. To examine differences in the floral evolution of species exhibiting generalized and specialized floral traits, I identified putative candidate genes responsible for pollinator attraction, then I studied the floral transcriptome of these two generalist species, along with the specialist Melidiscus giganteus (L.) Raf. Despite phylogenetic distance, the generalist species C. serrulata and P. dodecandra shared more transcripts when compare with M. giganteus. I then examined putative candidate genes for key floral traits and found differences in genes coding for color and nectary traits between generalist and specialist species that could be subjected to selection by pollinators. However, the genes coding for floral traits in specialist and generalist species were similar overall. Finally, I aimed to down-regulate candidate genes important for pollinator attraction to obtain plants with modified phenotypes that could be used in pollinators preference tests. I tested the feasibility of the virus-inducing gene silencing (VIGS) technique in P. dodecandra. Unfortunately, this species was not amenable to this technique, but it was iii feasible in Cleome violacea L., which may be a good candidate species for further pollination studies. Overall, my results indicate that species exhibiting generalized and specialized floral traits were similar in terms of gene repertoires despite being pollinated by different pollinators and despite phylogenetic distance. The generalist species were pollinated by different pollinator assemblages although the populations were located nearby. Though the floral transcriptomes of the generalist species were more similar to each other than to that of the specialist, generalists and specialist were alike in terms of gene repertoires. Taken together, this thesis advances our understanding of the pollination biology and genetics of the floral traits in Cleomaceae. I recommend that Cleomaceae be used as a comprehensive model to study the transitions between generalist and specialist pollination systems, and to study the evolution of floral traits important for pollinator attraction. iv Preface Chapter 3 of this thesis has been published as “Higuera-Díaz M, Manson JS, Hall JC. 2015. Pollination biology of Cleomella serrulata and Polanisia dodecandra in a protected natural prairie in southern Alberta, Canada”, at Botany 93: 745-757. I collected the data, analyzed and wrote the manuscript. JS Manson and JC Hall helped with experimental design, manuscript editing, and revisions. v Dedication To my husband who always hold my hand, my beautiful daughter Suanti and my family vi Acknowledgements I would like to thank my supervisors Dr. Jocelyn C. Hall and Dr. Jessamyn Manson for their guidance and their support during my PhD studies, but also, I am very grateful for the support that they provided me, when I endured the most sad and difficult moments in my life. Without your help and support, I would not have been able to continue my doctoral studies. You were the best supervisors for me, many thanks for your mentoring, support and patience during the last six years. I also want to thank to Dr. James Cahill for being in my committee, many thanks for your guidance and support on my project, also many thanks for made me think broadly and for challenge me, and of course, I would like to thank you for introducing me to your students, and for adopting me in your lab meetings and celebrations, it was a great experience for me. I would like to thank Dr. Mike Deyholos for being in my committee for 2 years and for his support on my project. I want to thank Dr. Felix Sperling, Janet Sperling, José Díaz and Lucy Díaz for their support during my arrival to Edmonton, many thanks for your hospitality and for making me feel at home. I am also very grateful to my lab mates and also good friends Kelsey Bernard, Melanie Patchell, Shane Carey, Peter Mankowski, Mariano Avino, Ashton Sturm, Angela Phung, Monica Khöler, and Michael Foisy. Many thanks for your support and your friendship during this process. I also want to thank my very good friends who were my support in happy and sad moments: Gisela Stötz, Gregory Peck, Tan Bao, Jared Bernard, William Torres, Orión Reyes, Isabel Barrios, Guillermo Bueno, Alec Carrigy, Gian Carlo Gianoli, Fred Noddin, Caroline Whitehouse, Sandra Durán, Charlotte Brown, Margarete Dettlaff, Megan Ljubotina, Leonardo Galindo, Angélica Quesada, Javier Luque, Kecia Kerr, Claudia Ayala, Jaime Pinzón, Jenny Fonseca, and Nicolas Abarca. Many thanks for all the happy moments and for taking care of me and my daughter when she was born. My research would not have been possible without the people that help me in the field, many thanks to Jared Bernard Jenny Kleininger for their hard work during the field seasons. Thanks to Drew Taylor, range biologist at Suffield CFB, for his logistical help during my project. Many thanks to Cory Sheffield, Ashton Sturm, Felix Sperling, Gary Anweiler, Matthias Buck and Tyler Cobb for help with insect identification. Many thanks to Dorothy Fabijan for assistance with plant voucher preparation. I would also like to thank vii Corey Davis and Troy Locke for their advice during my project, and many, many thanks to Kerrin Mendler, Leonardo Galindo and Dr. Mike Deyholos for their bioinformatics help. Last but not least, I want to thank my life partner Giovanny Fagua for all his support, love and care, my cute baby Suanti for her smile and happiness that encourage me every day, to my family Stella, Francisco, Andrea, Gustavo, Vero, and Diego for their encouragement and support. Finally, many, many thanks to my mom and my mother in law for taking care of my baby, while, I was finishing my thesis. My PhD studies had the financial support of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS, “Generación del Bicentenario” scholarship). My research was funded for a ACA Grant in Biodiversity (supported by the Alberta Conservation Association), and a NSERC Discovery Grant held by Dr. Jocelyn C. Hall. viii TABLE OF CONTENTS Chapter 1: Introduction ....................................................................................................... 1 1.1. Genetic studies of pollination systems .......................................................................
Recommended publications
  • The Reproductive Biology of Proboscidea Louisianica Is Investigated with Special Emphasis on the Insect-Plant Interrelationship
    THE REPRODUCTIVE BIOLOGY OF PROBOSCIDEA LOUISIANICA (MARTYNIACEAE) by MARY ANN PHILLIPPI,, Bachelor of Science in Biological Science Auburn University Auburn, Alabama 1974 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May' 1977 The.;s 1s /'177 P557r ~.;;.. THE REPRODUCTIVE BIOLOGY OF PROBOSCIDEA LOUISIANICA (MARTYNIACEAE) Thesis Approved: Dean of Graduate College ii PREFACE The reproductive biology of Proboscidea louisianica is investigated with special emphasis on the insect-plant interrelationship. This study included only one flowering season in only a small part of the plant's range. In order to more accurately elucidate the insect-plant interrelationship much more work is needed throughout Proboscidea louisianica's range. I wish to thank Dr. Ronald J. Tyrl, my thesis adviser, for his time and effort throughout my project. Appreciation is also extended to Dr. William A. Drew and Dr. James K. McPherson for advice and criticism throughout the course of this study and during the prepara­ tion of this manuscript. To Dr. Charles D. Michener, at the University of Kansas; Dr. H. E. Milliron, in New Martinsville, West Virginia; and Dr. T. B. Mitchell, at North Carolina State University I extend my appreciation for their time and expertise in identifying the insects collected during this study. Special thanks are given to Jim Petranka and to my family, Dr. and Mrs. G. M. Phillippi, Carolyn, Dan, and Jane for their encouragement in this and all endeavors. iii TABLE OF CONTENTS Page INTRODUCTION . 1 PHENOLOGY 6 INSECT VISITORS AND POLLINATION 10 THE SENSITIVE STIGMA .
    [Show full text]
  • A List of the Leafcutting Bees (Family Megachildae, Hymenoptera) Known to Occur in Iowa
    Proceedings of the Iowa Academy of Science Volume 55 Annual Issue Article 57 1948 A list of the Leafcutting Bees (Family Megachildae, Hymenoptera) known to occur in Iowa. H. E. Jaques Iowa Wesleyan College Let us know how access to this document benefits ouy Copyright ©1948 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Jaques, H. E. (1948) "A list of the Leafcutting Bees (Family Megachildae, Hymenoptera) known to occur in Iowa.," Proceedings of the Iowa Academy of Science, 55(1), 389-390. Available at: https://scholarworks.uni.edu/pias/vol55/iss1/57 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jaques: A list of the Leafcutting Bees (Family Megachildae, Hymenoptera) A list of the Leafcutting Bees (Family Megachildae, Hymenoptera) known to occur in Iowa. H. E. JAQUES Almost everyone has noticed the round holes nearly a half inch across cut in the leaves of many plants. Rose leaves very frequently show this mutilation. The casual observer is usually without infor­ mation, however, as to how it all comes about unless he has chanced to see a leafcutter bee providing herself with one of the round oval pieces of leaf she uses in lining a burrow in rotton wood or in hollow plant stems. One must watch quickly and closely if he is to see this performance.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • The WRKY Transcription Factor Family in Model Plants and Crops
    Critical Reviews in Plant Sciences ISSN: 0735-2689 (Print) 1549-7836 (Online) Journal homepage: http://www.tandfonline.com/loi/bpts20 The WRKY Transcription Factor Family in Model Plants and Crops Fei Chen, Yue Hu, Alessandro Vannozzi, Kangcheng Wu, Hanyang Cai, Yuan Qin, Alison Mullis, Zhenguo Lin & Liangsheng Zhang To cite this article: Fei Chen, Yue Hu, Alessandro Vannozzi, Kangcheng Wu, Hanyang Cai, Yuan Qin, Alison Mullis, Zhenguo Lin & Liangsheng Zhang (2018): The WRKY Transcription Factor Family in Model Plants and Crops, Critical Reviews in Plant Sciences, DOI: 10.1080/07352689.2018.1441103 To link to this article: https://doi.org/10.1080/07352689.2018.1441103 Published online: 05 Mar 2018. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bpts20 CRITICAL REVIEWS IN PLANT SCIENCES https://doi.org/10.1080/07352689.2018.1441103 The WRKY Transcription Factor Family in Model Plants and Crops Fei Chena, Yue Hua, Alessandro Vannozzib, Kangcheng Wua, Hanyang Caia, Yuan Qina, Alison Mullisc, Zhenguo Linc, and Liangsheng Zhanga aState Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou, China; bDepartment of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, Italy; cDepartment of Biology, Saint Louis University, St Louis, Missouri, USA ABSTRACT KEYWORDS The WRKY gene family in flowering plants encodes a large group of transcription factors (TFs) that environmental stress; gene play essential roles in diverse stress responses, developmental, and physiological processes.
    [Show full text]
  • Concluding Remarks
    Concluding Remarks The bulk of secretory material necessary for the encapsulation of spermatozoa into a spermatophore is commonly derived from the male accessory organs of re­ production. Not surprisingly, the extraordinary diversity in size, shape, and struc­ ture of the spermatophores in different phyla is frequently a reflection of the equally spectacular variations in the anatomy and secretory performance of male reproductive tracts. Less obvious are the reasons why even within a given class or order of animals, only some species employ spermatophores, while others de­ pend on liquid semen as the vehicle for spermatozoa. The most plausible expla­ nation is that the development of methods for sperm transfer must have been in­ fluenced by the environment in which the animals breed, and that adaptation to habitat, rather than phylogeny, has played a decisive role. Reproduction in the giant octopus of the North Pacific, on which our attention has been focussed, pro­ vides an interesting example. During copulation in seawater, which may last 2 h, the sperm mass has to be pushed over the distance of 1 m separating the male and female genital orifices. The metre-long tubular spermatophore inside which the spermatozoa are conveyed offers an obvious advantage over liquid semen, which could hardly be hauled over such a long distance. Apart from acting as a convenient transport vehicle, the spermatophore serves other purposes. Its gustatory and aphrodisiac attributes, the provision of an ef­ fective barrier to reinsemination, and stimulation of oogenesis and oviposition are all of great importance. Absolutely essential is its function as storage organ for spermatozoa, at least as effective as that of the epididymis for mammalian spermatozoa.
    [Show full text]
  • Disturbance and Recovery in a Changing World; 2006 June 6–8; Cedar City, UT
    Reproductive Biology of Larrea tridentata: A Preliminary Comparison Between Core Shrubland and Isolated Grassland Plants at the Sevilleta National Wildlife Refuge, New Mexico Rosemary L. Pendleton, Burton K. Pendleton, Karen R. Wetherill, and Terry Griswold Abstract—Expansion of diploid creosote shrubs (Larrea tridentata Introduction_______________________ (Sessé & Moc. ex DC.) Coville)) into grassland sites occurs exclusively through seed production. We compared the reproductive biology Chihuahuan Desert shrubland is expanding into semiarid of Larrea shrubs located in a Chihuahuan desert shrubland with grasslands of the Southwest. Creosote (Larrea tridentata) isolated shrubs well-dispersed into the semiarid grasslands at the seedling establishment in grasslands is a key factor in this Sevilleta National Wildlife Refuge. Specifically, we examined (1) re- conversion. Diploid Larrea plants of the Chihuahuan Des- productive success on open-pollinated branches, (2) the potential ert are not clonal as has been reported for some hexaploid of individual shrubs to self-pollinate, and (3) bee pollinator guild Mojave populations (Vasek 1980). Consequently, Larrea composition at shrubland and grassland sites. Sampling of the bee guild suggests that there are adequate numbers of pollinators at establishment in semiarid grasslands of New Mexico must both locations; however, the community composition differs between occur exclusively through seed. At McKenzie Flats in the shrub and grassland sites. More Larrea specialist bee species were Sevilleta National Wildlife Refuge, there exists a gradient found at the shrubland site as compared with the isolated shrubs. in Larrea density stretching from dense Larrea shrubland Large numbers of generalist bees were found on isolated grassland (4,000 to 6,000 plants per hectare) to semiarid desert grass- bushes, but their efficiency in pollinating Larrea is currently un- land with only a few scattered shrubs.
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Effect of Different Mowing Regimes on Butterflies and Diurnal Moths on Road Verges A
    Animal Biodiversity and Conservation 29.2 (2006) 133 Effect of different mowing regimes on butterflies and diurnal moths on road verges A. Valtonen, K. Saarinen & J. Jantunen Valtonen, A., Saarinen, K. & Jantunen, J., 2006. Effect of different mowing regimes on butterflies and diurnal moths on road verges. Animal Biodiversity and Conservation, 29.2: 133–148. Abstract Effect of different mowing regimes on butterflies and diurnal moths on road verges.— In northern and central Europe road verges offer alternative habitats for declining plant and invertebrate species of semi– natural grasslands. The quality of road verges as habitats depends on several factors, of which the mowing regime is one of the easiest to modify. In this study we compared the Lepidoptera communities on road verges that underwent three different mowing regimes regarding the timing and intensity of mowing; mowing in mid–summer, mowing in late summer, and partial mowing (a narrow strip next to the road). A total of 12,174 individuals and 107 species of Lepidoptera were recorded. The mid–summer mown verges had lower species richness and abundance of butterflies and lower species richness and diversity of diurnal moths compared to the late summer and partially mown verges. By delaying the annual mowing until late summer or promoting mosaic–like mowing regimes, such as partial mowing, the quality of road verges as habitats for butterflies and diurnal moths can be improved. Key words: Mowing management, Road verge, Butterfly, Diurnal moth, Alternative habitat, Mowing intensity. Resumen Efecto de los distintos regímenes de siega de los márgenes de las carreteras sobre las polillas diurnas y las mariposas.— En Europa central y septentrional los márgenes de las carreteras constituyen hábitats alternativos para especies de invertebrados y plantas de los prados semi–naturales cuyas poblaciones se están reduciendo.
    [Show full text]
  • Check List of Noctuid Moths (Lepidoptera: Noctuidae And
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (2), стор. 87–97, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (2), pp. 87–97, 2016 ARTICLE UDC 595.786 CHECK LIST OF NOCTUID MOTHS (LEPIDOPTERA: NOCTUIDAE AND EREBIDAE EXCLUDING LYMANTRIINAE AND ARCTIINAE) FROM THE SAUR MOUNTAINS (EAST KAZAKHSTAN AND NORTH-EAST CHINA) A.V. Volynkin1, 2, S.V. Titov3, M. Černila4 1 Altai State University, South Siberian Botanical Garden, Lenina pr. 61, Barnaul, 656049, Russia. E-mail: [email protected] 2 Tomsk State University, Laboratory of Biodiversity and Ecology, Lenina pr. 36, 634050, Tomsk, Russia 3 The Research Centre for Environmental ‘Monitoring’, S. Toraighyrov Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan. E-mail: [email protected] 4 The Slovenian Museum of Natural History, Prešernova 20, SI-1001, Ljubljana, Slovenia. E-mail: [email protected] The paper contains data on the fauna of the Lepidoptera families Erebidae (excluding subfamilies Lymantriinae and Arctiinae) and Noctuidae of the Saur Mountains (East Kazakhstan). The check list includes 216 species. The map of collecting localities is presented. Key words: Lepidoptera, Noctuidae, Erebidae, Asia, Kazakhstan, Saur, fauna. INTRODUCTION The fauna of noctuoid moths (the families Erebidae and Noctuidae) of Kazakhstan is still poorly studied. Only the fauna of West Kazakhstan has been studied satisfactorily (Gorbunov 2011). On the faunas of other parts of the country, only fragmentary data are published (Lederer, 1853; 1855; Aibasov & Zhdanko 1982; Hacker & Peks 1990; Lehmann et al. 1998; Benedek & Bálint 2009; 2013; Korb 2013). In contrast to the West Kazakhstan, the fauna of noctuid moths of East Kazakhstan was studied inadequately.
    [Show full text]
  • Chemical Constituents from Erigeron Bonariensis L. and Their Chemotaxonomic Importance
    SHORT REPORT Rec. Nat. Prod . 6:4 (2012) 376-380 Chemical Constituents from Erigeron bonariensis L. and their Chemotaxonomic Importance Aqib Zahoor 1,4 , Hidayat Hussain *1,2 , Afsar Khan 3, Ishtiaq Ahmed 1, Viqar Uddin Ahmad 4 and Karsten Krohn 1 1Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany 2Department of Biological Sciences and Chemistry, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman 3Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan. 4H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan. (Received September 11, 2011; Revised May 9, 2012 Accepted June 15, 2012) Abstract: The study of the chemical constituents of the whole plant of Erigeron bonariensis (L.) has resulted in the isolation and characterization of a new and nine known compounds. The known compounds were identified as stigmasterol (1), freideline ( 2), 1,3-dihydroxy-3R,5 R-dicaffeoyloxy cyclohexane carboxylic acid methyl ester ( 3), 1R,3 R-dihydroxy- 4S,5 R-dicaffeoyloxycyclohexane carboxylic acid methyl ester ( 4), quercitrin ( 5), caffeic acid ( 6), 3-(3,4- dihydroxyphenyl)acrylic acid 1-(3,4-dihydroxyphenyl)-2-methoxycarbonylethyl ester (8), benzyl O-β-D-glucopyranoside (9), and 2-phenylethyl-β-D-glucopyranoside ( 10 ). The aromatic glycoside, erigoside G ( 7) is reported as new natural compound. The above compounds were individually identified by spectroscopic analyses and comparisons with reported data. The chemotaxonomic studies of isolated compounds have been discussed. Keywords: Erigeron bonariensis ; natural products; chemotaxonomic studies. 1.Plant Source Erigeron bonariensis (L.) is locally called “gulava” or “mrich booti” and is traditionally used in urine problems.
    [Show full text]