bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1 Repeated parallel losses of inflexed stamens in : phylogenomics and generic 2 revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae) 3

4 Elliot M. Gardner1,2,3,*, Mira Garner1,4, Robyn Cowan5, Steven Dodsworth5,6, Niroshini

5 Epitawalage5, Deby Arifiani7, S. Sahromi8, William J. Baker5, Felix Forest5, Olivier

6 Maurin5, Nyree J.C. Zerega9,10, Alexandre Monro5, and Andrew L. Hipp1,11

7

8 1 The Morton Arboretum, 4100 IL-53, Lisle, Illinois 60532, USA

9 2 Case Western Reserve University, Department of Biology, 2080 Adelbert Road, 10 Cleveland, Ohio 44106, USA (current affiliation)

11 3 Singapore Botanic Gardens, National Parks Board, 1 Cluny Road, 259569, Singapore 12 (current affiliation)

13 4 University of British Columbia, Faculty of Forestry, 2424 Main Mall, Vancouver, British 14 Columbia, V6T 1Z4, Canada (current affiliation)

15 5 Royal Botanic Gardens, Kew, Richmond, TW9 3AE, United Kingdom

16 6 School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, United Kingdom

17 (current affiliation)

18 7 Herbarium Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, 19 Cibinong, Jawa Barat, Indonesia

20 8 Center for Conservation Botanic Gardens, Indonesian Institute of Sciences, Bogor, 21 Jawa Barat, Indonesia

22 9 Chicago Botanic Garden, Plant Science and Conservation, 1000 Lake Cook Road, 23 Glencoe, IL, 60022, USA

24 10 Northwestern University, Plant Biology and Conservation Program, 2205 Tech Dr., 25 Evanston, IL, 60208, USA

26 11 The Field Museum, 1400 S Lake Shore Dr., Chicago, IL 60605, USA

27 a For correspondence, email [email protected] 28 29 30 Abstract

1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

31 We present a densely-sampled phylogenomic study of the mulberry tribe (Moreae, 32 Moraceae), an economically important clade with a global distribution, revealing multiple 33 losses of inflexed stamens, a character traditionally used to circumscribe Moreae. Inflexed 34 stamens facilitate ballistic pollen release and are associated with wind pollination, and the 35 results presented here suggest that losses of this character state may have evolved 36 repeatedly in Moraceae. Neither Moreae nor several of its major genera (, , 37 ) were found to be monophyletic. A revised system for a monophyletic Moreae is 38 presented, including the reinstatement of the genera Ampalis, Maillardia, Taxotrophis, and 39 Paratrophis, and the recognition of the new Afromorus, based on Morus subgenus 40 Afromorus. Pseudostreblus is reinstated and transferred to the Parartocarpeae, and 41 Sloetiopsis is reinstated and transferred to the Dorstenieae. The tribe Olmediae is reinstated, 42 replacing the , owing to the reinstatement of the type genus Olmedia, and its 43 exclusion from Moreae. Streblus s.s. is excluded from Moreae and transferred to the 44 Olmediae, which is characterized primarily by involucrate inflorescences without regard to 45 stamen position. Eight new combinations are made. 46 47 Keywords: Moraceae, mulberry family; Moreae, Olmedieae, Castilleae, Parartocarpeae, 48 Afromorus, Ampalis, , Maillardia, Milicia, Morus, Olmedia; Pachytrophe, 49 Paratrophis, Pseudostreblus, Sloetiopsis; , Streblus, Taxotrophis, Trophis. 50 51 52 Introduction 53 The preservation of plesiomorphic (ancestral) characters can result in species that 54 are similar in appearance but distantly related, connected only by a remote common 55 ancestor. The mulberry family (Moraceae Gaudich., seven tribes, ca. 39 genera and 1,200 56 species) illustrates this principle well. Inflexed stamens in bud—an adaptation to wind 57 pollination that allows explosive pollen dispersal when flowers open—were traditionally 58 used to define a tribe of the family, the Moreae (mulberries and their allies). Yet 59 phylogenetic analyses have revealed that inflexed stamens, an ancestral feature of both 60 Moraceae and their sister family Urticaceae (nettles), have been lost repeatedly (Clement &

2 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

61 Weiblen, 2009). Thus, for example, Cecropiaceae C.C. Berg, traditionally distinguished 62 from the nettle family by the absence of inflexed stamens, is in fact embedded within the 63 Urticaceae Juss. (Berg, 1978; Clement & Weiblen, 2009). Likewise, while mulberries 64 (Morus L.), paper mulberries ( L’Hér. ex Vent.), and osage oranges ( 65 Nutt.) were once treated as tribe Moreae Gaudich. on account of their inflexed stamens, 66 phylogenetic analyses reveal them to belong to three distinct clades, each containing an 67 assemblage of genera with and without inflexed stamens (Clement & Weiblen, 2009; 68 Zerega & Gardner, 2019). 69 This study focuses on the tribe Moreae, a clade of six genera and an estimated 66 70 species (Clement & Weiblen, 2009). This widespread group of contains species of 71 ecological and cultural importance, as well as the economically important white mulberry 72 (Morus alba L.), whose leaves sustain Bombyx mori L. (Bombycidae), the invertebrate 73 proletariat of the silk industry. 74 75 Morphological basis for higher classification in Moraceae 76 By the end of the nineteenth century, Engler (1889) had circumscribed a Moraceae 77 that is quite similar to the modern concept of the family, with two subfamilies: the 78 Moroideae, comprising tribes Dorstenieae Gaudich., Broussonetieae Gaudich., Fatouae 79 Engler, Moreae, and Strebleae Bureau, characterized by stamens inflexed in bud (broadly 80 construed, including where they straighten gradually rather than spring outward 81 suddenly); and the Artocarpoideae, composed of tribes Brosimae Trécul, Euartocarpeae 82 Trécul, Ficeae Dumort., and Olmedieae Trécul and characterized by stamens straight in 83 bud. The two most influential scholars of Moraceae classification in the 20th century were 84 E.J.H. Corner and C.C. Berg. Corner considered inflorescence architecture to be the most 85 important character for higher-rank within the family and inflexed stamens 86 consequently of secondary importance(Corner, 1962). Berg by contrast questioned the 87 utility of inflorescence architecture and took into account a variety of characters, especially 88 the presence of inflexed stamens (Berg, 1977b, 2001). 89 The taxonomic history of the family has leaned heavily on this stamen character. 90 Engler’s Moreae (1899), unchanged in substance from Bureau’s (1873), contained six

3 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

91 genera, Ampalis Bojer, Pachytrophe Bureau, Paratrophis Blume, Pseudomorus Bureau, 92 and Morus, all with inflexed stamens that spring out suddenly at anthesis (Table 1). 93 Corner’s expanded Moreae consisted of seven genera with either straight or inflexed 94 stamens, but with pistillate inflorescences never condensed into a head: Gaudich, 95 Morus, Sorocea A. St.-Hil. (apparently including Paraclarisia Ducke), Ruiz & 96 Pav., Ampalis, Pachytrophe, and Streblus Lour. (including Bleekrodea Blume, Paratrophis, 97 Pseudomorus, Taxotrophis Blume, Sloetiopsis Engl. and Neosloetiopsis Engl.). Corner 98 himself, however, found the diversity of his Moreae unsatisfactory, noting that “[t]oo many 99 genera on insufficient and invalid grounds trouble this small tribe” (Corner, 1962). Perhaps 100 in response, Berg’s Moreae comprised all of the genera with inflexed stamens and none 101 without, including Broussonetia and Maclura but excluding Sorocea and Clarisia, 102 providing a simple character with which to delimit the tribe(Berg, 2001; Berg & al., 2006). 103 Recent phylogenetic work has supported a third approach, with the Moreae 104 comprising six genera, including genera with both straight (Sorocea, Bagassa Aubl.) and 105 inflexed (Broussonetia, Maclura) stamens (Clement & Weiblen, 2009). These studies also 106 suggest that the character state of inflexed stamens is plesiomorphic and is the ancestral 107 state for both Moraceae and Urticaceae (Datwyler & Weiblen, 2004; Zerega & al., 2005; 108 Clement & Weiblen, 2009). Inflexed stamens, which are precursors to ballistic pollen 109 release, are associated with wind pollination (Bawa & Crisp, 1980; Berg, 2001), while the 110 loss of inflexed stamens is associated with animal pollination. Although dominant in the 111 Moreae, inflexed stamens also occur in two other tribes: Maclureae W.L. Clement & G. 112 Weiblen and Dorstenieae. Genera lacking inflexed stamens occur in all seven tribes of 113 Moraceae (Clement & Weiblen, 2009; Zerega & Gardner, 2019). 114 115 Taxonomic summary of Moreae 116 Following Clement & Weiblen (2009), the Moreae comprise six genera and an 117 estimated 66 species: Bagassa (1), Milicia Sim (2), Morus (16), Sorocea (16), Streblus 118 (23), and Trophis P. Browne. (8) (Berg, 1977a, 2001; Berg & al., 2006; Clement & 119 Weiblen, 2009; Filho & al., 2009; Machado & al., 2013; Santos & Neto, 2015). Here, we 120 present an overview of these genera.

4 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

121 Morus L., the true mulberries, is characterized by leaves with crenate margins and 122 trinerved bases, stamens inflexed in bud, and many-flowered pistillate spikes whose four- 123 parted perianths become fleshy in fruit, the aggregations superficially resembling a 124 blackberry. Morus comprises approximately 16 species whose delimitation requires further 125 research. There are three subgenera: Morus (ca. 14 species) which is found in temperate to 126 tropical Asia and from North America to Mexico; Gomphomorus Leroy, a single species 127 restricted to tropical South America; and Afromorus (Bureau ex Leroy), a single species 128 restricted to tropical Africa. Previous phylogenetic work has suggested that these three 129 subgenera may not form a monophyletic clade (Nepal, 2012). Milicia (2 spp., Africa) has 130 inflorescences which somewhat resemble those of Morus, but the leaves of Milicia, with 131 entire margins and pinnate venation, prevent any confusion of the two genera. 132 Streblus Lour., with 23 species from India to Southeast Asia and Oceania, is 133 morphologically heterogeneous, but its species are all characterized by stamens inflexed in 134 bud and pistillate flowers with more or less free tepals that enclose the fruit loosely or not 135 at all. Initially described by Loureiro based on the widespread S. asper Lour.—notable for 136 its discoid-capitate staminate inflorescences with the rudiments of an involucre—Streblus 137 was broadened by Corner (1962), bringing in as sections Taxotrophis, Phyllochlamys 138 Bureau, Paratrophis (including Pseudomorus), Pseudostreblus Bureau, Bleekrodea, and 139 Sloetia Teijsm. & Binn. (apparently including Sloetiopsis but without making any 140 combinations). None of these have discoid-capitate inflorescences; they mostly have 141 spicate staminate inflorescences, and the latter two can have bisexual inflorescences. 142 Corner viewed these sections as fragments of an ancient lineage preserving ancestral 143 characters (Corner, 1975). Following additional work by Corner (1970, 1975), Berg 144 included the genera Ampalis and Pachytrophe as section Ampalis (Bojer) C.C. Berg, 145 subsumed Sloetiopsis and section Taxotrophis into section Streblus, and excluded section 146 Bleekrodea, reinstating it as a genus (Berg, 1988). Berg later reinstated section Taxotrophis, 147 whose species are unique in bearing axillary spines (Berg, 2005; Berg & al., 2006). In 148 2009, Clement and Weiblen reinstated Sloetia at generic rank and transferred it and 149 Bleekrodea to Dorstenieae based on phylogenetic evidence (Clement & Weiblen, 2009).

5 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

150 Trophis P. Browne is characterized by stamens inflexed in bud, spicate staminate 151 inflorescences, and tubular pistillate perianths, becoming fleshy and enclosing the fruit, 152 except for the monotypic section Olmedia (Ruiz & Pav.) C.C. Berg (T. caucana), which has 153 discoid-capitate staminate inflorescences with an involucre. Trophis (regrettably conserved 154 over Linnaeus’s Bucephalon L.) as recognized by Berg (1988, 2001) had five sections: 155 Trophis, restricted to Latin America; Calpidochlamys (Diels) Corner (previously included 156 in Paratrophis and Uromorus), restricted to Southeast Asia (Corner, 1962); Maillardia 157 (Frapp. ex Duch.) C.C. Berg, restricted to Africa; Malaisia (Blanco) C.C. Berg, restricted to 158 Southeast Asia; and Olmedia, restricted to Latin America. The sinking of Olmedia into 159 Trophis by Berg (1988), requiring the re-typification of the tribe Olmedieae Trécul, which 160 became Castilleae C.C. Berg. Recently, Malaisia Blanco was reinstated as a genus and 161 transferred to Dorstenieae based on phylogenetic evidence (Clement & Weiblen, 2009), 162 reducing the current number of sections to four. 163 Two Neotropical genera included in Moreae by Clement and Weiblen (2009) but 164 not by Berg (2001) have straight stamens. While the monotypic Bagassa Aubl., with its 165 long staminate catkins, is wind pollinated (Bawa & Crisp, 1980), evidence suggests that 166 Sorocea A. St.-Hil. (19 spp.), which produces racemose staminate inflorescences that do 167 not have as many flowers as those of Bagassa, likely contains both wind- and insect- 168 pollinated species (Zapata & Arroyo, 1978; Bawa & al., 1985; Lewis, 1986). The pistillate 169 perianths are subtended by pluricellular hairs, believed to serve as a substrate for a fungus 170 which, in turn attracts pollinators (Berg, 2001). The staminate flowers of Sorocea affinis 171 Helmsl. are apparently fragrant (fide S. Zona 778, 21 Nov. 1997, FTBG♂♀), suggesting 172 insect pollination for that species. If insect pollination is confirmed in Sorocea, it would 173 likely represent another transition from ancestral wind to derived insect pollination in 174 Moraceae. 175 Disagreement between the two principal recent monographers of the Moraceae, 176 Corner (1962) and Berg (2001, 2005, 2006), over the delimitation of the Moreae has been 177 compounded by a series of phylogenies based on the analysis of molecular (DNA 178 sequence) data that have redefined genera and their relationships. This has resulted in a 179 poorly delimited tribe, both with respect to diagnostic morphological characters, the genera

6 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

180 it comprises, and the rank of several taxa (see above). Ensuring that the tribe and its genera 181 are monophyletic will result in a classification that better reflects evolutionary history, 182 providing a framework for answering broader scientific questions. Our aim, therefore, was 183 to generate a comprehensive phylogeny of the Moreae (Fig. 1) and its near allies by 184 sampling all of the potential genera and species in the tribe sensu Berg, and sensu Clement 185 & Weiblen (2009) and use this to redelimit the tribe and its genera. We aimed to do so 186 through increased taxon and genome sampling compared to previous studies, including a 187 nearly comprehensive sample of the taxa in Moreae (56/66 species) and the allied tribes 188 Artocarpeae (76/83 taxa) and Maclureae (12/12). Our data set combines phylogenomic data 189 generated using two largely non-overlapping sets of enrichment baits, one developed 190 specifically for the Moraceae (Gardner et al., 2016), the other for the whole of the 191 Angiosperms (Johnson & al., 2019), allowing us to explore the possibilities and challenges 192 of combining samples based on largely non-overlapping loci. The resulting generic revision 193 lays the groundwork for species-level revisionary work and provides clarity to this 194 economically important clade. 195 We also set out to reconstruct the evolutionary history of inflexed stamens within 196 Moraceae using ancestral state reconstruction. The loss of inflexed stamens in 197 Castilleae+Ficeae and Artocarpeae have been associated with transitions from wind to 198 animal pollination (Momose & al., 1998; Sakai & al., 2000; Datwyler & Weiblen, 2004; 199 Gardner & al., 2018). A more complete picture of evolutionary transitions between inflexed 200 and straight stamens may help focus further research on transitions in pollination biology 201 with Moraceae. 202 203 Materials and Methods 204 We used target enrichment sequencing (HybSeq) (Weitemier & al., 2014) to capture 205 333 genes previously developed for phylogenetic work in Moraceae (the “Moraceae333”) 206 (Gardner & al., 2016; Johnson & al., 2016). This method allows for efficient capture of 207 hundreds of loci and is suitable for both fresh material and degraded DNA from herbarium 208 material (Villaverde & al., 2018; Brewer & al., 2019), which comprises much of the 209 material employed in this study.

7 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

210 211 Taxon sampling, library preparation, and sequencing 212 We sampled 56 out of 66 species (and all genera) in Moreae as well as select outgroup 213 taxa from Artocarpeae using DNA from leaf tissue preserved on silica gel or—in most 214 cases—samples from herbarium specimens (Table S1). In either case, DNA was extracted 215 using a modified CTAB method, usually with increased incubation times to maximize yield 216 from herbarium tissue(Doyle & Doyle, 1987; Hale & al., 2020). Samples were quantified 217 using a Qubit fluorometer (Invitrogen, Life Technologies, California, USA), and herbarium 218 samples were run on a gel to test for degradation. For most samples 200 ng of DNA was 219 used for library preparation; for some low-yield samples, as little as 50 ng was used, and for 220 very degraded samples, as much input as possible was used, up to 400 ng. Undegraded 221 DNA was fragmented either using NEB DNA Fragmentase (New England Biolabs, 222 Ipswich, Massachusetts, USA) or on a Covaris M220 (Covaris, Wobum, Massachusetts, 223 USA). DNA samples with an average fragment size less than 500 bp were not fragmented 224 at all, and partially-degraded samples with an average fragment size of over 500 bp were 225 fragmented on the Covaris M220. TruSeq-style library preparation was carried out using 226 either the KAPA Hyper Prep kit (Kapa Biosystems, Wilmington, MA) or the NEB DNA 227 Ultra 2 kit following the manufacturer’s protocols, except that end repair, A-tailing, and 228 adapter ligation were carried out in reduced-volume reactions (0.25x for KAPA and 0.5x 229 for NEB) to reduce costs. Final products were quantified on the Qubit and combined in 230 equal molecular weights into pools of 16–20 samples. The pools totaled 1,200 µg each if 231 enough library preparation was available. Pools were hybridized for 16–24 hours to custom 232 Moraceae probes (Gardner et al, 2016) using a MYBaits kit (Arbor Biosciences, Ann 233 Arbor, Michigan, USA) following the manufacturer’s protocol, except that the probes were 234 diluted 1:1 with nuclease-free water. Hybridization products were reamplified using KAPA 235 Hot Start PCR reagents following the MYbaits protocol, quantified on the Qubit, and 236 quality-checked on an Agilent BioAnalyzer (Agilent Technologies, Palo Alto, California, 237 USA). Samples with adapter dimer peaks were cleaned using 0.7x SPRI beads and re-run 238 on the Qubit and BioAnalyzer. An initial sequencing run took place on a MiSeq 2 x 300bp 239 run (v3) (Illumina, San Diego, California, USA) at the Field Museum of Natural History,

8 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

240 and then additional samples were sequenced on a HiSeq 4000 2 x 150bp run at the 241 Northwestern University Genomics Core. 242 We also included 47 Moraceae and Urticaceae samples enriched for the 243 Angiosperm353 probes and sequenced as part of the Plant and Fungal Trees of Life project 244 (PAFTOL, RBG Kew; https://www.kew.org/science/our-science/projects/plant-and-fungal- 245 trees-of-life; Table S1). Sample preparation and sequencing followed Johnson et al. (2019). 246 The PAFTOL samples were enriched with a universal probe set developed for angiosperms 247 (the “Angiosperms353”). 248 Finally, we used samples sequenced for previous phylogenetics projects in 249 J.R. Forst. & G. Forst. and Parartocarpeae Zerega & E.M. Gardner to complete our 250 sampling (Johnson & al., 2016; Gardner, 2017; Kates & al., 2018; Zerega & Gardner, 251 2019). The final dataset contained 247 samples. 252 253 Assembly of reads 254 We trimmed reads using Trimmomatic (ILLUMINACLIP: TruSeq3-PE.fa:2:30:10 255 HEADCROP:3 LEADING:30 TRAILING:25 SLIDINGWINDOW:4:25 MINLEN:20) 256 (Bolger & al., 2014) and assembled them with HybPiper, which produces gene-by-gene, 257 reference-guided, de novo assemblies (Johnson & al., 2016). For the samples enriched with 258 the Angiosperms353 baits, we used the reference described by Johnson et al. (2019), and 259 for the samples enriched with the Moraceae333 baits, we used the reference described in 260 Zerega & Gardner (2019). To increase overlap between the two data sets beyond the 5 261 genes they inherently have in common, we used HybPiper to assemble the 262 Angiosperms353-enriched reads using the Moraceae333 targets and vice-versa, in order to 263 capture any additional genes found in off-target reads. The exception was most of the 264 Artocarpus data set, which was previously assembled for another study using only the 265 Moraceae333 targets. We used the HybPiper script “intronerate.py” to build “supercontig” 266 sequences for each gene, consisting of exons as well as any assembled flanking non-coding 267 sequences (intronic or intergenic). To these new assemblies, we added 76 Moraceae333 268 assemblies from Gardner (2017) to complete sampling for the Artocarpeae. 269

9 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

270 Main phylogenetic analyses 271 The full data set was analyzed using the “exon” sequences to ensure good alignment 272 across the entire family. To maximize phylogenetic resolution within Moreae, a smaller 273 data set consisting only of Moreae taxa and a single outgroup taxon (Artocarpus 274 heterophyllus) was analyzed using the “supercontig” sequences but following the same 275 methodology. For each of the 686 genes assembled, we discarded sequences shorter than 276 25% of the average length for the gene and discarded genes containing sequences for less 277 than 30 samples. We aligned each gene with MAFFT (Katoh & Standley, 2013)and used 278 Trimal (Capella-Gutiérrez & al., 2009) to discard sequences with an average pairwise 279 identity of less than 0.5 to all other sequences in the alignment (indicative of poor a poor 280 quality sequence that could not be properly aligned) as well as columns containing more 281 than 75% gaps. We used RAxML 8.2.4 (Stamatakis, 2014) to estimate a maximum- 282 likelihood tree for a partitioned supermatrix of all genes as well as for each gene 283 individually (GTRCAT model, 200 bootstrap replicates). We then used ASTRAL-III 284 (Zhang & al., 2017), a summary-coalescent method, to estimate a species tree from all gene 285 trees, estimating node support using both bootstrap (160 replicates, resampling across and 286 within genes) and local posterior probability (normalized quartet scores, representing gene 287 tree concordance). Finally, we used ASTRAL-III to test whether, for each node, the null 288 hypothesis of a polytomy could be rejected (Sayyari & Mirarab, 2018). Alignment, 289 trimming, and estimation of gene trees were parallelized using GNU Parallel (Tange, 290 2018). 291 292 Whole chloroplast phylogenetic tree 293 We also built a whole-chloroplast phylogenetic tree as follows. Rather than 294 assembling full-length genomes, which can be extremely slow to align, we assembled and 295 aligned the genomes in sections, dramatically speeding up the process. We created 296 HybPiper targets using the chloroplast genome of Morus indica L. (NCBI RefSeq accession 297 no. NC_008359.1) and the associated gene annotations. Each target consisted of a gene 298 feature concatenated with any internal or subsequent non-coding sequence, terminating one 299 base before the next gene feature began. These intervals were generated by manually

10 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

300 editing the NCBI gff3 file in Excel (Microsoft Corp., Redmond, Washington, USA) and 301 then extracted using BedTools (Quinlan & Hall, 2010). Assemblies for all Moraceae 302 samples and Boehmeria nivea (L.) Gaudich. were carried out in HybPiper using a coverage 303 cutoff of 2 and otherwise with default parameters. Within each target, sequencing less than 304 25% of the average length were discarded, and after alignment with MAFFT, sequences 305 with an average pairwise identity of less than 0.7 were discarded (the higher cutoff 306 reflecting the conserved nature of chloroplast DNA). Alignments were then concatenated 307 into a supermatrix, and samples with more than 50% undetermined characters were 308 discarded. Alignments were then rebuilt, filtered, and concatenated, and columns in the 309 final supermatrix with more than 75% missing characters were discarded. A maximum- 310 likelihood tree was generated using RAxML 8.2.4 under the GTRCAT model, with 200 311 rapid bootstrap replicates. 312 313 Phylogenetic network analysis 314 To further investigate relationships within the Paratrophis clade, including the proper 315 placement of Morus insignis and Trophis philippinensis (Bureau) Corner, we constructed 316 phylogenetic networks based on two reduced 8-taxon datasets (“exon” and “supercontig”) 317 consisting of those taxa plus Streblus anthropophagorum (Seem.) Corner, S. glaber (Merr.) 318 Corner, S. glaber subsp. australianus (C.T. White) C.C. Berg, and S. heterophyllus (Blume) 319 Corner, with S. mauritianus (Jacq.) Blume as the outgroup. Alignment preparation followed 320 the workflow outline above except that only genes with sequences for all eight taxa were 321 retained. Rooted gene trees were used to infer the network in PhyloNet using the 322 “InferNetwork_MPL” command, allowing a maximum of four hybridization events and 323 collapsing gene tree nodes with less than 30% bootstrap support (Yu & Nakhleh, 2015; 324 Wen & al., 2018) (Wen et al., 2018; Yu and Nakhleh, 2015); AIC was scored for the best 325 five networks from 10 runs, using the number of branch lengths and hybridization events 326 calculated as the number of parameters (Kamneva & al., 2017). 327 328 ITS and rbcL phylogenetic trees

11 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

329 While we did not have our own sequences for Streblus tonkinensis (Eberh. & Dubard) 330 Corner, S. ascendens Corner, S. banksii (Cheeseman) C.J. Webb, and S. smithii 331 (Cheeseman) Corner, either ITS or rbcL sequences existed in NCBI GenBank for these taxa 332 (Fig. S2). We were not able to examine the underlying specimens ourselves, but we 333 considered the chances of misidentification low because those species are morphologically 334 and/or geographically distinctive. We constructed ITS and rbcL data sets from our own 335 samples using HybPiper, using Streblus sequences for these loci (obtained from GenBank) 336 as targets and reducing the coverage cutoff at 2 to recover the loci from off-target reads. To 337 these sequences, we added GenBank sequences of Streblus taxa as well as Trophis caucana 338 (Pittier) C.C. Berg. For each locus, we aligned sequences with MAFFT, discarded short 339 sequences (<490 bp), trimmed alignments to remove columns with over 75% gaps, and 340 built maximum-likelihood trees using RAxML (GTRGAMMA, 1000 rapid bootstraps). 341 342 Divergence time estimation 343 The supermatrix maximum-likelihood tree was time calibrated using ape v 5.3 344 (Paradis & Schliep, 2019) in R v 3.5.1 (Team, 2019). First, the tree was pruned of duplicate 345 taxa and non-Moraceae outgroup taxa, and edge lengths (in substitutions per site) were 346 multiplied by the number of sites in the alignment (to convert them to substitutions). The 347 following stem nodes were constrained with minimum ages (in million years, Ma) based on 348 fossil data, following(Zhang & al., 2019): , 56 Ma; Broussonetia, 33.9 Ma; Morus 349 (subg. Morus, based on U.S.S.R. locality of the fossil), 33.9 Ma; and Artocarpus, 64 Ma. 350 The crown node of Moraceae was constrained to a minimum age of 73.2 Ma and a 351 maximum age of 84.7 Ma.(Zhang & al., 2019), which had a more extensive outgroup 352 sampling that we have here. The tree was then time-calibrated using the chronos function 353 under two different models (“relaxed” and “correlated”) (Kim & Sanderson, 2008; Paradis, 354 2013). The smoothing parameter (λ) was chosen using the cross-validation method in the

355 chronopl function (testing λ = 0 and 0-5 through 1015), selecting the value of λ that 356 minimized the cross-validation statistic (Sanderson, 2002). The resulting trees were 357 visualized using the densiTree function in phangorn 2.4.0 (Schliep, 2011), and the time 358 calibrated tree representing the central tendency of these analyses was selected for use in all

12 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

359 further analyses, also taking into account the results of past family-wide studies. As the 360 penalized likelihood approach used does not integrate over model uncertainty or 361 uncertainty in calibration placement and timing, confidence intervals on node ages are not 362 provided in this study. A geologic timescale based on the strat2012 dataset added to tree 363 figures using PHYLOCH v 1.5-3 (Heibl, 2008). 364 365 Ancestral state reconstruction for inflexed stamens 366 All taxa were coded for presence (1) or absence (0) of inflexed stamens in bud. 367 Taxa such as Dorsteniae with stamens that are inflexed in bud but gradually straighten were 368 coded as 0. We reconstructed ancestral character states on the entire phylogeny by 369 stochastic mapping using the make.simmap function in the phytools v 0.6-99 (Revell, 370 2012). We also tested for trait-associated shifts in diversification rates using BAMM v 371 2.5.0 (Rabosky & al., 2013, 2014a; Rabosky, 2014), specifying the amount of missing taxa 372 per clade to account for the high proportion of missing taxa in Ficeae, Castilleae, and 373 Dorstenieae. Parameters were optimized using BAMMtools v 2.1.7 (Rabosky & al., 374 2014b). We also tested for trait-dependent diversification using diversitree v 0.9-13 375 (FitzJohn, 2012). We evaluated BiSSE and trait-independent models on the entire tree and 376 on a pruned tree consisting only of the densely-sampled Maclureae+Moreae+Artocarpeae 377 clade. 378 Reads from have been deposited in Genbank (Non-PAFTOL samples: BioProject 379 PRJNA322184; PAFTOL samples: BioProject PRJEB35285, subprojects PRJEB37667 for 380 Moraceae and PRJEB37665 for Urticaceae). Tree files and scripts outlining the 381 phylogenetic analyses have been deposited in the Dryad Data Repository (###TBA###). 382 383 Results 384 The final data set contained 247 samples, 47 enriched with the Angiosperms353 385 baits, 196 enriched with the Moraceae333 baits, and 4 extracted from whole genomes) and 386 619 genes (286 Angiosperms353 and all of the Moraceae333) (Table S1). The “exon” 387 supermatrix (all taxa) contained 613,126 characters, and the “supercontig” supermatrix

13 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

388 (Moreae and select outgroup taxa only) contained 799,926 characters. The chloroplast data 389 set contained 113 loci. 390 On average, we assembled 39 Moraceae333 genes from the Angiosperms353- 391 enriched samples and 20 Angiosperms353 genes from the Moraceae333-enriched samples, 392 and the average pairwise overlap in assembled loci was 210 (Tables S1, S2). Nineteen taxa 393 were represented in both sets of samples, and 15 of these were always monophyletic (Figs. 394 2, 3). Twelve resolved as sister pairs: decipiens (31 loci overlapping), Bagassa 395 guianensis Aubl. (38), amazonicus (Ducke) Fosberg (22), Batocarpus 396 orinocensis H. Karst. (34), alicastrum Sw. (42), Clarisia racemosa Ruiz & Pav. 397 (59), Maclura africana (Bureau) Corner (213), Milicia excelsa (Welw.) C.C. Berg (45), 398 Streblus asper (Retz.) Lour. (75), Streblus mauritianus (Jacq.) Blume (40), Streblus 399 usambarensis (Engl.) C.C. Berg (43), and Trophis caucana (32). Three more represented 400 by more than two samples always resolved as a clade: Sorocea bonplandii (Baillon) W.C. 401 Burger, Lanj. & de Boer (3 samples; 19–35 loci overlapping), Maclura tinctoria (L.) D. 402 Don ex Steud. (4 samples; 37–43 loci overlapping), and Malaisia scandens (Lour.) Planch. 403 (3 samples; 27–43 loci overlapping). Three additional taxa resolved as sister pairs in the 404 ASTRAL analysis but as a grade in the supermatrix analysis: Maclura cochinchinensis 405 (Lour.) Corner (28 loci overlapping), Streblus heterophyllus (Blume) Corner (50), and 406 Trophis montana (Leandri) C.C. Berg (56). Only one species, Utsetela gabonensis Pellegr. 407 (18 loci overlapping) was never monophyletic, always forming a grade with U. neglecta 408 Jongkind. 409 The supermatrix and species trees were broadly concordant except within 410 Artocarpus, where the species tree was much more consistent with previous analyses within 411 that genus (Gardner et al., in review) (Figs. 2, 3). Otherwise, most differences were at 412 shallow phylogenetic depths, such as relationships within Streblus section Paratrophis. For 413 both data sets, the polytomy hypothesis was rejected (P < 0.05) for Moraceae and all tribe 414 and genus-level clades (following the revised classification presented below) (Figs. 2, 3). 415 Of the genera in Moreae sensu Clement & Weiblen, only Milicia and Sorocea were 416 monophyletic; Morus, Streblus, and Trophis were not; Bagassa is monotypic and resolved 417 as sister to Sorocea, with which it shares straight stamens. Four Moreae species resolved

14 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

418 with other tribes: Trophis caucana was nested within Castilleae, Streblus asper (Retz.) 419 Lour. was sister to Castilleae, Streblus indicus (Bureau) Corner was sister to 420 Parartocarpeae, and Streblus usambarensis was nested within Dorstenieae. Moreae was 421 otherwise monophyletic, comprising the following subclades: (1) Streblus section 422 Taxotrophis, sister to all other Moreae; (2) (a) Trophis section Maillardia, (b) Milicia + 423 Morus subgenus Afromorus, (c) Streblus section Ampalis, (d) Streblus section Paratrophis 424 in part + Morus subgenus Gomphomorus, (e) Streblus section Paratrophis in part + Trophis 425 section Calpidochlamys; (3) Bagassa + Sorocea; (4) Trophis sections Trophis and 426 Echinocarpa C.C. Berg + Morus. These are roughly geographic clades: (1) Southeast Asia; 427 (2) (a) Madagascar, (b) Southeast Africa, (c) Madagascar, (d) Pacific + South America, (e) 428 Southeast Asia + Pacific; (3) South America; (4) South America. 429 While Trophis philippinensis was inside the Paratrophis clade in all analyses, the 430 position of Morus insignis was not stable. In the “exon” analyses, it was always in 431 Paratrophis (Fig. 2), although the polotomy hypothesis could not be rejected for its 432 position as sister to S. anthropophagorum+S. heterophyllus. In the “supercontig” and 433 chloroplast analyses, it was sister to Paratrophis, and the polotomy test was rejected for 434 that node (Figs. 3, S1). In the five phylogenetic networks reported (Fig. 4, Table S3), M. 435 insignis was inside Paratrophis in three of them, had a hybrid origin involving Paratrophis 436 in one, and was only unambiguously sister to Paratrophis in one network, although even in 437 that one it was involved in a hybridization involving Paratrophis. 438 The chloroplast phylogenetic tree (Fig. S1) was generally in agreement with the 439 nuclear phylogenetic trees, with three notable differences. Streblus indicus and the 440 Parartocarpeae formed a grade paraphyletic to Dorstenieae, Castilleae, and Ficeae, rather 441 than a clade. Streblus zeylanicus (Thwaites) Kurz was sister to S. taxoides (B. Heyne ex 442 Roth) Kurz (instead of sister to all of section Taxotrophis), although with low support 443 (62%), and S. glaber subsp. australianus was not sister to subsp. glaber, although its 444 placement was not strongly supported (80%). Finally, Morus insignis was sister to 445 Paratrophis, agreeing with the “supercontig” analysis but not the “exon” analysis. 446 The ITS and rbcL phylogenetic trees based on few characters, were not very well 447 resolved, with only few nodes attaining 100% bootstrap support (Fig. S2). Nevertheless,

15 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

448 with the exception of a few stray taxa (one Dorstenia sample in ITS and one Streblus 449 indicus samples in rbcL), both phylogenetic trees reconstructed monophyletic tribes with at 450 least moderate support. In the ITS phylogenetic tree, Streblus smithii and S. banksii were 451 both in a well-supported clade comprising section Paratrophis, and S. tonkinensis was part 452 of the Castilleae clade, which also contained S. asper and Trophis caucana. In the rbcL 453 phylogenetic tree, the two Streblus ascendens samples, the four samples of the 454 undetermined Streblus from Papua New Guinea, and S. smithii were part of a well- 455 supported clade comprising section Paratrophis. 456 457 Time-calibration and ancestral state reconstruction 458 The cross-validation criterion was minimized by a smoothing parameter (λ) value of

459 106. The tree calibrated under the correlated model (logLik = -17; p-logLik = -17; ΦIC = 460 1108) was less sensitive to changes in λ and generally had younger ages than the tree 461 calibrated under the relaxed model (logLik = -56.7; p-logLik = -53129706, ΦIC = 462 4209013), the latter of which had perhaps implausibly long terminal branches (Table 2, Fig. 463 S3). The crown age of Moreae was Paleocene (59.1 Ma) under the correlated model and 464 late Cretaceous (75.4 Ma) under the relaxed model. Because the correlated tree was more 465 consistent with past family-wide studies (Zerega & al., 2005; Zhang & al., 2019), we used 466 that tree for all further analyses (Fig. 5). The BAMM analysis found a single credible rate 467 shift, not surprisingly at the crown node of Ficus (Fig. S4); that rate shift was—also not 468 surprisingly—associated with a loss of inflexed stamens, which are never found in Ficus (P 469 = 0.035); no rate shifts were found within Moreae. Ancestral reconstruction on the entire 470 tree found that ancestral Moraceae had stamens inflexed in bud; these were lost nine times 471 (in Ficeae, Olmedieae [=Castilleae], Parartocarpeae, twice in Dorstenieae, Maclura section 472 Cudrania (Trécul) Corner, Artocarpeae, Bagassa, and Sorocea) and regained once (in 473 Trophis caucaua) (Fig. 6). Model testing on both the whole tree and on the 474 Moreae+Artocarpeae+Maclureae subtree indicated that a BiSSE model was not 475 substantially better than a trait-independent model (Moreae only: AIC for BiSSE = 1110.4; 476 trait-independent = 1112.8; ΔAIC = 2.4; whole family: AIC for BiSSE = 1488.3; trait-

16 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

477 independent = 1490.4; ΔAIC = 2.1). In any event, the reconstructions were identical (Figs. 478 6). 479 480 481 Discussion 482 483 Sequencing and combination of data sets 484 This study was materially improved by our ability to combine samples enriched 485 with two largely non-overlapping bait sets. Despite minimal by-design overlap, we were 486 able to assemble many overlapping loci for samples with moderate to deep coverage (Table 487 S2), adding taxa that would not otherwise have been included in the study and replicating 488 taxa to confirm unexpected phylogenetic placement (e.g, Streblus indicus). Taxa replicated 489 across the two data sets performed well in phylogenetic analyses, with 15 out of 19 always 490 resolving as monophyletic in supermatrix analyses and 18/19 so resolving in ASTRAL 491 analyses, with only Utsetela gabonensis always forming a grade instead (with a difficult-to- 492 distinguish congener). Our results should embolden others to combine and repurpose data 493 sets in similar ways. 494 495 Higher taxonomy in Moraceae and the delimitation of the tribe Moreae 496 Our results support Corner’s overall approach to the classification of Moraceae, if 497 not all of its details, including the primacy of inflorescence architecture and the 498 unreliability of inflexed stamens for higher taxonomy (Corner, 1962). Inflexed stamens are 499 a plesiomorphy that was lost nine times in Moraceae (Fig. 6), a preserved ancestral 500 character whose past taxonomic importance accounts for the rather extreme non- 501 monophyly of the Moreae. Streblus s.l. provides the best illustration of this principle, 502 appearing in four out of seven tribe-level clades within Moraceae. We may justly call its 503 disparate sections, as Corner did, “fragments of an ancestral Streblus.” (Corner, 1975)—or 504 in modern parlance, a paraphyletic remnant preserving plesiomorphic staminate flowers 505 similar to those likely to have occurred in the ancestor of all Moraceae, with four free tepals 506 and four inflexed stamens (Clement & Weiblen, 2009). If one of the goals of modern

17 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

507 systematics is to establish taxonomic frameworks that reflect as far as possible real 508 evolutionary relationships, our results may serve as a warning to carefully investigate 509 whether characters used for taxonomy are derived (synapomorphic) or ancestral 510 (symplesiomorphic). 511 Broadly speaking, a tribal delimitation based on inflorescence architecture 512 (supplemented with other characters in some cases) agrees best with the phylogenetic trees 513 presented here. Moreae (as revised below) have unisexual spicate or racemose 514 inflorescences (the pistillate ones sometimes uniflorous), with the globose-capitate pistillate 515 inflorescences of the monotypic Bagassa as the sole exception. Stamens may be either 516 inflexed or straight. Elsewhere in the family, racemes and spikes are rare, with the former 517 found in Maclura (in part) and the latter found in the related genera Broussonetia, 518 Allaeanthus Thwaites, and Malaisia and arguably in Batocarpus H. Karst. and Clarisia; all 519 of these have capitate pistillate inflorescences. The taxa of Streblus s.l. and Trophis s.l. that 520 must be excluded from Moreae all have inflorescences that do not fit our general rule: 521 discoid-capitate (Streblus asper and Trophis caucana), cymose (Streblus indicus), or 522 bisexual (Streblus usambarensis). In these cases, perhaps Corner did not take his emphasis 523 on inflorescence architecture quite far enough, including too wide of a variety in this one 524 tribe. In critiquing the utility of inflorescence architecture for classification, Berg (1977b) 525 noted the similarity in the inflorescence structure of Bleekrodea (then part of Moreae, and 526 included in Streblus by Corner) to that of Utsetela and Helianthostylis (Dorstenieae), an 527 observation that proved prescient when Bleekrodea was found to belong to Dorstenieae 528 (Clement & Weiblen, 2009). 529 Olmedieae (as revised below, including Castilleae) can be defined entirely based 530 upon the presence of a discoid inflorescence subtended by an involucre of imbricate bracts. 531 Two species with such involucres previously classified as Moreae, Streblus asper and 532 Trophis caucana (=Olmedia aspera) always appeared in the Olmedieae (=Castilleae) clade 533 in our analyses (Figs. 2–3). Olmedia aspera (=Trophis caucana)—the nomenclatural type 534 of the tribe Olmedieae—was transferred to Moreae because of its inflexed stamens and lack 535 of self-pruning branches (Berg, 1977b). In inflorescence morphology, however, T. caucana 536 closely resembles other Castilleae, always subtended by an involucre of imbricate bracts

18 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

537 (Berg, 1977b, 2001). The staminate inflorescences of Streblus asper are strikingly similar 538 to those of T. caucana, and it is remarkable that the affinity between S. asper and the 539 Olmedieae has not been seriously considered until now. Previous barcoding or phylogenetic 540 studies have placed Trophis caucana (Kress & al., 2009) and Streblus tonkinensis (Chen & 541 al., 2016) (closely allied to S. asper) in the Castilleae clade, but those results went 542 unremarked upon, perhaps because of the broad scale of the studies (respectively, forest 543 community phylogenetics and the vascular plants of China). 544 The remaining five tribes can all be broadly defined based on inflorescence 545 architecture as Corner argued, sometimes supplemented by other characters as Berg 546 preferred, allowing of course for the exceptions made inevitable by the vicissitudes of 547 evolution. Ficeae of course is defined by the syconium (essentially an urceolate disc that 548 has been closed at the top). Maclureae have densely-packed globose infructescences and 549 can be distinguished from Artocarpeae by their four stamens (inflexed in most sections) and 550 armature. Artocarpeae also have densely-packed globose infructescences but only one 551 straight stamen and no armature. Parartocarpeae have a few connate involucral bracts and 552 (in large part) flowers embedded in fleshy receptacles. Dorstenieae are perhaps the most 553 heterogenous group, but in large part they have bisexual inflorescences, often capitate or 554 discoid, and often with ballistically-ejected endocarps. 555 556 The role of inflexed stamens in the evolution of Moraceae 557 The repeated losses of inflexed stamens (Fig. 6), which are associated with wind 558 pollination (Bawa & Crisp, 1980; Berg, 2001), raise the possibility that transitions from 559 wind to animal pollination, which have already been documented in Moraceae (Momose & 560 al., 1998; Sakai & al., 2000; Datwyler & Weiblen, 2004; Gardner & al., 2018), are even 561 more common within the family. Generally considered rare (Culley & al., 2002), the shift 562 from wind to animal pollination may be a repeated feature of Moraceae deserving of further 563 investigation. Further investigation of Sorocea, with its straight stamens and sometimes- 564 scented inflorescences, may reveal that, like Artocarpus, it contains both wind and animal 565 pollination. And while little is known about pollination in the Dorstenieae, the presence of 566 unisexual inflorescences and inflexed stamens (e.g., Broussonetia) as well as bisexual

19 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

567 inflorescences with straight stamens (e.g., Brosimum, Dorstenia) raises the possibility of 568 transitions within that clade as well; taxa with inflexed stamens but bisexual inflorescences 569 such as Bleekrodea and Sloetia (which is visited by bees, EMG pers. obs.) may represent 570 remnants of an intermediate state. Finally, the conclusion that a single transition to insect 571 pollination preceded the split between the Ficeae and Olmedieae (Castilleae) should be 572 reevaluated in light of the position of Streblus asper as sister to the latter (Figs. 2, 3). The 573 only shift in diversification rates our analyses recovered was on the branch leading to the 574 very diverse Ficus, suggesting that the shift away from wind pollination may not by itself 575 lead to increased diversification. 576 577 Explanation of taxonomic revisions 578 We present a generic revision of Moreae (Fig. 7) based on the present phylogenetic 579 study as well as morphological characters. Arranging monophyletic and morphologically 580 coherent genera requires one change of rank and 8 new combinations, but no entirely new 581 names. These revisions provide a framework for within-genus revisionary work, which will 582 require more intensive sampling and review of specimens within the genera circumscribed 583 here. We provide an explanation of the taxonomic changes, followed by a formal 584 presentation of the affected tribes and genera, with complete species lists and synonymy. 585 Trophis and the reinstatement of the Olmedieae — To make Trophis monophyletic, 586 we propose that it be applied strictly to the Neotropical clade that includes the type species 587 Trophis americana L. (=Trophis racemosa (L.) Urb.) . To accomplish this, we reinstate the 588 genus Maillardia and transfer Trophis philippinensis to Paratrophis (discussed below), 589 reinstating its former name Paratrophis philippinensis (Bureau) Fern.-Vill. Because 590 Trophis caucana does not belong in Trophis or Moreae but rather with the members of 591 Castilleae, we reinstate its former name Olmedia aspera Ruiz & Pav. and transfer it to that 592 tribe, whose former name Olmedieae must now be reinstated on account of its priority. 593 Streblus — We restrict the genus Streblus to three species comprising most of 594 section Streblus—Streblus asper, Streblus tonkinensis, and Streblus celebensis C.C. Berg— 595 and transfer the genus to Olmedieae. Although S. celebensis was not included in our 596 phylogeny, the sub-involucrate inflorescences are similar to those of S. asper, with which S.

20 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

597 celebensis differs primarily in vegetative characters, the latter having broadly-toothed 598 margins in the distal half of the leaf. Both occur in Sulawesi, where at least one specimen 599 with intermediate leaf morphology has been collected (Sulawesi, Kendari: Kjellberg 452, 600 24 Feb. 1929, L, det. S. asper by E.J.H. Corner). We therefore retain its taxonomic position 601 in Streblus. The remaining member of section Streblus, S. usambarensis, belongs with 602 Dorstenieae, and we therefore transfer it to that tribe, reinstating its former name 603 Sloetiopsis usambarensis. Streblus indicus is sister to Parartocarpeae, and we therefore 604 reinstate its former name Pseudostreblus indicus and transfer it to Parartocarpeae. 605 The remaining species of Streblus s.l. are properly placed in Moreae but are still 606 paraphyletic. We therefore reinstate the genera Ampalis, Paratrophis, and Taxotrophis, 607 largely corresponding to the former sections but requiring some new combinations. 608 Paratrophis as presented here is united by spicate male inflorescences (usually) with peltate 609 or reniform bracts (except for Paratrophis philippinensis (=Trophis philippinensis), which 610 does not have fleshy tepals in fruit). Within Paratrophis we include Paratrophis ascendens 611 (Corner) E.M. Gardner (=Streblus ascendens Corner) based on its inflorescence 612 morphology and phylogenetic position in the rbcL tree (Fig. S2b). Its previous position 613 within the monotypic section Protostreblus was due to the type specimen’s spiral 614 phyllotaxy, but the latter may be atypical, as a more recent collection Womersley NGF 615 24791 (K, L, BO), has distichous leaves. Berg (1988), recognizing the close affinity 616 between Pachytrophe dimepate Bureau and Ampalis mauritiana, included both in Streblus 617 section Ampalis. Our phylogenetic results support this grouping, which we maintain in the 618 reinstated genus Ampalis, requiring one new combination. We follow Baillon in 619 maintaining Pachytrophe as a section of Ampalis in order to recognize the differences 620 between them in phyllotaxy, stipule amplexicaulity, and embryo characters. Further 621 intensive study of that species complex may of course warrant a different approach, 622 including potentially reducing both to a section of Paratrophis. Our species lists within the 623 former components of Streblus follow Berg’s approach (1988, 2006), with two exceptions. 624 We provisionally recognize Taxotrophis zeylanica (Thwaites) Thwaites as distinct from 625 Taxotrophis taxoides (B. Heyne ex Roth) W.L. Chew ex E.M. Gardner (=Streblus taxoides 626 (B. Heyne ex Roth) Kurz) based on our phylogenetic work and following the Flora of

21 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

627 China, which recognizes Streblus zeylanicus as distinct from S. taxoides based on its 628 clustered pistillate inflorescences. In addition, we provisionally recognize Paratrophis 629 australiana (=S. glaber subsp. australianus) as distinct from Paratrophis glabra based on 630 its geographic and consistent morphological distinctiveness. Taxotrophis and Paratrophis 631 warrant further investigation to refine species limits. 632 Morus — Morus has never been revised, and the species concepts are often based on 633 minor morphological differences (Berg et al., 2006; Berg 2001), and the paraphyly of 634 several species in our analyses suggests that a broad M. alba similar to Bureau’s (1873) 635 may be worth a second look. The monotypic subgenus Afromorus is sister to Milicia, but 636 the leaf morphology is markedly different, instead resembling other Morus species in its 637 trinerved based and crenate margins. We therefore raise Afromorus to genus level, requiring 638 one new combination. Morus insignis, from western Central and South America, bears a 639 remarkable resemblance to Paratrophis, in particular P. pendulina, especially in leaf 640 morphology, which in M. insignis is not consistently trinerved as in other mulberries. The 641 infructescence appears superficially like a mulberry because of its basally fleshy tepals, 642 although with more loosely-packed flowers, but closer inspection places it firmly within 643 Paratrophis, with drupes protruding from the persistent tepals, peltate bracts, and a sterile 644 groove. Because analyses differ as to whether M. insignis is sister to Paratrophis or part of 645 it, it seems best to treat them as congeners. 646 These changes result in ten monophyletic genera of Moreae, providing a framework 647 for revisionary work within the genera. Below, we present a complete genus and species list 648 for Moreae with brief descriptions for all genera and synonymies for new combinations and 649 reinstated or recircumscribed taxa. All cited protologues were reviewed, and dates for 650 works published piecemeal were confirmed by reference to Taxonomic Literature 2 online 651 (https://www.sil.si.edu/DigitalCollections/tl-2/index.cfm). 652 653 654 Taxonomic Treatment 655 656 Key to the tribes of Moraceae

22 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

657 Key to the tribes of Moraceae

658 This key follows the tribal circumscription of Clement & Weiblen (2009), as subsequently 659 modified by Zerega & al. (2010), Chung & al. (2017), Zerega & Gardner (2019), and this 660 study. 661

662 1. Inflorescence a syconium (urceolate with the opening entirely closed by ostiolar 663 bracts, flowers enclosed at all stages of development) – Ficeae (Ficus)

664 1. Inflorescence not a syconium (capitate, spicate, discoid, or urceolate, but 665 flowers not entirely enclosed at all developmental stages) – 2 666 667 2. Inflorescences (at least staminate) with an involucre of imbricate bracts; often 668 with self-pruning horizontal branches (except Olmedia, , Streblus) – 669 Olmedieae (, Antiaropsis, , , , Mesogyne, 670 , Olmedia, , Poulsenia, , Sparattosyce, 671 Streblus) 672 2. Inflorescences not involucrate; plants without self-pruning branches – 3 673 674 3. Plants woody; dioecious; pistillate inflorescences globose-capitate; spines axillary 675 or terminating short shoots – Chlorophoreae (Maclura) 676 3. Plants woody, herbaceous, or succulent; dioecious or monoecious; pistillate 677 inflorescences various; spines absent or if present, then pistillate inflorescences 678 not globose capitate – 4 679 680 4. Trees or shrubs; monoecious; inflorescences unisexual; staminate flowers with 681 one stamen (rarely two) – Artocarpeae (Artocarpus, Batocarpus, Clarisia) 682 4. Trees, shrubs, lianas, herbaceous, or succulent; monoecious or dioecious; 683 inflorescences unisexual or bisexual; staminate flowers with more than one 684 stamen (or if one stamen then dioecious) – 5 685

23 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

686 5. Trees or shrubs; monoecious; inflorescences unisexual; stamens straight in bud or 687 staminate flowers 5-parted and inflexed in bud – Parartocarpeae (Hullettia, 688 , Pseudostreblus) 689 5. Trees, shrubs, lianas, herbaceous, or succulent; monoecious or dioecious; 690 inflorescences bisexual or unisexual; stamens straight or inflexed in bud but 691 staminate flowers never 5-parted – 6 692 693 6. Trees, shrubs, lianas, herbaceous, or succulent; inflorescences bisexual (or if 694 unisexual then a climber or herbaceous); endocarp body often ballistically ejected 695 from infructescence – Dorstenieae in part (Allaeanthus in part, Bleekrodea, 696 Bosqueiopsis, Brosimum, Broussonetia in part, Dorstenia, Fatoua, 697 Helianthostylis, Malaisia, , Sloetia, Sloetiopsis, , Trilepsium, 698 Trymatococcus, Utsetela) 699 6. Trees or shrubs; inflorescences unisexual; endocarp body never ballistically 700 ejected – 7 701 702 7. Trees; stamens inflexed in bud; pistillate inflorescences globose-capitate – 703 Dorstenieae in part (Allaeanthus in part, Broussonetia in part) 704 7. Trees or shrubs; stamens inflexed or straight in bud; pistillate inflorescences 705 various, not globose-capitate if stamens are inflexed in bud – Moreae (Afromorus, 706 Ampalis, Bagassa, Maillardia, Milicia, Morus, Paratrophis, Taxotrophis, 707 Sorocea, Trophis) 708 709 710 Revisions 711 712 Tribe MOREAE 713 714 Moreae Gaudich. in Freyc., Voy. Uranie, Bot. (1830) 509.

24 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

715 Moreae subtribe Soroceae Miq in Martius, Fl. Bras. 4, 1, fasc. 12: 111 (1853), p.t. – 716 Soroceae (Miq.) C.C. Berg, Blumea 50: 537 (2005), p.p. 717 Strebleae Bureau in DC., Prodr. 17: 215 (1873), p.p. 718 719 Tree or shrubs, monoecious or dioecious. Leaves alternate or opposite, distichous or 720 spirally arranged; stipules lateral to amplexicaul. Inflorescences unisexual, uniflorous or 721 racemose, spicate, capitate, or globose; bracteate; tepals 4, free to connate; staminate 722 flowers with 4 stamens, filaments straight or inflexed in bud, pistillode usually present; 723 pistillate flowers with (mostly) free ovary, 2 stigmas. Fruits drupaceous or achene-like 724 with a fleshy persistent perianth, dehiscent or not. Seeds with or without endosperm, testa 725 usually with a thick vascularized part below the hilum, cotyledons equal or unequal, 726 straight or folded. 727 728 Genera and distribution: ten genera and 63 species with a worldwide distribution. 729 730 731 Afromorus 732 733 Afromorus E.M. Gardner, gen. nov. — based on Morus L. subg. Afromorus [A. Chev., 734 Rev. Bot. Appl. Agr. Trop. 29 (315–316): 70 (1949), invalidly published]; J.-F. Leroy, 735 Rev. Bot. Appl. Agr. Trop. 29 (323–324): 482 (1949) & Bull. Mus. Hist. Nat. Paris, 736 ser. 2, 21: 732 (1949). TYPE: Afromorus mesozygia (Stapf ex A. Chev.) E.M. 737 Gardner. 738 739 Dioecious trees, shoot apices deciduous. Leaves distichous, triplinerved or at least trinerved 740 at the base. Stipules free, more or less lateral. Inflorescences solitary or paired, bracts 741 of varying shapes. Staminate inflorescences spicate, to 2.5mm long, flower 4-parted, 742 tepals imbricate, ciliolate, pistillode small, apiculate. Pistillate inflorescences 743 subglobose, ca. 5 mm across, flowers 4-parted, tepals ciliolate, stigma bifid, equal or 744 unequal, arms filiform to 5 mm long. Infructescences subglobose or less often slightly

25 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

745 elongate, ca. 1 mm across, tepals fleshy, yellowish to greenish, drupes ca. 5 x 3–5 mm. 746 Seeds ca. 4.5 x 2.5–4.5 mm. 747 748 Species and distribution: one species, in tropical Africa. 749 750 Note: The leaves of Afromorus—with crenate margins and trinerved bases—bear a striking 751 resemblance to those of Morus, and it is thus not surprising that the former was heretofore 752 included within the latter. However, leaves of Afromorus are distinct in being usually 753 completely triplinerved, without an upper pinnately-veined portion as in most species of 754 Morus. As the genus is monotypic, the type must be its only species, Afromorus mesozygia 755 (Stapf ex A. Chev.) E.M. Gardner. 756 The genus name is based on Leroy’s invalidly published Morus subgenus 757 Afromorus, which was published only in French without a Latin diagnosis or description as 758 required under the Code. 759 760 1. Afromorus mesozygia (Stapf ex A. Chev.) E.M. Gardner, comb. nov. — based on Morus 761 mesozygia Stapf ex A. Chev. [Végétaux utiles de l’Afrique tropicale française 5: 263 762 (1909), nomen solum], J. Bot. (Morot) ser. 2, t. 2: 99 (1909). 763 Celtis lactea Sim, For. Fl. Port. E. Afr. : 97, t. 96 (1909), probably post-dating Morus 764 mesozygia (fide Berg. 1977) – Morus lactea (Sim) Mildbr., Notizbl. Bot. Gart. 765 Berlin 8: 243 (1922) – Morus mesozygia var. lactea (Sim) A. Chev., Rev. Bot. 766 Appl. Agr. Trop. 29: 72 (1949). 767 Morus mesozygia var. sanda A. Chev., Rev. Bot. Appl. Agr. Trop. 29: 71 (1949), 768 invalidly published (under Art. 39.1, Latin description or diagnosis lacking). 769 Morus mesozygia var. colossea A. Chev., Rev. Bot. Appl. Agr. Trop. 29: 71 (1949), 770 invalidly published (under Art. 39.1, Latin description or diagnosis lacking). 771 772 Ampalis 773 Ampalis Bojer, Hort. Maurit. 291 (1837) 774 Streblus Lour. subgen. Parastreblus Blume, Mus. Bot. Ludg.-Bat. 2: 89 (1856)

26 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

775 Streblus Lous. sect. Ampalis (Bojer) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 776 91(4): 358 (1988). 777 Pachytrophe Bureau, Prodr. [A.P. de Candolle] 17: 234 (1873). – Ampalis Boj. sect. 778 Pachytrophe (Bur.) Baillon, Hist. Pl. 6: 191 (1875–76) 779 780 Dioecious trees or shrubs. Leaves distichous to spirally arranged, pinnately veined. Stipules 781 free, nearly lateral. Inflorescences solitary or paired in the leaf axils, spicate, with an 782 abaxial sterile groove, flowers in longitudinal rows, bracts basalt attached to subpeltate. 783 Staminate inflorescences to 9 cm long, flowers 4-parted, decussate-imbricate, stamens 4, 784 inflexed in bud, pistillode present. Pistillate inflorescences to 12 cm long, tepals 4, separate, 785 decussate-imbricate, ovary free, stigmas 2, equal. Infructescences with enlarged fleshy 786 perianths ca. 6–8 mm long, surrounding drupaceous fruits, the latter ca. 5–6 mm long. 787 Seeds ca. 4 × 4 mm, testa thickened and not distinctly vascularized, cotyledons equal. 788 789 Species and distribution: Two species, native to Madagascar and Comoros. 790 791 Note: The two sections differ in their phyllotaxy (usually spiral in Ampalis and ditichous in 792 Pachytrophe) and stipules (free in Ampalis, connate in Pachytrophe). Sect. Ampalis 793 usually has somewhat larger inflorescences. 794 795 Ampalis sect. Ampalis 796 797 1. Ampalis mauritiana (Jacq.) Urb., Symb. Antill. 8: 165 (1920) – Morus mauritiana Jacq., 798 Collect. 3: 206 (“1789”, 1791) – Streblus mauritianus (Jacq.) Blume, Mus. Bot. 799 Lugd.-Bat. 2: 80 (1856). 800 Streblus maritimus Palaky, Catal. Pl. Madag. 2: 31 (1907) 801 Morus nitida Willem. In Useri, Ann. Bot. 18: 56 (1796) 802 M. ampalis Poir. In Lam., Encycl. Bot. 4: 380 (1797) 803 Trophis cylindrica Roxb., Fl. Indica 3: 599 (1832), pro syn. M. mauritianae. 804 Ampalis madagascariensis, Bojer, Hort. Maurit. 291 (1837) nom. illeg., pro syn.

27 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

805 Ampalis madagascariensis var. occidentalis Léandri, Mém. Inst. Sci. Madag., ser. B, 806 1: 12, pl. (1948). 807 Morus rigida Hassk., Cat. Hort. Bog. 74 (1844). 808 809 Ampalis Boj. sect. Pachytrophe (Bureau) Baillon, Hist. Pl. 6: 191 (1875–76) ≡ 810 Pachytrophe Bureau in A.DC, Prodr. 17: 234 (1873). – Type: Pachytrophe dimepate 811 Bureau. 812 813 2. Ampalis dimepate (Bureau) E.M.Gardner, comb. nov., based on Pachytrophe dimepate 814 Bureau in A.DC Prodr. 17: 234 (1873) – Streblus dimepate (Bureau) C.C.Berg, Proc. 815 Kon. Ned. Akad. Wetensch. C 91(4): 358 (1988). 816 Pachytrophe obovata Bureau, Prodr. [A.P. de Candolle] 17: 235 (1873). 817 Plecospermum bureaui A.G. Richt., Term. Füzetek 18: 296 (1895), nomen nudum et 818 superfl., pro. syn. nom. ined. “Plecospermum obovatum Bureau” (Boivin 1717, P). 819 Plecospermum (?) laurifolium Baill. in Grandidier, Hist. Madag. Vol. 35, Hist. Nat. 820 Pl., Tome 5, Atlas 3, 2e partie: pl. 294a (1895) – Pachytrophe obovata var. 821 laurifolia (Baill.) Léandri, Mém. Inst. Sci. Madag., ser. B, 1: 16 (1948). 822 Pachytrophe obovata var. montana Léandri, Mém. Inst. Sci. Madag., ser. B, 1: 16 823 (1948). 824 825 Bagassa 826 827 Bagassa Aubl., Pl. Guiane. Suppl. 15 (1775). 828 829 Dioecious trees. Leaves opposite and decussate, lamina triplinerved, 3-lobed to entire. 830 Stipules free, lateral. Inflorescences solitary or paired in the leaf axils, bracteate. Staminate 831 inflorescences spicate with an abaxial sterile groove, to 12 cm long, flowers in longitudinal 832 rows with, tepals 4, stamens 2, straight in bud, pistillode present. Pistillate inflorescences 833 globose-capitate, ca. 1–1.5 cm across, flowers 4-lobed to 4-parted, stigmas 2, filiform. 834 Infructescences globose, ca. 2.5–3.5 cm across, green, tepals fleshy, yellowish to greenish,

28 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

835 drupes ca. 7–8 mm long. Seeds ca. 3 x 2 mm, testa thin and not vascularized, cotyledons 836 equal. 837 838 Species and distribution: One, in tropical South America. 839 840 1. Bagassa guianensis Aubl., Pl. Guiane. Supple. 15 (1775) 841 842 843 Maillardia 844 845 Maillardia Frapp. ex Duch. in Maillard, Notes sur l’île de la Réunion, Annex P. 3 (1862) 846 Trophis P. Br. sect. Maillardia (Duch.) Corner, Gard. Bull. Singapore 19: 230 (1962). 847 848 Dioecious trees or shrubs. Leaves distichous, pinnately veined. Stipules free, semi- 849 amplexicaul. Inflorescences solitary or paired in the leaf axils, bracts subpeltate. Staminate 850 inflorescences spicate with an abaxial sterile groove, flowers 4-parted, decussate-imbricate, 851 stamens 4, inflexed in bud, pistillode present. Pistillate inflorescences up to three together, 852 uni- or bi-florous, perianth tubular 4-lobed, ovary adnate to the perianth, stigmas 2, equal. 853 Infructescences with enlarged fleshy perianths surrounding drupaceous fruits, the latter to 854 18 mm long. Seeds to 13 mm long, testa thin, with a thickened vascularized part below the 855 hilum, cotyledons unequal. 856 857 Species and distribution: Two species, in Madagascar, Comoros, and the Seychelles. 858 859 1. Maillardia borbonica Duch., Ann. Notes Réunion, Bot. 1: 148 (1862) – Trophis 860 borbonica (Duch.) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch. C 91(4): 355 (1988) 861 Maillardia lancifolia Frapp. ex Duch., Ann. Notes Réunion, Bot. 1: 148 (1862). 862 Trophis borbonica (Duch.) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 91: 355 863 (1988). 864

29 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

865 2. Maillardia montana Leandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 25 866 (1948) – Trophis montana (Leandri) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch. C 867 91(4): 355 (1988). 868 Maillardia occidentalis Leandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 26 869 (1948) 870 Maillardia orientalis Léandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 27 871 (1948) 872 Maillardia mandrarensis Léandri, Mém. Inst. Sci. Madagascar, Sér. B, Biol. Vég. 1: 873 28 (1948). 874 Maillardia pendula Fosberg, Kew Bull. 29: 266, t. 2 (1974). 875 876 877 Milicia 878 Milicia Sim, For. Fl. Port. E. Afr. 97 (1909). 879 880 Dioecious trees. Leaves distichous, lamina pinnately veined. Stipules free, not fully 881 amplexicaul. Inflorescences spicate, usually solitary in the leaf axils or on leafless nodes, 882 spicate, flowers in longitudinal rows alternating with rows of bracts, bracts mostly basally 883 attached, abaxial sterile groove present. Staminate inflorescences to 20 cm long, flowers 4- 884 parted, imbricate, stamens 4, inflexed in bud, pistillode present. Pistillate inflorescences to 885 4.5 cm long, flowers 4-parted, decussate-imbricate, ovary free, stigmas 2, unequal. 886 Infructescences with enlarged fleshy perianths, surrounding slightly flattened drupaceous 887 fruits, the latter to ca. 3 mm long. Seeds ca. 2 mm long, testa thin with a slightly thickened 888 vascularized part below the hilum, cotyledons equal. 889 890 Species and distribution: Two species in tropical Africa. 891 892 1. Milicia excelsa (Welw.) C.C. Berg, Bull. Jard. Bot. Natl. Belg. 52(1-2): 227 (1982) – 893 Morus excelsa Welw., Trans. Linn. Soc. Lond. (Bot.) 27: 69, t. 23 (1869) – Maclura

30 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

894 excelsa (Welw.) Bur. In DC., Prodr. 17: 231 (1873) – Chlorophora excelsa (Welw.) 895 Benth. & Hook., Gen. Pl. 3(1): 363 (1880). 896 Chlorophora tenuifolia Engl., Bot. Jahrb. 20: 139 (1894). 897 Milicia africana Sim, For. Fl. Port. E. Afr. 97, t. 122 (1909). 898 Chlorophora alba A. Chev., Bull. Soc. Bot. Fr. 58 (Mém. 8d): 209 (1912). 899 900 2. Milicia regia (A. Chev.) C.C. Berg, Bull. Jard. Bot. Natl. Belg. 52(1-2): 227 (1982) – 901 Chlorophora regia A. Chev., Bull. Soc. Bot. Fr. 58 (Mém. 8d): 209 (1912) – Maclura 902 regia (A. Chev.) Corner, Gard. Bull. Singapore 19: 237 (1962). 903 904 905 Morus 906 Morus L., Sp. Pl. 986 (1753). 907 908 Dioecious trees or shrubs. Leaves trinerved (to five-nerved) at the base. Stipules free, 909 nearly lateral. Inflorescences solitary or paired in the leaf axils, without an obvious sterile 910 groove, interfloral bracts absent. Staminate inflorescences spicate or racemose, to 8 cm 911 long, flowers 4-parted, imbricate, stamens 4, inflexed in bud, pistillode present. Pistillate 912 inflorescences subcapitate to spicate, up to 16 cm long, flowers tepals 4, separate, 913 decussate-imbricate, ovary free, stigmas 2, equal. Infructescences with enlarged fleshy 914 perianths enclosing achene-like fruits, the latter ca. 1 mm long. Seeds less than 1 mm long, 915 cotyledons equal. 916 917 Species and distribution: Sixteen species, Asia and North to Central America; introduced 918 worldwide. 919 920 1. Morus alba L., Sp. Pl. 2: 986 (1753). 921 var. alba 922 var. multicaulis (Perrottet) Loudon, Arbor. Frutic. Brit. 3: 1348 (1838). 923 2. Morus australis Poir. in Desrousseaux et al., Encycl. 4: 380 (1797).

31 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

924 3. Morus boninensis Koidz., Bot. Mag. (Tokyo) 31: 38 (1917) 925 4. Morus cathayana Hemsl., J. Linn. Soc., Bot. 26: 456 (1894) 926 var. cathayana 927 var. gongshanensis (Z. Y. Cao) Z. Y. Cao, Acta Bot. Yunnan. 17: 154 (1995). 928 5. Morus celtidifolia Kunth, Nov. Gen. Sp. [H.B.K.] 2: 33 (1817). 929 6. Morus liboensis S. S. Chang, Acta Phytotax. Sin. 22: 66 (1984). 930 7. Morus macroura Miq., Pl. Jungh. 1: 42 (1851). 931 var. macroura 932 var. laxiflora G.K.Upadhyay & A.A.Ansari, Rheedea 20: 44 (2010). 933 8. Morus koordersiana J.-F.Leroy, Bull. Mus. Natl. Hist. Nat. sér. 2, 21: 729 (1949) 934 (endemic to Sumatra and possibly synonymous with M. macroura. However, it was 935 not cited by Berg et al. (2006) either as a good species or as a synonym of the latter). 936 9. Morus microphylla Buckley, Acad. Nat. Sci. Philadelphia 1862: 8 (1863) (recognized in 937 the Flora of North America (Flora of North America Editorial Committee, 1993) but 938 likely conspecific with M. celtidifolia and considered so by Berg (2001)). 939 10. Morus mongolica (Bureau) C. K. Schneid. in Sargent, Pl. Wilson. 3: 296 (1916). 940 11. Morus nigra L. Sp. Pl. 2: 986 (1753). 941 12. Morus notabilis C. K. Schneid. in Sargent, Pl. Wilson. 3: 293 (1916). 942 13. Morus rubra L., Sp. Pl. 986 (1753). 943 var. rubra 944 var. murrayana (Saar & Galla) Saar, Phytologia 91: 106 (2009). 945 14. Morus serrata Roxb., Fl. Ind., ed. 1832, 3: 596 (1832). 946 15. Morus trilobata (S. S. Chang) Z. Y. Cao, Acta Phytotax. Sin. 29: 265 (1991). 947 16. Morus wittiorum Hand.-Mazz., Anz. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 58: 88 948 (1921) 949 950 951 Paratrophis 952 953 Paratrophis Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 81.

32 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

954 Pseudomorus Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 371 (1869). 955 Uromorus Bureau in A.DC., Prodr. 17: 236 (1873). 956 Calpidochlamys Diels, Bot. Jahrb. Syst. 67: 172 (1935); — Trophis sect. 957 Calpidochlamys Corner, Gard. Bull. Singapore 19: 230 (1962). 958 Chevalierodendron J.-F. Leroy, Compt. Rend. Hebd. Séances Acad. Sci. 227: 146 959 (1948) . 960 Streblus Lour. sect. Paratrophis (Blume) Corner, Gard. Bull. Singapore 19: 216 961 (1962). 962 Streblus Lour. sect. Protostreblus Corner, Blumea 18: 393 (1970). 963 Morus L. subg. Gomphomorus J.-F. Leroy, Bull. Mus. Hist. Nat. (Paris), Sér. 2, 21: 964 732 (1949) 965 966 Dioecious trees or shrubs. Leaves distichous (or spiral in P. ascendens), pinnately veined, 967 sometimes trinerved at the base. Stipules free, lateral. Inflorescences axillary, solitary or up 968 to 5 together, spicate, with an abaxial sterile groove, interfloral bracts mostly peltate, 969 flowers sessile in longitudinal rows, tepals 4, valvate, ciliolate. Staminate inflorescences up 970 to at least 20 cm. long, flowers with filaments inflexed in bud, pistillode present. Pistillate 971 inflorescences up to at least 10 cm long, flowers usually at least 2 (to many), tepals free 972 (except in P. philippinensis), stigma bifid, arms equal. Fruits drupaceous, red to black, with 973 tepals persistent but usually not enlarged or fleshy (except in P. philippinensis and P. 974 insignis), up to ca. 1 cm long. Seeds up to ca. 8 x 6 mm, cotyledons equal. 975 976 Species and distribution: Twelve species from the Malesian region to Australia, New 977 Zealand, and Oceania, Central and western South America. 978 979 1. Paratrophis anthropophagorum (Seem.) Benth. & Hook. f. ex Drake, Ill. Fl. Ins. Pacif. 980 296 1892 981 Trophis anthropophagorum Seem. [Bonplandia 9 (17–18): 259 (1861), nomen nudum] 982 Fl. Vit. 258, t. 68 (1868); — Uromorus anthropophagorum (Seem.) Bureau in de

33 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

983 Candolle, Prodr. 17 (1873) 236; — Streblus anthropophagorum (Seem.) Corner, 984 Gard. Bull. Sing.19 (1962) 221. 985 Caturus oblongatus Seem., Fl. Vit. 254 (1868). 986 Paratrophis ostermeyri Rech., Fedd. Rep. 5: 130 (1908). 987 Paratrophis viridissima Rech., Fedd. Rep. 5: 130 (1908). 988 Paratrophis zahlbruckneri Rech., Fedd. Rep. 5: 130 (1908). 989 Pseudomorus brunoniana (Endl.) Bureau var. tahitensis J. Nadeaud, Énum. Pl. Tahiti 990 43 (1873) – Uromorus tahitensis (J. Nadeaud) Bureau in de Candolle, Prodr. 17: 237 991 (1873) – Paratrophis tahitensis (Bureau) Benth. & Hook.f. ex Drake, Ill. Ins. Mar. 992 Pacif. Fasc. 7: 296 (1892); et Fl. Polyn. Franc. 193 (1892). – Streblus tahitensis (J. 993 Nadeaud) E.J.H. Corner, Gard. Bull. Singapore 19: 225 (1962). 994 995 2. Paratrophis ascendens (Corner) E.M. Gardner comb. nov. — based on Streblus 996 ascendens Corner, Blumea 18: 395, t.1 (1970). 997 998 3. Paratrophis australiana C.T. White, Contr. Arnold Arbor. 4: 15 (1933) — Streblus 999 glaber (Merr.) Corner var. australianus (C.T. White) Corner, Gard. Bull. Singapore 1000 19: 221 (1962) — Streblus glaber (Merr.) Corner subsp. australianus (C.T. White) 1001 C.C. Berg, Blumea 50: 548 (2005). 1002 1003 4. Paratrophis banksii Cheeseman, Man. N.Z. Fl. 633 (1906) – Streblus banksii 1004 (Cheeseman) C.J. Webb, in Connor & Edgar, New Zealand J. of Bot. 25 136 (1987). 1005 Paratrophis heterophylla var. elliptica Kirk T.N.Z.L 29: 500, t. 46 (1897); — Streblus 1006 heterophyllus var. ellipticus (Kirk) Corner, Gard. Bull. Singapore 19: 222 (1962). 1007 Note:— Morphologically very close to and not always distinguishable from P. 1008 microphylla. 1009 1010 5. Paratrophis glabra (Merr.) Steenis, J. Bot. 72: 8 (1934) – Gironniera glabra Merr., 1011 Philipp. J. Sci., 1, Suppl. 42 (1906); Enum. Philipp. Flow. Pl. 2: 35 (1923) —

34 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1012 Chevalierodendron glabrum (Merr.) J.-F. Leroy, Compt. Rend. Hebd. Séances Acad. Sci. 1013 227: 146 (1948) — Streblus glaber (Merr.) Corner, Gard. Bull. Singapore 19: 221 (1962). 1014 Aphananthe negrosensis Elmer, Leafl. Philipp. Bot. 2: 575 (1909). 1015 Pseudostreblus caudatus Ridl., J. Fed. Malay States Mus. 6: 54 (1915). 1016 Streblus laevifolius Diels, Bot. Jahrb. Syst. 67: 171 (1935). 1017 Streblus urophyllus Diels, Bot. Jahrb. Syst. 67: 172 (1935) — Streblus glaber (Merr.) 1018 Corner subsp. urophyllus (Diels) C.C. Berg, Blumea 50: 548 (2005); 1019 Streblus urophyllus Diels var. salicifolius Corner, Gard. Bull. Singapore. 19: 225 (1962). 1020 1021 Note: Berg et al. (2006) treated P. australiana and Streblus urophyllus as subspecies of 1022 Streblus glaber. Paratrophis australiana, endemic to Australia, has crenate leaf margins 1023 and somewhat larger staminate inflorescences with more interfloral bracts than P. glabra; 1024 these morphological differences are consistent and geographically confined, and we 1025 therefore reinstate P. australiana. This stands in contrast to Streblus urophyllus, which we 1026 provisionally maintain in synonomy under P. glabra. Although collections from Mt. 1027 Wilhelm in New Guinea are remarkable for their thick coriaceous leaves and spinose 1028 margins, similar toothed margins can be found at higher elevations in Borneo and Sulawesi, 1029 suggesting that the striking leaf morphology of S. urophyllus is an alpine effect not 1030 indicative of speciation. We reserve judgment on the status of Streblus urophyllus var. 1031 salicifolius Corner, applied by Corner (1962) to specimens with linear leaves, provisionally 1032 maintaining it in synonomy following Berg et al. (2006). 1033 1034 6. Paratrophis insignis (Bureau) E.M. Gardner comb. nov. — based on Morus insignis 1035 Bureau, in De Candolle, Prodr. 17: 247 (1873). 1036 Morus peruviana Planch. ex Koidz., Fl. Symb. Orient.-Asiat. 88 (1930). 1037 Morus trianae J.-F.Leroy, Bull. Mus. Hist. Nat. (Paris) Sér. 2, 21: 731 (1949). 1038 Morus marmolii Legname, Lilloa 33: 334 (1973) 1039 Note: The infructescences differ from most other Paratrophis in their fleshy free tepals and 1040 denser aggregation of flowers, but the staminate inflorescences are typical of the genus. 1041

35 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1042 7. Paratrophis microphylla (Raoul) Cockayne, Bot. Notes Kennedy's Bush & Scenic Res. 1043 Port Hills, Lyttelton (Rep. Scenery Preserv.) 3 (1915) – Epicarpurus microphyllus 1044 Raoul, Choix Pl. Nouv.-Zel. 14. (1846) – Taxotrophis microphylla (Raoul) F. Muell., 1045 Fragm. (Mueller) 6(47): 193 (1868). 1046 Paratrophis heterophylla Blume, Mus. Bot. 2(1-8): 81. (1856). 1047 1048 8. Paratrophis pendulina (Endl.) E.M. Gardner, comb. nov. — based on Morus 1049 pendulina Endl., Prodromus Florae Norfolkicae 40 (1833) – Pseudomorus pendulina 1050 (Endl.) Stearn, J. Arnold Arbor. 28: 427 (1947) – Pseudomorus brunoniana var. 1051 pendulina (Endl.) Bureau, Ann. Sci. Nat. Bot. sér. 5, 11: 372 (1869) – Streblus 1052 pendulinus (Endl.) F. Muell., Fragmenta Phytographiae Australiae (1868). 1053 Morus brunoniana Endl., Atakta Bot. t. 32 (1835) – Streblus brunonianus (Endl.) F. 1054 Muell., Fragm. Phyt. Australiae 6: 192 (1868) – Pseudomorus brunoniana (Endl.) 1055 Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 372 (1869) 1056 Pseudomorus brunoniana var. australiana Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 373 1057 (1869) – Pseudomorus pendulina var. australiana (Bureau) Stearn, J. Arnold Arbor. 1058 28: 427 (1947). 1059 Pseudomorus brunoniana var. australiana subvar. castaneaefolia Bureau, Ann. Sci. 1060 Nat., Bot. sér. 5, 11: 372 (1869). 1061 Pseudomorus brunoniana var. obtusa Bureau, Ann. Sci. Nat., Bot. sér. 5, 11: 373 1062 (1869) – Pseudomorus pendulina var. obtusa (Bureau) Stearn, J. Arnold Arbor. 28: 1063 428 (1947), as var. obtusata. 1064 Pseudomorus sandwicensis O. Deg., Fl. Hawaiiensis fam. 38 (1938) – Pseudomorus 1065 brunoniana var. sandwicensis (O. Deg.) Skottsb., Acta Horti Gothob. 15: 347 1066 (1944) – Pseuomorus pendulina var. sandwicensis (O. Degener) Stearn, J. Arnold 1067 Arbor. 28: 428 (1947) – Streblus sandwicensis (O. Deg.) H. St. John, Pacific Trop. 1068 Bot. Gard. Mem. 1: 374. 1973. 1069 Note: This complex requires further investigation. Although the types of Morus pendulina, 1070 Morus brunoniana, Pseudomorus sandwicensis, and Pseudomorus brunoniana var. obtusa 1071 differ from one another, it is difficult to discern clear geographic patterns that warrant

36 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1072 maintaining separate species, and we therefore provisionally treat them all as one 1073 widespread and variable species. 1074 1075 9. Paratrophis philippinensis (Bureau) Fern.-Vill., Nov. App. 98 (1880) — Uromorus 1076 philippinensis Bureau in A.DC., Prodr. 17: 237 (1873) — Trophis philippinensis (Bureau) 1077 Corner, Gard. Bull. Singapore 19: 231 (1962). 1078 Sloetia minahassae Koord., Versl. Minahasa 645 (1898). 1079 Paratrophis grandifolia Elmer, Leafl. Philipp. Bot. 5: 1814 (1913). 1080 Calpidochlamys branderhorstii Diels, Bot. Jahrb. Syst. 67: 173 (1935) — Trophis 1081 branderhorstii (Diels) Corner, Gard. Bull. Singapore 19: 231 (1962). 1082 Calpidochlamys drupacea Diels, Bot. Jahrb. Syst. 67: 173 (1935) — Trophis drupacea 1083 (Diels) Corner, Gard. Bull. Singapore 19: 231 (1962). 1084 Note: This species is the only Paratrophis with fused tepals and one of only two whose 1085 tepals develop into a fleshy accessory fruit. The staminate inflorescences, however, are 1086 typical of the genus. 1087 1088 10. Paratrophis sclerophylla (Corner) E.M. Gardner, comb. nov. — based on Streblus 1089 sclerophyllus Corner, Blumea 18: 399 (1970). 1090 1091 11. Paratrophis smithii Cheeseman T.N.Z.L 20:148 (1888) – Streblus smithii (Cheeseman) 1092 Corner Gard. Bull. Singapore 19: 224 (1962). 1093 Note: Morphologically very close to P. anthropophagorum. 1094 1095 12. Paratrophis solomonensis (Corner) E.M. Gardner, comb. nov. — based on Streblus 1096 solomonensis Corner, Gard. Bull. Singapore 19: 224 (1962). 1097 Note:— Morphologically very close to P. anthropophagorum. 1098 1099 1100 Sorocea 1101

37 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1102 Sorocea A. St-Hil., Mém. Mus. Hist. Nat. 7: 473 (1821). 1103 Balanostreblus Kurz, J. Asiat. Soc. Bengal., Pt. 2, Nat. Hist., 42: 247 (1873), p.p. 1104 Pseudosorocea Baill., Hist. Pl. 6: 210 (1875). 1105 Trophisomia Rojas Acosta, Bull. Acad. Inst. Geogr. Bot. 24: 211 (1914). 1106 Paraclarisia Ducke, Arq. Serv. Florest. 1(1): 2 (1939). 1107 1108 Dioecious trees. Leaves alternate, distichous, lamina pinnately veined, 3-lobed to entire. 1109 Stipules free, lateral. Inflorescences solitary or paired in the leaf axils or below the leaves, 1110 racemose to spicate to subcapitate or uniflorous, bracts basally attached to peltate. 1111 Staminate flowers 4-lobed to 4-parted, tepals decussate-imbricate, stamens (3–)4, straight 1112 in bud, pistillode usually absent. Pistillate flowers tubular, 4-lobed to sub-entire, ovary 1113 basally adnate to the perianth, stigmas 2, short, usually tongue-shaped. Infructescences 1114 with drupaceous fruits enclosed by fleshy enlarged perianths, the latter red to orange, 1115 turning black at maturity. Seeds large, testa thin, embryo green, cotyledons very unequal, 1116 the smaller one minute and enclosed by the larger. 1117 1118 Species and distribution: 19 species in Central and South America from Mexico to 1119 Argentina. 1120 1121 Note: This species list follows the Flora Neotropica monograph (Berg 2001) with the 1122 addition of four new species and one status change published later. Names synonymized by 1123 Berg (2001) but recognized by Burger et al. (1962) are noted in parentheses. Complete 1124 synonymies can be found in those treatments. 1125 1126 Sorocea subg. Sorocea 1127 Sorocea affinis Hemsl., Biol. Cent.-Amer., Bot. 3: 150 (1883). 1128 Sorocea angustifolia Al.Santos & Romaniuc, Novon 24: 199 (2015). 1129 Sorocea bonplandii (Baill.) W.C. Burger, Lanj. & de Boer, Acta Bot. Neerl. 11: 465 1130 (1962).

38 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1131 Sorocea briquetii J.F.Macbr., Publ. Field Columb. Mus., Bot. Ser. 11: 16 (1931) (incl. 1132 S. pileate W.C. Burger). 1133 Sorocea carautana M.D.M.Vianna, Carrijo & Romaniuc, Novon 19: 549 (2009). 1134 Sorocea ganevii R.M.Castro, Neodiversity 1: 18 (2006). 1135 Sorocea guilleminiana Gaudich., Voy. Bonite, Bot. 3: t. 74 (1843) (incl. S. 1136 klotzschiana Baill. and S. macrogyna Lanj. & Wess. Boer). 1137 Sorocea hilarii Gaudich., Voy. Bonite, Bot. 3: t. 71 (1843) (incl. S. racemosa 1138 Gaudich.). 1139 Sorocea jaramilloi C.C.Berg, Novon 6: 241 (1996). 1140 Sorocea longipedicellata A.F.P. Machado, M.D.M. Vianna & Romaniuc, Syst. Bot. 1141 38: 687 (2013). 1142 Sorocea muriculata Miq., C.F.P. von Martius & auct. suc. (eds.), Fl. Bras. 4(1): 113 1143 (1853). 1144 subsp. muriculata (incl. S. amazonica Miq.) 1145 subsp. uaupensis (Baill.) C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 88: 387 1146 (1985) (incl. S. guayanensis W.C. Burger). 1147 Sorocea pubivena Hemsl., Biol. Cent.-Amer., Bot. 3: 150 (1883). 1148 subsp. pubivena (incl. S. cufodontii W.C. Burger) 1149 subsp. hirtella (Mildbr.) C.C. Berg, Novon 6: 243 (1996) (incl. S. opima J.F. 1150 Macbr.) 1151 subsp. oligotricha (Akkermans & C.C. Berg) C.C. Berg, Novon 6: 243 (1996). 1152 Sorocea ruminata C.C.Berg, Novon 6: 244 (1996). 1153 Sorocea sarcocarpa Lanj. & Wess. Boer, Acta Bot. Neerl. 11: 452 (1962). 1154 Sorocea steinbachii C.C. Berg, Proc. Kon. Ned. Akad. Wetensch. C 88: 385 (1985). 1155 Sorocea trophoides W.C. Burger, Acta Bot. Neerl. 11: 450 (1962). 1156 1157 Sorocea subg. Paraclarisia (Ducke) W.C. Burger, Lanj. & Wess. Boer, Acta Bot. Neerl. 1158 11: 468 (1962). 1159 Sorocea duckei W.C.Burger, Acta Bot. Neerl. 11: 473 (1962).

39 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1160 Sorocea sprucei (Baill.) J.F.Macbr., Publ. Field Mus. Nat. Hist., Bot. Ser. 11: 16 1161 (1931). 1162 subsp. sprucei (incl. S. arnoldoi Lanj. & Wess. Boer). 1163 subsp. saxicola (Hassl.) C.C.Berg, Proc. Kon. Ned. Akad. Wetensch., Ser. C., 1164 Biol. Med. Sci. 88: 391 (1985). 1165 Sorocea subumbellata (C.C. Berg) Cornejo, Novon 19: 297 (2009). 1166 1167 1168 Taxotrophis 1169 Taxotrophis Blume, Ann. Mus. Bot. Lugduno-Batavi 2 77 (1856); Hutch., Bull. Misc. 1170 Inform. Kew 147 (1918). 1171 Streblus Lour. sect. Taxotrophis (Blume) Corner, Gard. Bull. Singapore 19: 218 (1962); 1172 Berg et al., Fl. Males. Ser. 1, Vol. 17, Pt. 2 (2006). 1173 1174 Monoecious or dioecious trees or shrubs, usually with lateral or terminal thorns. Leaves 1175 distichous, pinnately veined, petioles adaxially pubescent. Stipules free, lateral. 1176 Inflorescences axillary, solitary or paired, with an abaxial sterile groove, interfloral bracts 1177 basally attached, flowers with 4 free tepals, valvate. Staminate inflorescences spicate to 1178 sub-capitate, flowers with filaments inflexed in bud, pistillode present. Pistillate 1179 inflorescences uniflorous or sub-spicate, flowers usually pedicellate, stigma bifid, arms 1180 equal. Fruits drupaceous, up to ca. 1 cm long, usually loosely enclosed by the enlarged 1181 persistent tepals. Seeds up to ca. 8 x 6 mm, cotyledons subequal to unequal. 1182 1183 Species and distribution: Six species, ranging from Sri Lanka to New Guinea. 1184 1185 1. Taxotrophis ilicifolia (Kurz) S.Vidal, Revis. Pl. Vasc. Filip. 249 (1886) – 1186 Balanostreblus ilicifolia Kurz, J. Asiat. Soc. Bengal, Pt. 2, Nat. Hist. 42(4): 248 1187 (1874) – Streblus ilicifolius (Kurz) Corner, Gard. Bull. Singapore 19: 227 (1962). 1188 Pseudotrophis laxiflora Warb., Bot. Jahrb. Syst. 13 294 (1891). 1189 Taxotrophis obtusa Elmer, Leafl. Philipp. Bot. 5 1813 (1913).

40 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1190 Taxotrophis laxiflora Hutch., Bull. Misc. Inform. Kew 151 (1918). – Streblus 1191 laxiflorus (Hutch.) Corner, Gard. Bull. Singapore 19 229 (1962). 1192 Taxotrophis triapiculata Gamble, Bull. Misc. Inform. Kew 188 (1913). 1193 Taxotrophis eberhardtii Gagnep., Fl. Indo-Chine 5 700 (1928). 1194 Taxotrophis macrophylla auct. non Boerl.: Burkill, Dict. Econ. Prod. Malay Penins. 1195 2126 (1935). 1196 1197 2. Taxotrophis macrophylla (Blume) Boerl., Handl. Fl. Ned. Ind. 3: 359 (1900). 1198 Streblus macrophyllus Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 80 (1856) — 1199 Diplocos ? macrophyllus (Blume) Bureau in A.DC., Prodr. 17: 216 (1873). 1200 Pseudotrophis mindanaensis Warb. in Perkins, Fragm. Fl. Philipp. 1: 165 (1905); 1201 Elmer, Leafl. Philipp. Bot. 5: 1815 (1913), ‘Taxatrophis mindanaensis’ in nota. 1202 Paratrophis caudata Merr., Philipp. J. Sci., 1, Suppl. 183 (1906). 1203 Taxotrophis balansae Hutch., Bull. Misc. Inform. Kew 151 (1918). 1204 Dimerocarpus brenieri Gagnep., Bull. Mus. Hist. Nat. (Paris) 27: 441 (1921). 1205 1206 3. Taxotrophis perakensis (Corner) E.M. Gardner, comb. nov., based on Streblus 1207 perakensis Corner, Gard. Bull. Singapore 19: 223 (1962). 1208 1209 Note: Although Corner (1962) considered S. perakensis species part of section Paratrophis, 1210 albeit with some hesitation, Berg et al. (2006), whom we follow, placed it in Taxotrophis 1211 based on the spines that appear on some specimens. This is a rather variable species that 1212 requires further investigation to properly elucidate its limits and affinities. 1213 1214 4. Taxotrophis spinosa Steenis in Backer & Bakh.f., Fl. Java 2 (1965) 16. 1215 Urtica spinosa Blume, Bijdr. (1825) 507. — Streblus spinosus (Blume) Corner, Gard. 1216 Bull. Singapore 19: 229 (1962). 1217 Taxotrophis javanica Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 77, t. 26 (1856). 1218 1219 5. Taxotrophis taxoides (B. Heyne ex Roth) W.L. Chew ex E.M. Gardner, comb. nov.

41 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1220 Trophis taxoides B. Heyne ex Roth, Nov. Pl. Sp. 368 (1821). — Trophis taxiformis 1221 Spreng., Syst. Veg. 3 902 (1826), nom. nov. illeg. — Streblus taxoides (B. Heyne 1222 ex Roth) Kurz, Forest Fl. Burma 2: 465 (1877) — Phyllochlamys taxoides (B. 1223 Heyne ex Roth) Koord., Exkurs.-Fl. Java 2: 89 (1912). 1224 Trophis spinosa Roxb., Fl. Ind., ed. Carey 3: 762 (1832), non Willd. 1806, nec Blume 1225 1826. — Epicarpurus spinosus (Roxb.) Wight, Icon. Pl. Ind. Orient. 6: 7, t. 1962 1226 (1853), p.p. — Phyllochlamys spinosa (Roxb.) Bureau in A.DC., Prodr. 17: 218 1227 (1873); 1228 Epicarpurus timorensis Decne., Nouv. Ann. Mus. Hist. Nat. 3: 499, t. 21 (1834). 1229 Taxotrophis roxburghii Blume, Ann. Mus. Bot. Lugduno-Batavi 2: 78 (1856) 1230 Streblus microphyllus Kurz, Prelim. Rep. Forest Pegu App. A, cxviii; App. B, 84 1231 (1875); — Streblus taxoides (B. Heyne ex Roth) Kurz var. microphylla (Kurz) 1232 Kurz, Forest Fl. Burma 2: 465 (1877). 1233 Phyllochlamys wallichii King ex Hook.f., Fl. Brit. India 5: 489 (1888); 1234 Phyllochlamys taxoides (B. Heyne ex Roth) Koord. var. parvifolia Merr., Enum. 1235 Philipp. Flow. Pl. 2: 38 (1923). 1236 Taxotrophis poilanei Gagnep., Fl. Indo-Chine 5: 701 (1928). 1237 Taxotrophis crenata Gagnep., Fl. Indo-chine 5: 702, t. 82 (1928). — Streblus crenatus 1238 (Gagnep.) Corner, Gard. Bull. Singapore 19: 226 (1962). 1239 Phyllochlamys tridentata Gagnep., Fl. Indo-Chine 5: 714 (1928). 1240 1241 Note: In the 1950s, Dr. Chew Wee Lek annotated quite a lot of specimens at K and SING 1242 with the new combination Taxotrophis taxoides. However, the combination was never 1243 published, probably because the need for the combination was obviated in 1962 when 1244 Corner, his doctoral supervisor, reduced Taxotrophis to a section of Streblus. 1245 1246 6. Taxotrophis zeylanica (Thwaites) Thwaites, Enum. Pl. Zeyl. [Thwaites] 264 (1861). 1247 Epicarpurus zeylanicus Thwaites, Hooker’s J. Bot. Kew Gard. Misc. 4: 1 (1852) — 1248 Diplocos zeylanica (Thwaites) Bureau, Prodr. [A. P. de Candolle] 17: 215 (1873) 1249 — Streblus zeylanicus (Thwaites) Kurz, Forest Fl. Burma 2: 464 (1877).

42 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1250 Taxotrophis caudata Hutchinson, Bull. Misc. Inform. Kew 1918(4): 149 (1918). 1251 1252 1253 Trophis 1254 1255 Trophis Lour., P. Browne, Civ. Nat. Hist. Jamaica 357 (1756), nom. cons. 1256 Bucephalon L. Sp. Pl. 1190 (1753), nom. rejic. 1257 Skutchia Pax & K. Hoffm. ex C.V. Morton, J. Wash. Acad. Sci. 27: 306 (1937). 1258 1259 Dioecious trees or shrubs. Leaves distichous, pinnately veined. Stipules free, lateral. 1260 Inflorescences axillary or just below the leaves, solitary or paired, interfloral bracts basally 1261 attached. Staminate inflorescences spicate to racemose with an abaxial sterile groove, tepals 1262 4, basally connate, stamens 4, filaments inflexed in bud, pistillode present. Pistillate 1263 inflorescences spicate to racemose or subcapitate, tepals 4, connate, forming a tubular 1264 perianth, ovary adnate to the perianth or not, stigma bifid, arms equal. Fruits drupaceous, 1265 up to ca. 1.5 cm long, adnate to the perianth or not, the perianth enlarged and fleshy or not. 1266 Seeds up to ca. 1 cm long, cotyledons equal. 1267 1268 Species and distribution: Five species in the neotropics. 1269 1270 Trophis P. Browne sect. Trophis 1271 1272 1. Trophis cuspidata Lundell, Amer. Midl. Naturalist 19: 427 (1938). 1273 2. Trophis mexicana (Liebm.) Bureau, Prodr. [A. P. de Candolle] 17: 253 (1873). 1274 3. Trophis noraminervae Cuevas & Carvajal, Acta Bot. Mex. 47: 2 (1-7, fig.) (1999). 1275 4. Trophis racemosa Urb., Symb. Antill. (Urban). 4(2): 195 (1905). 1276 1277 Trophis P. Browne sect. Echinocarpa C.C. Berg, Proc. Kon. Ned. Akad. Wetensch., Ser. C, 1278 Biol. Med. Sci. 91: 353 (1988). 1279

43 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1280 5. Trophis involucrata W.C. Burger, Phytologia 26: 432 (1973). 1281 1282 1283 Tribe OLMEDIEAE 1284 1285 Olmedieae Trécul, Ann. Sci. Nat., Bot. sér. 3, 8 (1847) 126 1286 Castilleae C.C. Berg, Acta Bot. Neerl. 26 (1977) 78 1287 Strebleae Bureau in DC., Prodr. 17: 215 (1873), p.p. 1288 1289 Tree or shrubs, monoecious or dioecious (or androdioecious), mostly with self-pruning 1290 branches. Leaves alternate or opposite, distichous or spirally arranged; stipules lateral to 1291 amplexicaul. Inflorescences mostly unisexual, capitate, mostly discoid to urceolate, 1292 involucrate, tepals mostly 4, connate or not. Staminate inflorescences usually many- 1293 flowered; stamens 4 or fewer, with filaments straight or less often inflexed in bud, pistillode 1294 mostly absent. Pistillate inflorescences one to many-flowered, ovary free or not, stigmas 2, 1295 filiform. Fruits mostly drupaceous, mostly enclosed by a fleshy perianth or embedded in a 1296 fleshy receptacle. Seeds with or without endosperm, testa thin, vascularized, cotyledons 1297 mostly equal. 1298 1299 Genera and distribution: 13 genera with 63 species. Eight neotropical genera: Castilla (3 1300 spp.), Helicostylis (7), Maquira (4), Naucleopsis (22), Olmedia (1), Perebea (9), 1301 Poulsenia (1), and Pseudolmedia (9); and five Paleotropical genera: the widespread 1302 Antiaris (1); Antiaropsis (2) in New Guinea; Mesogyne (1) in Africa; Sparattosyce (1) 1303 in New Caledonia; and Streblus (3) in South to Southeast Asia. 1304 1305 Olmedia 1306 1307 Olmedia Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil.1:257.1798. Type — Olmedia aspera Ruiz 1308 & Pav.

44 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1309 Trophis section Olmedia (Ruiz & Pav.) Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 1310 354. 1988. 1311 1312 Dioecious trees or shrubs. Leaves distichous, lamina pinnately veined. Stipules free, not 1313 fully amplexicaul. Inflorescences unisexual, with a well-developed involucre. Staminate 1314 inflorescences discoid, multiflorous; tepals 4, valvate, stamens 4, inflexed in bud, pistillode 1315 absent. Pistillate inflorescences usually uniflorous, perianth tubular, 4-dentate, ovary free, 1316 stigmas 2, equal. Fruits drupaceous, surrounded by fleshy persistent perianth and 1317 subtended by spreading, fleshy involucral bracts. Seeds ca. 5 mm long, cotyledons equal. 1318 1319 Species and distribution: One species, in the Neotropics. 1320 1321 1. Olmedia aspera Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil.1:257.1798 1322 Olmedia caucana Pittier, Contr. U.S. Natl. Herb. 13:434. 1912. — Trophis caucana 1323 (Pitttier) C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 354. 1988 1324 Olmedia poeppigiana Klotzsch, Linnaea 20: 525. 1847, as a synonym of O. aspera 1325 Poeppig & Endlicher, Nov. Gen. 2: 31. 1838, based on Poeppig s.n. or 1267, non 1326 O.poeppigiana Martius Flora (or Bot. Zeit) 24 (Beibl. 2): 93. 1841 (= Helicostylis 1327 tomentosa (Poeppig & Endlicher) Rusby). 1328 Olmedia falcifolia Pittier, Contr. U.S. Natl. Herb. 13: 435. 1912. 1329 Trophis aurantiaca Herzog, Repert. Spec. Nov. 7: 51. 1909 1330 1331 1332 Streblus 1333 1334 Streblus Lour., Fl. Cochinch. (1790) 615. 1335 Achymus Juss., Dict. Sci. Nat. 1, Suppl. 31 (1816) . 1336 Epicarpurus Blume, Bijdr. 488 (1825). 1337 Albrandia Gaudich. in Freyc., Voy. Uranie, Bot. 509 (1830). 1338 Calius Blanco, Fl. Filip. 698 (1837).

45 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1339 Teonongia Stapf, Hooker’s Icon. Pl. 30: t. 2947 (1911). 1340 Diplothorax Gagnep., Bull. Soc. Bot. France 75 98 (1928). 1341 1342 Trees or shrubs, dioecious or monoecious. Leaves distichous, lamina pinnately veined. 1343 Stipules free, lateral. Inflorescences bisexual or unisexual, capitate, with a rudimentary 1344 involucre, bracts basally attached. Staminate inflorescences discoid capitate, multiflorous; 1345 tepals 4, imbricate, stamens 4, inflexed in bud, pistillode present but small. Pistillate 1346 inflorescences usually uniflorous, tepals 4, ovary free, stigmas 2, equal. Fruits drupaceous, 1347 up to ca. 8 mm long, initially enclosed by enlarged but not fleshy tepals, which may open 1348 later. Seeds ca. 5 mm long, cotyledons equal or very unequal. 1349 1350 Species and distribution: three species from India to South China and from mainland 1351 Southeast Asia to the Philippines and the Moluccas. 1352 1353 1. Streblus asper (Retz.) Lour., Fl. Cochinch. 2: 615 (1790). 1354 Trophis aspera Retz., Observ. Bot. 5 (1788) – Epicarpurus asper (Retz.) Steud. 1355 Nomencl. Bot. ed. 2, 1: 556 (1840). 1356 Trophis cochinchinensis Poir., Encycl. 8 (1808) 123. 1357 Epicarpurus orientalis Blume, Bijdr. (1825) 488 1358 Calius lactescens Blanco, Fl. Filip. (1837) 698; ed. 3, 3 (1879) 1103, t. 171. — 1359 Streblus lactescens (Blanco) Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 80. 1360 Achymus pallens Sol. ex Blume, Ann. Mus. Bot. Lugduno-Batavi 2 (1856) 79. 1361 Cudrania crenata C.H. Wright, J. Linn. Soc., Bot. 26 (1899) 469. — Vanieria crenata 1362 (C.H. Wright) Chun, J. Arnold Arbor. 8 (1927) 21. 1363 Diplothorax tonkinensis Gagnep., Bull. Soc. Bot. France 75 (1928) 98. 1364 1365 Note: Retzius’s Trophis aspera predated Loureiro’s Streblus asper by two years, making 1366 the latter an implied new combination under Article 41.1 of the Code (cf. Ex. 10). 1367 Synonymies of the S. asper have sometimes erroneously included Trophis aculeata Roth, 1368 which is actually Maclura spinosa (Roxb. ex Willd.) C.C. Berg.

46 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1369 1370 2. Streblus celebensis C.C. Berg, Blumea 50 547 (2005). 1371 1372 3. Streblus tonkinensis (Eberh. & Dubard) Corner, Gard. Bull. Singapore 19 (1962): 228. 1373 Bleeokrodea tonkinensis Eberh. & Dubard, Compt. Rend. Hebd. SÈances Acad. Sci. 1374 145 (1907): 632. — Teonongia tonkinensis (Eberh. & Dubard) Stapf. 1375 1376 1377 Tribe DORSTENIEAE 1378 1379 Dorstenieae Gaudich. in Freyc., Voy. Uranie, Bot. (1830). 1380 Broussonetieae Gaudich. in Freyc., Voy. Uranie, Bot. 508 (1830). 1381 Brosimeae Trécul, Ann. Sci. Nat., Bot. sér. 3, 8: 146 (1847). 1382 Fatoueae Engl., Nat. Pflanzenfam. 3, 1: 71 (1888). 1383 1384 Tree, shrubs, lianas, and herbs, monoecious or less often dioecious. Leaves alternate or less 1385 commonly (sub)opposite, distichous or spirally arranged; stipules lateral to fully 1386 amplexicaul. Inflorescences unisexual or bisexual, cymose, spicate, globose, or discoid to 1387 turbinate or cup-shaped, multiflorous or uniflorous (the latter in pistillate inflorescences 1388 only), bracteate or not, interfloral bracts mostly peltate. Staminate flowers with tepals (1– 1389 )2–4 or absent, stamens 1–4 with filaments straight or inflexed in bud, pistillode present or 1390 (more often) absent. Pistillate flowers free or connate or embedded in the receptacle, tepals 1391 2–4, ovary free or not, stigmas 1 or 1, equal or unequal. Fruits drupaceous or drupe-like 1392 due to a persistent fleshy perianth and/or receptacle, the whole endocarp unit often 1393 ballistically ejected from the infructescence. Seeds with or without endosperm, large or 1394 small; cotyledons equal or unequal. 1395 1396 Genera and distribution: eleven genera and 63 species with a worldwide distribution: 1397 Bleekrodea (Africa and Southeast Asia), Bosqueiopsis (Africa), Brosimum (Neotropics), 1398 Broussonetia (Asia to Oceania; introduced worldwide), Dorstenia (Africa and South

47 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1399 America, with one species in India), Fatoua (Madagascar and Japan to New Caledonia; 1400 introduced worldwide), Helianthostylis (Neotropics), Malaisia (Southeast Asia to New 1401 Caledonia), Scyphosyce (Africa), Sloetia (Southeast Asia), Sloetiopsis (Africa), 1402 (Africa), Trymatococcus (Neotropics), Utsetela (Africa). 1403 1404 1405 Sloetiopsis 1406 1407 Sloetiopsis Engl., Bot. Jahrb. 39: 573 (1907). 1408 Neosloetiopsis Engl., Bot. Jahrb. 51: 426 (1914) 1409 Streblus auct. non Lour., C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 357. 1410 1988. 1411 1412 Tree or shrubs, dioecious (or monoecious). Leaves distichous, pinnately veined, cystoliths 1413 present; stipules free, nearly amplexicaul. Inflorescences unisexual (or bisexual); staminate 1414 inflorescences spicate with an abaxial sterile groove, bracts mostly peltate, tepals 4, free or 1415 basally connate filaments inflexed in bud, pistillode small; pistillate inflorescences 1416 uniflorous, bracts mostly basally attached, tepals 4, free, imbricate, 2 stigmas. Fruits 1417 drupaceous, fleshy endocarp dehiscent, tepals enlarged and persistent but not fleshy. Seeds 1418 globose, ca. 4 mm, endocarp coriaceous with a hard disc against the hilum, testa 1419 vascularized with a thick apical cap, cotyledons equal. 1420 1421 1. Sloetiopsis usambarensis Engl., Bot. Jahrb. 39: 573 (1907) — Streblus usambarensis 1422 (Engl.) C.C. Berg, Proc. Kon. Ned. Acad. Wetensch. C. 91: 357. 1988. 1423 Neosloetiopsis kamerunensis Engl., Bot. Jahrb. 51: 426 (1914). 1424 1425 Note. The nearly amplexicaul stipules and occasional bisexual inflorescences reflect an 1426 affinity with the Southeast Asian Sloetia, also a member of the Dorstenieae. 1427 1428

48 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1429 Tribe PARARTOCARPEAE 1430 1431 Parartocarpeae N.J.C. Zerega & E.M. Gardner Zerega, Phytotaxa 388, 253–265 (2019). 1432 Shrubs to large trees, monoecious or dioecious; abundant white exudate. Leaves distichous 1433 or spirally arranged; simple; entire; pinnately veined; thin to thick coriaceous; glabrous, 1434 pubescent, scabrid, or hispid pubescent. Stipules axillary, simple or paired, lateral. 1435 Inflorescences solitary or paired in leaf axils, unisexual (or bisexual with a single apical 1436 pistillate flower), uniflorous, cymose, or capitate with stamens or ovaries sunken into the 1437 receptacle; pedunculate; involucre of 3–8 triangular bracts, basally connate. Staminate 1438 inflorescences with numerous flowers, tepals 4–5, stamens 5 and normally positioned or 1– 1439 3 in cavities in the receptacle with the anthers exerted through perforations in the upper 1440 surface of the receptacle, filaments free or united. Pistillate inflorescences uniflorous or 1441 (sub)globose with ovaries solitary in each cavity, unilocular, the style apical with a short 1442 exerted stigma. Fruits drupaceous, enclosed by persistant tepals, or aggregated into 1443 syncarps formed by the enlargement of the entire inflorescence. 1444 1445 Genera and distribution: Three genera and five species, from Southern China to the 1446 Solomon Islands: Hullettia, Parartocarpus, and Pseudostreblus. 1447 1448 1449 Pseudostreblus 1450 1451 Pseudostreblus Bureau, in A.P. de Candolle, Prodr. 17: 220 (1873). 1452 Streblus Lour. sect. Pseudostreblus (Bureau) Corner, Gard. Bull. Singapore 19: 217 (1962). 1453 1454 Monoecious trees. Leaves distichous, pinnately veined. Stipules free, lateral. 1455 Inflorescences axillary. Staminate inflorescences cymose, tepals 5, imbricate, filaments 1456 inflexed in bud but apparently straightening gradually upon anthesis, pistillode minute, 1457 conical, pubescent, interfloral bracts few, basally attached. Pistillate inflorescences 1458 uniflorous, pedunculate, involucral bracts 3, ±connate, tepals 4, imbricate, stigma bifid,

49 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1459 arms equal. Fruits drupaceous, ca. 1 cm long, with tepals enlarged and loosely enclosing 1460 the fruit. Seeds ellipsoid, ca. 6 x 8 mm, cotyledons unequal. 1461 1462 Species and distribution: One, in South to Southeast Asia and Southern China. 1463 1464 Note: Pseudostreblus is remarkable for its five-parted staminate flowers. 1465 1466 1. Pseudostreblus indicus Bureau, in A.P. de Candolle, Prodr. 17: 220 (1873). 1467 Streblus indicus (Bureau) Corner, Gard. Bull. Singapore 19: 226 (1962). 1468 1469 1470 Conclusion 1471 The revisions presented here, based on the best phylogenetic evidence available to date, 1472 provide for seven monophyletic tribes of Moraceae and ten monophyletic genera within 1473 Moreae. We hope that the resulting taxonomic and phylogenetic framework will provide a 1474 solid foundation for further research into the systematics and evolution of Moraceae. 1475 1476 1477 Author contributions 1478 EMG led the writing of the manuscript, did field, lab, and herbarium work, conducted all 1479 phylogenetic analyses, and was responsible for the taxonomic treatment. MG performed lab 1480 work for the Moraceae333 samples. RC, SD, NE, and OM performed lab work for the 1481 PAFTOL samples, and OM curated the PAFTOL data. DA collaborated on all herbarium 1482 work at BO. Sahromi facilitated access and participated in field collections at the Bogor 1483 Botanical Gardens. NJCZ provided overall guidance on Moraceae and facilitated 1484 sequencing at Northwestern University. WJB and FF acquired funding for and supervised 1485 the PAFTOL project. AM performed herbarium sampling at K and supervised the 1486 Moraceae portion of the PAFTOL project. EMG designed the overall study with input from 1487 ALH and NJCZ. ALH supervised the overall study. All authors commented on and 1488 contributed to the manuscript.

50 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1489 1490 1491 Acknowledgements 1492 This work was supported by the United States National Science Foundation (DBI award 1493 number 1711391, and DEB award numbers 0919119 and 1501373); the SYNTHESYS 1494 Project http://www.synthesys.info/ which is financed by European Community Research 1495 Infrastructure Action under the FP7 “Capacities" Program”; the National Parks Board of 1496 Singapore through a Flora of Singapore Fellowship and a Research Fellowship; grants 1497 from the Calleva Foundation and the Sackler Trust to the Plant & Fungal Trees of Life 1498 Project at the Royal Botanic Gardens, Kew. We thank the Pritzker Laboratory for 1499 Molecular Systematics at the Field Museum of Natural History (K. Feldheim) for access to 1500 laboratory and sequencing facilities; S. Knapp and J. Wajer (BM) for helpful consultation 1501 on nomenclatural issues; W. Clement for helpful comments on the circumscription of the 1502 Olmedieae; the Bogor Botanical Gardens, Singapore Botanic Gardens, and The Morton 1503 Arboretum for access to living collections; and the following herbaria for access to 1504 collections for examination and/or sampling: BM, BKF, BO, CLM, F, IBSC, K, FTBG, L, 1505 MO, NY, SING, SAN, SAR, SNP, and U. Finally, we gratefully acknowledge the careful 1506 work of past scholars of Moraceae, in particular the late C.C. Berg and E.J.H. Corner. 1507 1508 Conflicts of interest 1509 The authors are unaware of any conflicts of interest affecting this research. 1510 1511 Literature cited 1512 1513 Bawa, K., & Crisp, J. 1980. Wind-pollination in the understorey of a rain forest in Costa 1514 Rica. J. Ecol., 68: 871–876. Retrieved from 1515 http://www.jstor.org/stable/10.2307/2259462 1516 Bawa, K. S., Bullock, S. H., Perry, D. R., Coville, R. E., & Grayum, M. H. 1985. 1517 Reproductive biology of tropical lowland rain forest trees. II. Pollination systems. Am. 1518 J. Bot., 72: 346–356. https://doi.org/10.2307/2443527

51 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1519 Berg, C. C. 1977a. Revisions of African Moraceae (excluding Dorstenia, Ficus, Musanga 1520 and Myrianthus). Bull. Du Jard. Bot. Natl. Belgique, 47: 267–407. Retrieved from 1521 http://www.jstor.org/stable/10.2307/3667908 1522 Berg, C. C. 1977b. The Castilleae, a tribe of the Moraceae, rename and redefined due tothe 1523 exclusion of the type genus Olmedia from the ‘Olmedieae’. Acta Bot. Neerl., 26: 73– 1524 82. 1525 Berg, C. C. 1978. Cecropiaceae: A new family of the Urticales. Taxon, 27: 39–44. 1526 https://doi.org/10.2307/1220477 1527 Berg, C. C. 1988. The genera Trophis and Streblus (Moraceae) remodelled. Proc. K. Ned. 1528 Akad. van Wet. Ser. C, Biol. Med. Sci., 91: 345–362. 1529 Berg, C. C. 2001. Flora Neotropica Monograph 83: Moreae, Artocarpeae, and Dorstenia 1530 (Moraceae), with Introductions to the Family and Ficus and with Additions and 1531 Corrections to Flora Neotropica Monograph 7 (Vol. 83). 1532 Berg, C. C. 2005. Flora Malesiana precursor for the treatment of Moraceae 8: other genera 1533 than Ficus. Blumea, 50: 535–550. Retrieved from 1534 http://www.ingentaconnect.com/content/nhn/blumea/2005/00000050/00000003/art000 1535 16 1536 Berg, C. C., Corner, E. J. H., & Jarrett, F. M. 2006. Moraceae (genera other than Ficus). 1537 Flora Malesiana, Ser. 1, 17: 1–154. 1538 Bolger, A. M., Lohse, M., & Usadel, B. 2014. Trimmomatic: A flexible trimmer for 1539 Illumina Sequence Data. Bioinformatics, 1–7. 1540 https://doi.org/10.1093/bioinformatics/btu170 1541 Brewer, G. E., Clarkson, J. J., Maurin, O., Zuntini, A. R., Barber, V., Bellot, S., Biggs, 1542 N., Cowan, R. S., Davies, N. M. J., Dodsworth, S., & others. 2019. Factors affecting 1543 targeted sequencing of 353 nuclear genes from herbarium specimens spanning the 1544 diversity of angiosperms. Front. Plant Sci., 10: 1102. 1545 Bureau, E. 1873. Moraceae and Artocarpace. in: A. P. de Candolle, Prodromussystematis 1546 naturali 17. Paris: Treuttel & Würtz. 1547 Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. 2009. trimAl: A tool for 1548 automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics,

52 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1549 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 1550 Chen, Z., Yang, T., & Lu, L. 2016. Tree of life for the genera of Chinese vascular plants. 1551 J. Syst. Evol., 54: 273–276. https://doi.org/10.1111/jse.12219 1552 Chung, K. F., Kuo, W. H., Hsu, Y. H., Li, Y. H., Rubite, R. R., & Xu, W. Bin. 2017. 1553 Molecular recircumscription of Broussonetia (Moraceae) and the identity and 1554 taxonomic status of B. kaempferi var. australis. Bot. Stud. 1555 https://doi.org/10.1186/s40529-017-0165-y 1556 Clement, W. L., & Weiblen, G. D. 2009. Morphological Evolution in the Mulberry 1557 Family (Moraceae). Syst. Bot., 34: 530–552. 1558 https://doi.org/10.1600/036364409789271155 1559 Corner, E. J. H. 1962. The Classification of Moraceae. Gard. Bull., 19: 187–252. 1560 Corner, E. J. H. 1970. New Species of Streblus and Ficus. Blumea, 18: 393–411. 1561 Corner, E. J. H. 1975. The evolution of StrebIus Lour. (Moraceae): with a new species of 1562 sect. Bleekrodea. Phytomorphology, 25: 1–12. 1563 Culley, T. M., Weller, S. G., & Sakai, A. K. 2002. The evolution of wind pollination in 1564 angiosperms. Trends Ecol. Evol., 17: 361–369. https://doi.org/10.1016/S0169- 1565 5347(02)02540-5 1566 Datwyler, S. L., & Weiblen, G. D. 2004. THE ORIGIN OF THE FIG : PHYLOGENETIC 1567 NDH F SEQUENCES. Am. J. Bot., 91: 767–777. 1568 Doyle, J., & Doyle, J. 1987. Genomic plant DNA preparation from fresh tissue-CTAB 1569 method. Phytochem. Bull., 19: 11–15. 1570 Engler, G. H. A. 1889. Ulmaceae, Moraceae, and Urticaceae. in: Engler & Prantl, Die 1571 natürlichen Pflanzenfamilien 3(1). Leipzig: W. Engelmann. 1572 Filho, M. D. M. V., Carrijo, T. T., & Neto, S. R. 2009. Sorocea carautana (Moraceae): A 1573 New Species from Southeastern Brazil. Novon A J. Bot. Nomencl. 1574 https://doi.org/10.3417/2007143 1575 FitzJohn, R. G. 2012. Diversitree : comparative phylogenetic analyses of diversification in 1576 R. Methods Ecol. Evol., 3: 1084–1092. https://doi.org/10.1111/j.2041- 1577 210X.2012.00234.x 1578 Gardner, E. M. 2017. Dissertation: Evolutionary Transitions: Phylogenomics and

53 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1579 Pollination of Artocarpus (Moraceae). 1580 https://doi.org/https://doi.org/10.21985/N2CF59 1581 Gardner, E. M., Gagné, R. J., Kendra, P. E., Montgomery, W. S., Raguso, R. A., 1582 McNeil, T. T., & Zerega, N. J. C. 2018. A flower in fruit’s clothing: Pollination of 1583 jackfruit (artocarpus heterophyllus, moraceae) by a new species of gall midge, 1584 clinodiplosis ultracrepidata sp. Nov. (Diptera: Cecidomyiidae). Int. J. Plant Sci., 179: 1585 350–367. https://doi.org/10.1086/697115 1586 Gardner, E. M., Johnson, M. G., Ragone, D., Wickett, N. J., & Zerega, N. J. C. 2016. 1587 Low-Coverage, Whole-Genome Sequencing of Artocarpus camansi (Moraceae) for 1588 Phylogenetic Marker Development and Gene Discovery. Appl. Plant Sci., 4: 1600017. 1589 https://doi.org/10.3732/apps.1600017 1590 Hale, H., Gardner, E. M. ., Viruel, J., Pokorny, L. ., & Johnson, M. G. 2020. Strategies 1591 for reducing per-sample costs in target capture sequencing for phylogenomics and 1592 population genomics in plants. Appl. Plant Sci., in press. 1593 Heibl, C. 2008. PHYLOCH: R language tree plotting tools and interfaces to diverse 1594 phylogenetic software packages. http://www.christophheibl.de/Rpackages.html. 1595 Johnson, M. G., Gardner, E. M., Liu, Y., Medina, R., Goffinet, B., Shaw, A. J., 1596 Zerega, N. J. C., & Wickett, N. J. 2016. HybPiper: Extracting Coding Sequence and 1597 Introns for Phylogenetics from High-Throughput Sequencing Reads Using Target 1598 Enrichment. Appl. Plant Sci., 4: 1600016. https://doi.org/10.3732/apps.1600016 1599 Johnson, M. G., Pokorny, L., Dodsworth, S., Botigué, L. R., Cowan, R. S., Devault, A., 1600 Eiserhardt, W. L., Epitawalage, N., Forest, F., Kim, J. T., Leebens-Mack, J. H., 1601 Leitch, I. J., Maurin, O., Soltis, D. E., Soltis, P. S., Wong, G. K., Baker, W. J., & 1602 Wickett, N. J. 2019. A Universal Probe Set for Targeted Sequencing of 353 Nuclear 1603 Genes from Any Designed Using k-Medoids Clustering. Syst. Biol., 1604 68: 594–606. https://doi.org/10.1093/sysbio/syy086 1605 Kamneva, O. K., Syring, J., Liston, A., & Rosenberg, N. A. 2017. Evaluating 1606 allopolyploid origins in strawberries (Fragaria) using haplotypes generated from target 1607 capture sequencing. BMC Evol. Biol., 17: 1–19. https://doi.org/10.1186/s12862-017- 1608 1019-7

54 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1609 Kates, H. R., Johnson, M. G., Gardner, E. M., Zerega, N. J. C., & Wickett, N. J. 2018. 1610 Allele phasing has minimal impact on phylogenetic reconstruction from targeted 1611 nuclear gene sequences in a case study of Artocarpus. Am. J. Bot. 1612 https://doi.org/10.1002/ajb2.1068 1613 Katoh, K., & Standley, D. M. 2013. MAFFT multiple sequence alignment software 1614 version 7: improvements in performance and usability. Mol. Biol. Evol., 30: 772–80. 1615 https://doi.org/10.1093/molbev/mst010 1616 Kim, J., & Sanderson, M. J. 2008. Penalized likelihood phylogenetic inference: Bridging 1617 the parsimony-likelihood gap. Syst. Biol. https://doi.org/10.1080/10635150802422274 1618 Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & 1619 Bermingham, E. 2009. Plant DNA barcodes and a community phylogeny of a tropical 1620 forest dynamics plot in Panama. Proc. Natl. Acad. Sci. U. S. A., 106: 18621–18626. 1621 https://doi.org/10.1073/pnas.0909820106 1622 Lewis, W. H. 1986. Airborne pollen of the Neotropics:Potential roles in pollination and 1623 pollinosis. Grana, 25: 75–83. https://doi.org/10.1080/00173138609429936 1624 Machado, A. F. P., Vianna Filho, M. D. M., Amorim, A. M., & Romaniuc Neto, S. 1625 2013. A New Sorocea (Moraceae) From The Atlantic Rainforest, Brazil. Syst. 1626 Bot. https://doi.org/10.1600/036364413x670340 1627 Momose, K., Yamaoka, R., & Inoue, T. 1998. Pollination Biology of the Genus 1628 Artocarpus, Moraceae. Tropics, 7: 165–172. https://doi.org/10.3759/tropics.7.165 1629 Nepal, M. 2012. Phylogenetics of Morus (Moraceae) Inferred from ITS and trnL-trnF 1630 Sequence Data. Syst. Bot., 37: 442–450. https://doi.org/10.1600/036364412X635485 1631 Paradis, E. 2013. Molecular dating of phylogenies by likelihood methods: A comparison 1632 of models and a new information criterion. Mol. Phylogenet. Evol. 1633 https://doi.org/10.1016/j.ympev.2013.02.008 1634 Paradis, E., & Schliep, K. 2019. Ape 5.0: An environment for modern phylogenetics and 1635 evolutionary analyses in R. Bioinformatics, 35: 526–528. 1636 https://doi.org/10.1093/bioinformatics/bty633 1637 Quinlan, A. R., & Hall, I. M. 2010. BEDTools: A flexible suite of utilities for comparing 1638 genomic features. Bioinformatics, 26: 841–842.

55 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1639 https://doi.org/10.1093/bioinformatics/btq033 1640 Rabosky, D. L. 2014. Automatic detection of key innovations, rate shifts, and diversity- 1641 dependence on phylogenetic trees. PLoS One, 9. 1642 https://doi.org/10.1371/journal.pone.0089543 1643 Rabosky, D. L., Donnellan, S. C., Grundler, M., & Lovette, I. J. 2014a. Analysis and 1644 visualization of complex Macroevolutionary dynamics: An example from Australian 1645 Scincid lizards. Syst. Biol., 63: 610–627. https://doi.org/10.1093/sysbio/syu025 1646 Rabosky, D. L., Grundler, M., Anderson, C., Title, P., Shi, J. J., Brown, J. W., Huang, 1647 H., & Larson, J. G. 2014b. BAMMtools: An R package for the analysis of 1648 evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol., 5: 701–707. 1649 https://doi.org/10.1111/2041-210X.12199 1650 Rabosky, D. L., Santini, F., Eastman, J., Smith, S. A., Sidlauskas, B., Chang, J., & 1651 Alfaro, M. E. 2013. Rates of speciation and morphological evolution are correlated 1652 across the largest vertebrate radiation. Nat. Commun., 4: 1958. 1653 https://doi.org/10.1038/ncomms2958 1654 Revell, L. J. 2012. phytools: An R package for phylogenetic comparative biology (and 1655 other things). Methods Ecol. Evol., 3: 217–223. https://doi.org/10.1111/j.2041- 1656 210X.2011.00169.x 1657 Sakai, S., Kato, M., & Nagamasu, H. 2000. Artocarpus (Moraceae)–gall midge 1658 pollination mutualism mediated by a male-flower parasitic fungus. Am. J. Bot., 87: 1659 440–445. Retrieved from http://www.amjbot.org/content/87/3/440.short 1660 Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence 1661 times: A penalized likelihood approach. Mol. Biol. Evol. 1662 https://doi.org/10.1093/oxfordjournals.molbev.a003974 1663 Santos, A. dos, & Neto, S. R. 2015. Sorocea angustifolia (Moraceae), a New Species of 1664 Sorocea from the Atlantic Forest in Brazil . Novon A J. Bot. Nomencl. 1665 https://doi.org/10.3417/2013022 1666 Sayyari, E., & Mirarab, S. 2018. Testing for polytomies in phylogenetic species trees 1667 using quartet frequencies. Genes (Basel). https://doi.org/10.3390/genes9030132 1668 Schliep, K. P. 2011. phangorn: Phylogenetic analysis in R. Bioinformatics, 27: 592–593.

56 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1669 https://doi.org/10.1093/bioinformatics/btq706 1670 Stamatakis, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post- 1671 analysis of large phylogenies. Bioinformatics, 30: 1312–1313. 1672 https://doi.org/10.1093/bioinformatics/btu033 1673 Tange, O. 2018. GNU Parallel 2018. Https://Doi.Org/10.5281/Zenodo.1146014. 1674 https://doi.org/https://doi.org/10.5281/zenodo.1146014 1675 Team, R. C. 2019. R: A Language and Environment for Statistical Computing. Vienna, 1676 Austria. 1677 Villaverde, T., Pokorny, L., Olsson, S., Rincón-Barrado, M., Johnson, M. G., 1678 Gardner, E. M., Wickett, N. J., Molero, J., Riina, R., & Sanmartín, I. 2018. 1679 Bridging the micro- and macroevolutionary levels in phylogenomics: Hyb-Seq solves 1680 relationships from populations to species and above. New Phytol. 1681 https://doi.org/10.1111/nph.15312 1682 Weitemier, K., Straub, S. C. K., Cronn, R. C., Fishbein, M., Schmickl, R., McDonnell, 1683 A., & Liston, A. 2014. Hyb-Seq: Combining Target Enrichment and Genome 1684 Skimming for Plant Phylogenomics. Appl. Plant Sci., 2: 1400042. 1685 https://doi.org/10.3732/apps.1400042 1686 Wen, D., Yu, Y., Zhu, J., & Nakhleh, L. 2018. Inferring phylogenetic networks using 1687 PhyloNet. Syst. Biol., 67: 735–740. https://doi.org/10.1093/sysbio/syy015 1688 Yu, Y., & Nakhleh, L. 2015. A maximum pseudo-likelihood approach for phylogenetic 1689 networks. BMC Genomics, 16: 1–10. https://doi.org/10.1186/1471-2164-16-S10-S10 1690 Zapata, T. R., & Arroyo, M. T. K. 1978. Plant Reproductive Ecology of a Secondary 1691 Deciduous Tropical Forest in Venezuela. Biotropica, 10: 221. 1692 https://doi.org/10.2307/2387907 1693 Zerega, N. J. C., Clement, W. L., Datwyler, S. L., & Weiblen, G. D. 2005. 1694 Biogeography and divergence times in the mulberry family (Moraceae). Mol. 1695 Phylogenet. Evol., 37: 402–16. https://doi.org/10.1016/j.ympev.2005.07.004 1696 Zerega, N. J. C., & Gardner, E. M. 2019. Delimitation of the new tribe Parartocarpeae 1697 (Moraceae) is supported by a 333-gene phylogeny and resolves tribal level Moraceae 1698 taxonomy. Phytotaxa, 388: 253–265.

57 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1699 Zerega, N. J. C., Nur Supardi, M. N., & Motley, T. J. 2010. Phylogeny and 1700 Recircumscription of Artocarpeae (Moraceae) with a Focus on Artocarpus. Syst. Bot., 1701 35: 766–782. https://doi.org/10.1600/036364410X539853 1702 Zhang, C., Sayyari, E., & Mirarab, S. 2017. ASTRAL-III: Increased Scalability and 1703 Impacts of Contracting Low Support Branches BT - Comparative Genomics: 15th 1704 International Workshop, RECOMB CG 2017, Barcelona, Spain, October 4-6, 2017, 1705 Proceedings. in: J. Meidanis & L. Nakhleh (eds.). Cham: Springer International 1706 Publishing. https://doi.org/10.1007/978-3-319-67979-2_4 1707 Zhang, Q., Onstein, R. E., Little, S. A., & Sauquet, H. 2019. Estimating divergence 1708 times and ancestral breeding systems in Ficus and Moraceae. Ann. Bot., 123: 191–204. 1709 https://doi.org/10.1093/aob/mcy159 1710 1711 1712

58 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1713 Tables 1714 1715 Table 1. Overview of the taxonomic history of Moreae.

Engler (1899) Corner (1962) Berg (2001) Clement & Gardner et al. Weiblen (2009)

Afromorusc

Ampalis Ampalis (Ampalis)a (Ampalis)a Ampalis Bagassa Bagassa

(Bleekrodea)a Bleekrodea Broussonetia Clarisia Fatoua Fatoua Maclura

(Maillardia)b (Maillardia)b (Maillardia)b Maillardia

(Malaisia)b Milicia Milicia Milicia Morus Morus Morus Morus Morus

Pachytrophe Pachytrophe (Pachytrophe)a (Pachytrophe)a (Pachytrophe)d

Paratrophis (Paratrophis)a (Paratrophis)a (Paratrophis)a Paratrophis

Pseudomorus (Pseudomorus)a (Pseudomorus)a (Pseudomorus)a (Pseudomorus)e

(Pseudostreblus)a (Pseudostreblus)a (Pseudostreblus)a

(Sloetia) (Sloetia)a

(Sloetiopsis)a (Sloetiopsis)a (Sloetiopsis)a Sorocea Sorocea Sorocea

Streblus Streblus Streblus

(Taxotrophis)a (Taxotrophis)a (Taxotrophis)a Taxotrophis Trophis Trophis Trophis Trophis Trophis

1716 a Included in Streblus.

1717 b Included in Trophis.

1718 c Newly separated from Morus.

1719 d Included in Ampalis

59 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1720 e Included in Paratrophis. 1721 1722 1723 Table 2. Divergence times (in Ma) estimated using penalized likelihood under correlated 1724 and relaxed models. Nomenclature follows the revisions proposed in this study.

Clade Correlated Relaxed

Moraceae 84.7 84.7

Parartocarpeae 75.3 74.7

Ficeae 24 34.5

Olmedieae 36.4 43.4

Dorstenieae 72.5 76.9

Maclureae 44.9 52.1

Artocarpeae 64 64

Moreae 59.1 75.4

1725 1726 1727 1728 1729 1730

60 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1731 Figures 1732 1733 Figure 1. Representatives of Moreae: Paratrophis pendulina (=Streblus pendulinus) (a) 1734 infructescences and (b) staminate inflorescences, the latter showing the characteristic sterile 1735 groove; Sorocea racemosa (c) infructescences and (d) staminate inflorescence; Morus nigra 1736 (e) pistillate inflorescences with elaborate stigmas and (f) staminate inflorescences with 1737 stamens that, having been inflexed in bud, are substantially longer than the perianth itself; 1738 and a newly-placed member of Olmedieae (=Castilleae), Streblus asper: (g) infructescences 1739 and (h) discoid-capitate staminate inflorescences with the rudiments of an involucre visible 1740 below the unopened flowers. Photo credits: (a) F. & Kim Starr, under a CC-BY-3.0-US licence 1741 (https://commons.wikimedia.org/wiki/File:Starr-051029-5102-Streblus_pendulinus-fruit-Auwahi- 1742 Maui_(24481336159).jpg); (b) M. Marathon, CC-BY-SA-4.0 1743 (https://commons.wikimedia.org/wiki/File:Streblus_brunonianus_flowers.jpg); (c)-(d) A. Popovkin, CC-BY- 1744 2.0 (https://commons.wikimedia.org/wiki/File:Sorocea_racemosa_Gaudich._-_Flickr_- 1745 _Alex_Popovkin,_Bahia,_Brazil_(3).jpg and 1746 https://commons.wikimedia.org/wiki/File:Sorocea_racemosa_Gaudich._-_Flickr_- 1747 _Alex_Popovkin,_Bahia,_Brazil_(9).jpg); (e) E. Gardner; (f) Schurdl, CC-BY-SA-4.0 1748 (https://commons.wikimedia.org/wiki/File:Morus_nigra_100525_02.jpg); (g) D. Valke, CC-BY-SA-2.0

1749 (https://commons.wikimedia.org/wiki/File:Bekar_(Konkani-_बेकर)_(4533519363).jpg); (h) Vinayaraj, CC

1750 BY-SA 4.0 (https://commons.wikimedia.org/wiki/File:Streblus_asper_at_Panamaram_(5).jpg) 1751 1752

61 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a b c d

e f g h bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1768 Figure 2. Phylogenetic trees from the "exon" dataset. Maximum-likelihood based on a 1769 supermatrix of all loci, with bootstrap support and previous nomenclature (left), and a 1770 species tree based on gene trees from all loci with bootstrap/LPP support and revised 1771 nomenclature (right). Discordant branches are colored in red, and tribal classifications are 1772 shaded without (left) and with (right) the revised classifications presented here. 1773 1774

63 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

● Trema orientale SRR5674478 Trema orientale SRR5674478 ● 100 ● Elatostema retrohirtum Monro7601 Elatostema retrohirtum Monro7601 ● 98.67/85.37 100 ● Urtica urens FayMF173 Urtica urens FayMF173 ● 98.67/59.99 100 ● Poikilospermum suaveloens AsmanTA2 Poikilospermum suaveloens AsmanTA2 ● 96.67/92.74 16 ● Cecropia ficifolia BergCC18418 Cecropia ficifolia BergCC18418 ● 98/63.2 100 ● Leucosyke capitellata LugasL41 Leucosyke capitellata LugasL41 ● 54.67/36.77 100 ● Soleirolia soleirolii Sheahan M C17 Soleirolia soleirolii Sheahan M C17 ● 98.67/63.79 ● Boehmeria nivea HuSY 8113 Boehmeria nivea HuSY 8113 ● 100 ● Streblus indicus Tsang24252 Pseudostreblus indica Tsang24252 ● 100/98.95 Streblus indicus NewmanLA0518 Pseudostreblus indica NewmanLA0518 100 ● ● 78/41.24 100 ● Parartocarpus bracteatus NZ730 Parartocarpus bracteatus NZ730 ● 100/90.43 100 ● Parartocarpus venenosus NZ874 Parartocarpus venenosus NZ874 ● 100/98.42 100 ● Hullettia griffithiana Kerr16886 Hullettia griffithiana Kerr16886 ● 100/81.25 ● Hulletia dumosa NZ242 Hulletia dumosa NZ242 ● 100 ● Ficus racemosa SRR1405699 SRR1405700 Ficus racemosa SRR1405699 SRR1405700 ● 100/95.48 100 ● Ficus macrophylla EG30 Ficus macrophylla EG30 ● 93.33/66.24 ● Ficus sagittifolia ChaseMW19852 Ficus sagittifolia ChaseMW19852 ● 100/94.01 100 100 100 ● Streblus asper EG696 Streblus asper EG696 ● 100/94.41 100/84.43 ● Streblus asper Townsend73142 Streblus asper Townsend73142 ● 100 100 ● Sparattosyce dioica WeiblenWW1223 Sparattosyce dioica WeiblenWW1223 ● 100/70.87 100/92.29 100 ● Antiaropsis decipiens NZ281 Antiaropsis decipiens NZ281 ● 100/93.36 100 ● Antiaropsis decipiens WeiblenGW1865 Antiaropsis decipiens WeiblenGW1865 ● 100/80.24 ● Poulsenia armata Pennington14600 Poulsenia armata Pennington14600 ● 10082 ● Helicostylis tomentosa Gomes511 Antiaris toxicaria 5595 ● 99.33/56.92 ● Castilla elastica ChaseMW19850 Helicostylis tomentosa Gomes511 ● 43.33/39.4334.67/42.87 97.33/51.63 100 100 41 Antiaris toxicaria 5595 Castilla elastica ChaseMW19850 ● ● 40.67/39.4 92/84.57 100 ● Naucleopsis macrophylla BergP18534 Olmedia aspera Fuentes5323 S41 ● 100● Trophis caucana Fuentes5323 S41 Olmedia aspera AceedoR8833 ● 58/49.16 41 ● Trophis caucana AceedoR8833 Naucleopsis macrophylla BergP18534 ● 62/36.19 ● Pseudolmedia spuria Lobo263 Pseudolmedia spuria Lobo263 ● 87.33/86.57 ● Fatoua pilosa TaylorP218 Fatoua pilosa TaylorP218 ● 100 ● Malaisia scandens EG122 Malaisia scandens GrayB8416 ● 100/91.91 100 ● Malaisia scandens GrayB8416 Malaisia scandens EG122 ● 25.33/38.1 100 100 ● Malaisia scandens Sands sn Malaisia scandens Sands sn ● 100/92.61 100/79.71 100 ● Broussonetia papyrifera SRR1477753 Broussonetia papyrifera SRR1477753 ● 100/81.03 100 ● Broussonetia cf papyrifera Heng14289 Broussonetia cf papyrifera Heng14289 ● 100 100/92.07 100 ● Broussonetia kazinoki ChaseMW17827 Broussonetia kazinoki ChaseMW17827 ● ● Bleekrodea madagascariensis DavisRakotonasolo3117 Dorstenia barteri ChaseMW18153 ● 100 ● Bosqueiopsis gilletii Fronties243 Bleekrodea madagascariensis DavisRakotonasolo3117 ● 99.33/83.93 ● Trilepisium madagascariense Richard403 Dorstenia hildebrandtii NZ311 ● 100100 30/64.42 100 ● Dorstenia barteri ChaseMW18153 Bosqueiopsis gilletii Fronties243 ● 99.33/75.41 21.33/31.51 100 ● Dorstenia hildebrandtii NZ311 Trilepisium madagascariense Richard403 ● 90.67/67.51 100 ● Utsetela gabonensis Lebrun5879 Utsetela gabonensis Lebrun5879 ● 100/99.66 100 100 ● Utsetela gabonenesis Breteler14086 Utsetela gabonenesis Breteler14086 ● 93.33/58.82 32.67/62.4 ● Utsetela neglecta Bissiengen923 Utsetela neglecta Bissiengen923 ● 100 ● Streblus usambarensis Faden77 417 Sloetiopsis usambarensis Faden77 417 ● 100/89.4 Streblus usambarensis CheekM18194 Sloetiopsis usambarensis CheekM18194 100 ● ● 98.67/44.86 100 ● Trymatococcus amazonicus Prance13461 Trymatococcus amazonicus Prance13461 ● 100/74.18 100 ● Helianthostylis sprucei Ribeiro1204 Helianthostylis sprucei Ribeiro1204 ● 100/90.91 100 ● Brosimum alicastrum EG23 Brosimum alicastrum EG23 ● 100/94.12 ● Brosimum alicastrum MonroLander7382 Brosimum alicastrum MonroLander7382 ● 100 ● Maclura tinctoria Fernandez314 Maclura tinctoria Fernandez314 ● 100/98.89 100 100 ● Maclura tinctoria mora Nee40044 Maclura tinctoria mora Nee40044 ● 100/85.07 ● Maclura tinctoria tinctoria Campos2679 Maclura tinctoria tinctoria Campos2679 ● 94.67/55.63 Maclura tinctoria Reuvoize3252 Maclura tinctoria Reuvoize3252 ● ● 90.67/78.45 100 100 ● Maclura spinosa Perumal RHT22554 Maclura spinosa Perumal RHT22554 ● 100/96.97 98.67/97.77 100 74 ● Maclura andamanica Maxwell89−436 Maclura andamanica Maxwell89−436 ● 95.33/60.9 74 ● Maclura africana GreenwayKanuri15269 Maclura africana GreenwayKanuri15269 ● 93.33/71.77 ● Maclura africana Manktelow93027 Maclura africana Manktelow93027 ● 100 98.67/95.13 72 ● Maclura brasiliensis NeeVargas45025 Maclura brasiliensis NeeVargas45025 ● 100/89.93 72● Maclura pomifera EG139 Maclura pomifera EG139 ● 90.67/69.23 ● Maclura pomifera Swannsn Maclura pomifera Swannsn ● 72 98/63.15 58 ● Maclura thorellii Pierre4709 Maclura thorellii Pierre4709 ● Maclura cochinchinensis Guill6841 Maclura fruticosa NMCuong1193 ● ● 99.33/69.8898/79.19 72 100 ● Maclura fruticosa NMCuong1193 Maclura cf cochinchinensis NZ757 ● 100/88.44 100 Maclura cf cochinchinensis NZ757 Maclura amboinensis Takeuchi16578 ● ● 92/55.25 86 ● Maclura amboinensis Takeuchi16578 Maclura cochinchinensis Guill6841 ● 58.67/52.33 70/46.64 86 ● Maclura cochinchinensis SAGBE887 Maclura cochinchinensis SAGBE887 ● 70/40.57 100 ● Maclura aff pubsecens Averyanov1198 Maclura aff pubsecens Averyanov1198 ● ● Maclura tricuspidata MOR 68−7917 Maclura tricuspidata MOR 68−7917 ● 100 ● Clarisia ilicifolia Carranta6386 Clarisia ilicifolia Carranta6386 ● 100/97.42 100 ● Clarisia ilicifolia Maguire56675 Clarisia ilicifolia Maguire56675 ● 100/90.94 ● Clarisia ilicifolia Souza2492 Clarisia ilicifolia Souza2492 ● 100/94.39 100100 ● Batocarpus costaricensis GW1463 Batocarpus costaricensis GW1463 ● 69.33/39.07 100 ● Batocarpus amazonicus Salidas1233 Batocarpus amazonicus Salidas1233 ● 100/100 ● Batocarpus amazonicus Berg18524 Batocarpus amazonicus Berg18524 ● 100/58.35 100 100 ● Clarisia racemosa Assuncao690 Clarisia racemosa Assuncao690 ● 100/92.89 100 ● Clarisia racemosa NeilD1291 Clarisia racemosa NeilD1291 ● 31.33/33.46 50 ● Clarisia biflora GW1460 Clarisia biflora GW1460 ● 17.33/35.58 100 ● Batocarpus orinocensis Vasquez27440 Batocarpus oriniceros Vasquez27440 ● 100/84.41 ● Batocarpus orinocensis Palacios3265 Batocarpus orinocensis Palacios3265 ● 100 ● Artocarpus scandens EG411 Artocarpus scandens EG411 ● 100/92.42 100 ● Artocarpus papuanus NZ61 Artocarpus papuanus NZ61 ● 100/79.89 ● Artocarpus limpato NZ609 Artocarpus limpato NZ609 ● 96.67/98.15 100 ● Artocarpus nitidus ssp lingnanensis NZ911 Artocarpus tonkinensis EG174 ● ● Artocarpus fulvicortex EG711 Artocarpus styracifolius EG176 ● 99.33/42.46100/67.51 100 100 ● Artocarpus lacucha NZ420 Artocarpus nanchuanensis EGL238 ● 100/66.81 10 ● Artocarpus gomezianus ssp zeylanicus NZ956 Artocarpus hypargyraeus EG170 ● 100/52.25 95 ● Artocarpus thailandicus NZ402 Artocarpus petelotii DDS14435 ● 100/62.72 ● Artocarpus tonkinensis EG174 Artocarpus pithecogallus LiJianwu3200 ● 98/41.27 100/96.42 10097 ● Artocarpus styracifolius EG176 Artocarpus gongshanensis HAST137747 ● 100 ● Artocarpus nanchuanensis EGL238 Artocarpus nitidus ssp lingnanensis NZ911 ● 100100 ● Artocarpus hypargyraeus EG170 Artocarpus lacucha NZ420 ● 100/84.54 96.67/49.75 100 4 ● Artocarpus petelotii DDS14435 Artocarpus gomezianus ssp zeylanicus NZ956 ● 96.67/85.1 100 98.67/45.47 100 ● Artocarpus pithecogallus LiJianwu3200 Artocarpus thailandicus NZ402 ● 90.67/41.28 93.33/39.76 ● Artocarpus gongshanensis HAST137747 Artocarpus gomezianus ssp gomezianus NZ533 ● 41.33/37.9 ● Artocarpus nitidus ssp humilis EG258 Artocarpus nitidus ssp humilis EG258 ● 10010 100/75.28 100 ● Artocarpus dadah NZ694 Artocarpus dadah NZ694 ● 57.33/39.87 ● Artocarpus nitidus ssp griffithii NZ216 Artocarpus nitidus ssp griffithii NZ216 ● 100 74.67/39.79 ● Artocarpus gomezianus ssp gomezianus NZ533 Artocarpus fulvicortex EG711 ● 9.33/35.32 5 ● Artocarpus cf lacucha NZ517 Artocarpus cf lacucha NZ517 ● 100 100 ● Artocarpus glaucus NZ852 Artocarpus glaucus NZ852 ● ● Artocarpus nitidus ssp borneensis NZ686 Artocarpus nitidus ssp borneensis NZ686 ● 96 15.33/34.85 100 ● Artocarpus primackii NZ687 Artocarpus primackii NZ687 ● 100/75.4621.33/40.39 100 98.67/47.03 100 Artocarpus tomentosulus NZ617 Artocarpus tomentosulus NZ617 27.33/40.36 ● ● 96/45.24 100 ● Artocarpus xanthocarpus Yang15648 Artocarpus xanthocarpus Yang15648 ● 100/70.78 100100 ● Artocarpus vrieseanus var refractus Hoogland4822 Artocarpus vrieseanus refractus Hoogland4822 ● 100/76.1 35.33/41.56 ● Artocarpus vriesianus var vrieseanus GW1229 Artocarpus vriesianus var vrieseanus GW1229 ● 88 100 100/82.24 ● Artocarpus albobrunneus AA2243 Artocarpus albobrunneus AA2243 ● 72/41.4 Artocarpus fretessii NZ929 Artocarpus fretessii NZ929 100 ● ● 38/42.04 86 ● Artocarpus ovatus NZ202 Artocarpus ovatus NZ202 ● 100/72.13 100 ● Artocarpus nitidus ssp nitidus PPI10374 Artocarpus subrotundifolius Wenzel1576 ● 97.33/42.46 99 ● Artocarpus subrotundifolius Wenzel1576 Artocarpus nitidus ssp nitidus PPI10374 ● 54/37.16 ● Artocarpus rubrovenius JSB84 Artocarpus rubrovenius JSB84 ● ● Artocarpus longifolius ssp adpressus Nangkat15511 Artocarpus longifolius ssp adpressus Nangkat15511 ● 100 ● Artocarpus altissimus EG441 Artocarpus altissimus EG441 ● 76.67/39.69 100 ● Artocarpus sepicanus GW1701 Artocarpus sepicanus GW1701 ● 100 ● Artocarpus heterophyllus EG98 Artocarpus heterophyllus EG98 ● 100/93.19 100 ● Artocarpus integer NZ918 Artocarpus integer NZ918 ● 100/82.41 ● Artocarpus annulatus NZ985 Artocarpus annulatus NZ985 ● 69.33/39.53 100 ● Artocarpus sarawakensis EG527 Artocarpus brevipedunculatus NZ814 ● 100/95.33 100 ● Artocarpus brevipedunculatus NZ814 Artocarpus sarawakensis EG527 ● 98.67/47.87 100 Artocarpus anisophyllus NZ606 Artocarpus anisophyllus NZ606 100/64.67 100 ● ● ● Artocarpus lanceifolius ssp clementis NZ739 Artocarpus lanceifolius ssp clementis NZ739 ● 100/50.86 100 ● Artocarpus hirsutus NZ953 Artocarpus hirsutus NZ953 ● 96.67/88.58 100 Artocarpus nobilis AHJ3283 Artocarpus nobilis AHJ3283 100/85.68 100 ● ● ● Artocarpus chama NZ354 Artocarpus chama NZ354 ● 44/36.61100/59.32 100 Artocarpus melinoxylus JLS2924 Artocarpus melinoxylus JLS2924 100 ● ● 99.33/47.88 100 ● Artocarpus odoratissimus NZ618 Artocarpus odoratissimus NZ618 ● 100/69.47 100 ● Artocarpus rigidus ssp asperulus NZ507 Artocarpus rigidus ssp asperulus NZ507 ● 100/63.04 96/82.72 100 96.67/83.31 100 100 ● Artocarpus rigidus NZ728 Artocarpus rigidus NZ728 ● 100/49.08 ● Artocarpus hispidus NZ258 Artocarpus hispidus NZ258 ● 100 ● Artocarpus treculianus nigrescens Ramos2107 Artocarpus treculianus nigrescens Ramos2107 ● 95.33/50.84 100 ● Artocarpus pinnatisectus Escritor Artocarpus pinnatisectus Escritor ● 90.67/63.16 100 ● Artocarpus multifidus PPI3911 Artocarpus multifidus PPI3911 ● 98/89.81 100 ● Artocarpus treculianus Elmer12468 Artocarpus treculianus Elmer12468 ● 99.33/68.28 84 ● Artocarpus treculianus ovatifolius NZ203 Artocarpus treculianus ovatifolius NZ203 ● 100/44.04 100 ● Artocarpus blancoi Ramos42018 Artocarpus blancoi Ramos42018 ● 98/97.43 ● Artocarpus aff excelsus AveryanovVH1819 Artocarpus aff excelsus AveryanovVH1819 ● ● Artocarpus camansi EG149 Artocarpus camansi EG149 ● 88/41.25 100100100 ● Artocarpus altilis K7 UluFiti Artocarpus altilis K7 UluFiti ● 100/98.37 95.33/41.55 100 66 ● Artocarpus cf horridus RM160 Artocarpus cf horridus RM160 ● 46.67/37.42 ● Artocarpus horridus EG437 Artocarpus horridus EG437 ● 71.33/40.1 100 ● Artocarpus mariannensis DD4 Artocarpus mariannensis DD4 ● 98/43.44 ● Artocarpus excelsus NZ780 Artocarpus obtusus NZ729 ● 97.33/44.16 100 100 ● Artocarpus obtusus NZ729 Artocarpus lowii MWL2 ● ● Artocarpus lowii MWL2 Artocarpus excelsus NZ780 ● 95.33/44.24 7897 ● Artocarpus teijsmannii NZ946 Artocarpus teijsmannii NZ946 ● 95.33/48.71 99 ● Artocarpus sumatranus AA2766 Artocarpus maingayi NZ257 ● 100/72.9358.67/36.41 91 ● Artocarpus maingayi NZ257 Artocarpus sumatranus AA2766 ● 53.33/38.0252.67/41.95 100 ● Artocarpus kemando NZ612 Artocarpus kemando NZ612 ● ● Artocarpus tamaran EG92 Artocarpus jarrettiae SAN120933 ● 83.33/46.44 87 Artocarpus sericicarpus NZ771 Artocarpus tamaran EG92 ● ● 48.67/39.95 8573 ● Artocarpus jarrettiae SAN120933 Artocarpus sericicarpus NZ771 ● 29.33/36.07 90 ● Artocarpus corneri Fuchs21347 Artocarpus corneri Fuchs21347 ● 98.67/63.08 86 ● Artocarpus elasticus EG87 Artocarpus elasticus EG87 ● 100/50.15 ● Artocarpus scortechinii NZ209 Artocarpus scortechinii NZ209 ● ● Streblus zeylanicus Meijer701 Taxotrophis zeylanica Meijer701 ● 100 100 ● Streblus macrophyllus DDS10673 Taxotrophis macrophylla DDS10673 ● 100/97.79 98.67/98.97 ● Streblus macropyllus JLS2916 Taxotrophis macrophylla JLS2916 ● 97 100 ● Streblus ilicifolius deWilde18958 Taxotrophis ilicifolia deWilde18958 ● 99.33/97.45 65.33/45.59 100 ● Streblus ilicifolius Cuong122 Taxotrophis ilicifolia Cuong122 ● 98.67/40.51 96 ● Streblus cf ilicifolius EG720 Taxotrophis ilicifolius EG720 ● 38/36.48 100 ● Streblus taxoides Ridsdale SMHI422 Taxotrophis taxoides Ridsdale SMHI422 ● 100/97.6 99 ● Streblus taxoides EG701 Taxotrophis taxoides EG701 ● 76.67/43.19 100 ● Streblus spinosus Sidiyasa4071 Taxotrophis spinosa Sidiyasa4071 ● 100/91.16 100 ● Streblus spinosus MahyuniRDH 020 Taxotrophis spinosa MahyuniRDH 020 ● 100/90.65 ● Streblus spinosus EG702 Taxotrophis spinosa EG702 ● 100 ● Trophis montana Andrianantoanina 1023 Maillardia borbonica Cadet4518 ● 100/92.81 100 ● Trophis borbonica Cadet4518 Maillardia montana Andrianantoanina 1023 ● 75.33/46.15 ● Trophis montana Nek1882 Maillardia montana Nek1882 ● 100● Morus mesozygia Buckner309 Afromorus mesozygia Buckner309 ● 100/99.48 100100 ● Morus mesozygia Bo330 Afromorus mesozygia Bo330 ● 100/87.12 100 ● Milicia regia Cooper332 Milicia regia Cooper332 ● 100/98.08 100 ● Milicia excelsa McPherson16087 Milicia excelsa McPherson16087 ● 100/77.78 20.67/37.23100/56.95 100 ● Milicia excelsa Williamson187 Milicia excelsa Williamson187 ● 98.67/98.13 100 100 ● Streblus dimepate CasmirZ405 Pachytrophe dimepate CasmirZ405 ● 100/54.6 100 ● Streblus mauritianus Rakotonirina489 Ampalis mauritiana Rakotonirina489 ● 100/93.48 ● Streblus mauritianus Hoffman Ampalis mauritiana Hoffman ● 96 Streblus anthropophagorum Degeer4698 Paratrophis anthropophagorum Degeer4698 63 ● ● 100/95.37 100/52.9 100 ● Streblus heterophyllus Beecher sn Paratrophis microphylla Beecher sn ● 89.33/57.61 ● Streblus heterophyllus ChaseMW17825 Paratrophis microphylla ChaseMW17825 ● 34.67/35.6 100● Trophis philippinensis EG430 Paratrophis insignis Homeier1949 ● 100 100/97.41 98 ● Trophis philippinensis Brambach465 Paratrophis insignis Monteagudo3734 ● 100/59 100 ● Streblus glaber EG78 Paratrophis insignis Vargas4154 ● 98.67/49.64 ● Streblus glaber var australianus Hyland10634 Paratrophis insignis Vasquez28068 ● 100/87.86 67 100/98.59 100 ● Morus insignis Homeier1949 Paratrophis philippinensis EG430 ● 100● Morus insignis Monteagudo3734 Paratrophis philippinensis Brambach465 ● 26.67/35.06 100 100/83.02 35 ● Morus insignis Vargas4154 Paratrophis glabra EG78 ● ● Morus insignis Vasquez28068 Paratrophis australiana Hyland10634 ● 55.33/35.93 100 ● Streblus pendulinus Gray3277 Paratrophis pendulina Gray3277 ● 100/98.72 100 100 ● Streblus pendulinus Degener17839 Paratrophis pendulina Degener17839 ● 100/95.05 100● Streblus pendulinus Wood989 Paratrophis pendulina Wood989 ● 100/60.44 100/98.65 ● Streblus pendulinus Fosberg12877 Paratrophis pendulina Fosberg12877 ● 100 ● Bagassa guianensis GW1677 Bagassa guianensis GW1677 ● 98/93.4 Parartocarpeae ● Bagassa guianensis JansenJacobs3767 Bagassa guianensis JansenJacobs3767 ● 100 ● Sorocea subumbellata Dodson9601 Sorocea subumbellata Dodson9601 ● 100/95.47 68 100 ● Sorocea sprucei saxicola Nee35729 Sorocea sprucei saxicola Nee35729 ● 100/96.95 61.33/39.3 ● Sorocea duckei Stein 3931 Sorocea duckei Stein 3931 ● ● Sorocea trophoides Perea2479 Sorocea trophoides Perea2479 ● 100100 ● Sorocea pubivena pubivena cufodontisii Kernan406 Sorocea pubivena pubivena cufodontisii Kernan406 ● 100/79.66 100/99.12 100100● Sorocea pubivena oligotricha Kennedy2124 Sorocea pubivena oligotricha Kennedy2124 ● 100/46.42100/67.75 100 ● Sorocea pubivena pubivena Galdames4477 Sorocea pubivena pubivena Galdames4477 ● 100/59.07 Ficeae 100100● Sorocea affinis Espinosa706 Sorocea affinis Espinosa706 ● 100/64.27 ● Sorocea trophoides Fuentes304 Sorocea trophoides Fuentes304 ● 100/75.34 ● Sorocea jaramilloi Madison4772 Sorocea jaramilloi Madison4772 ● 81.33/39.47 Sorocea muriculata muriculata Schunke16489 Sorocea muriculata muriculata Schunke16489 100100 ● ● 100/90.34 100 ● Sorocea briquetii Valenzula954 Sorocea briquetii Valenzula954 ● 100/56.76 Sorocea pubivena hirtella Vasquez19236 Sorocea pubivena hirtella Vasquez19236 100/49.96 39 ● ● 100 ● Sorocea steinbachii GW1501 Sorocea steinbachii GW1501 ● 100/87.14 100/55.67 100 ● Sorocea muriculata uaupensis Plowman sn Sorocea muriculata uaupensis Plowman sn ● 100/67.08 Castilleae | Olmedieae 100 ● Sorocea guilieminiana Maguire56625 Sorocea guilleminiana Moya112 S38 ● 100/83.71 10030 ● Sorocea guilleminiana Moya112 S38 Sorocea guilieminiana Maguire56625 ● 38 Sorocea hilarii Pirani1136 Sorocea hilarii Pirani1136 44.67/41.27 ● ● 66/42.05 37 ● Sorocea hilarii Carauta795 Sorocea hilarii Carauta795 ● 56.67/39.26 75 ● Sorocea bonplandii MonroA sn Sorocea bonplandii MonroA sn ● 70.67/73.55 100 ● Sorocea boplandii Tressens6347 Sorocea boplandii Tressens6347 ● 94.67/58.76 ● Sorocea bonplandii Stevens30948 Sorocea bonplandii Stevens30948 ● 100 ● Trophis involucrata Lent2243 Trophis involucrata Lent2243 ● 100/91.33 Dorstenieae 100 ● Trophis involucrata Aguilar4679 Trophis involucrata Aguilar4679 ● 100/96.77 100 ● Trophis racemosa Stevens37196 Trophis racemosa Stevens37196 ● 100/94.63 100 ● Trophis mexicana Stevens27939 Trophis mexicana Stevens27939 ● 100/48.88 ● Trophis cuspidata Gomez−Dominuez774 Trophis cuspidata Gomez−Dominuez774 ● 100/83.28 100 ● Morus notabilis SRR8138828 Morus notabilis SRR8138828 ● 100● Morus rubra MOR 326−784 Morus rubra MOR 326−784 ● 100/98.18 Morus rubra EG141 Morus rubra EG141 100 ● ● 100/70.44100/96.27 100 ● Morus microphylla Stone4225 Morus microphylla Stone4225 ● 100/82.15 100● Morus celtidifolia Sandoval637 Morus celtidifolia Sandoval637 ● 56.67/39.55 Maclureae 100 ● Morus microphylla Fishbein1058 Morus microphylla Fishbein1058 ● 100/67.76 100● Morus macroura Bounhong LAOS366 Morus macroura Bounhong LAOS366 ● 100/65.7 91 ● Morus macroura DDS14088 Morus macroura DDS14088 ● 100/62.84 91● Morus macroura EG28 Morus macroura EG28 ● 100/86.92 10078 ● Morus cathayana Wilson10 Morus serrata Rodin 5315 ● 100/69.61 100 ● Morus serrata Rodin 5315 Morus serrata Koelz4788 ● supermatrix ● Morus serrata Koelz4788 Morus cathayana Wilson10 ● 61.33/40.72 species tree 70 Artocarpeae ● Morus australis Koelz4431 Morus australis Koelz4431 ● 64/46.13 10078 ● Morus australis Tanaka17776 Morus australis Tanaka17776 ● 100/57.68 100● Morus australis Oh110618−012 Morus australis Oh110618−012 ● 100/54.7299.33/60.57 78 ● Morus australis MOR 241−716 Morus australis MOR 241−716 ● 98 ● Morus australis Chung3290 Morus australis Chung3290 ● 99● Morus kagayamai AA20187−A Morus nigra EG29 ● 84/47.3799.33/53.51 62.67/39.72 7070 ● Morus nigra EG29 Morus kagayamai AA20187−A ● ● Morus cathayana Nie92144 Morus cathayana Nie92144 ● 38/37.93 6399● Morus alba var pendula MOR 380−871 Morus alba var pendula MOR 380−871 ● 97.33/40.8929.33/39.7698/51.59 Moreae 100 ● Morus alba var tatarica MOR 523−305 Morus alba var tatarica MOR 523−305 ● 100/50.52 100 ● Morus mongolica MOR 55−951 Morus mongolica MOR 55−951 ● 73.33/36.21 ● Morus alba MOR 920−261 Morus alba MOR 920−261 ● ● Morus cf alba HamiltonMA618 Morus cf alba HamiltonMA618 ● bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1775 Figure 3. Phylogenetic trees of the Moreae clade from the "supercontig" dataset. 1776 Maximum-likelihood based on a supermatrix of all loci, with bootstrap support and 1777 previous nomenclature (left), and a species tree based on gene trees from all loci with 1778 bootstrap/LPP support and revised nomenclature (right). Discordant branches are colored in 1779 red. 1780 1781

64 ● Artocarpus heterophyllus EG98 Artocarpus heterophyllus EG98 ●

● Streblus zeylanicus Meijer701 Taxotrophis macrophylla DDS10673 ● 100/35.6

31 ● Streblus ilicifolius deWilde18958 Taxotrophis macrophylla JLS2916 ● 100 100 ● Streblus ilicifolius Cuong122 Taxotrophis ilicifolia deWilde18958 ● 100/36.47 100/97.51 ● Streblus cf ilicifolius EG720 Taxotrophis ilicifolia Cuong122 ● 88/47.32 86 100 ● Streblus macrophyllus DDS10673 Taxotrophis ilicifolia EG720 ● 30.67/97.83 ● Streblus macropyllus JLS2916 Taxotrophis zeylanica Meijer701 ● 82 100 ● Streblus taxoides Ridsdale SMHI422 Taxotrophis taxoides Ridsdale SMHI422 ● 100/98.62 54.67/36.21

100 ● Streblus taxoides EG701 Taxotrophis taxoides EG701 ● 65.33/84.37 ● Streblus spinosus Sidiyasa4071 Taxotrophis spinosa Sidiyasa4071 ● 100 100/92.43 100/55.16 100 ● Streblus spinosus MahyuniRDH 020 Taxotrophis spinosa MahyuniRDH 020 ● 100/67.62 ● Streblus spinosus EG702 Taxotrophis spinosa EG702 ● ● Trophis montana Andrianantoanina 1023 Maillardia montana Andrianantoanina 1023 ● 100 100/55.66 100 ● Trophis montana Nek1882 Maillardia montana Nek1882 ● 77.33/94.12 ● Trophis borbonica Cadet4518 Maillardia borbonica Cadet4518 ●

100 ● Morus mesozygia Buckner309 Afromorus mesozygia Buckner309 ● 100/100

100 100 ● Morus mesozygia Bo330 Afromorus mesozygia Bo330 ● 100/99.55 100/42.82 ● Milicia regia Cooper332 Milicia regia Cooper332 ● 100 100/69.7 100 ● Milicia excelsa McPherson16087 Milicia excelsa McPherson16087 ● 100 100 ● Milicia excelsa Williamson187 Milicia excelsa Williamson187 ● 100/97.86 100 ● Streblus dimepate CasmirZ405 Ampalis dimepate CasmirZ405 ● 100/90.63 100 100/61.2 100 ● Streblus mauritianus Rakotonirina489 Ampalis mauritiana Rakotonirina489 ● 100/52.13 ● Streblus mauritianus Hoffman Ampalis mauritiana Hoffman ● ● Morus insignis Homeier1949 Paratrophis insignis Homeier1949 ● 100 100/54.05 100 ● Morus insignis Monteagudo3734 Paratrophis insignis Monteagudo3734 ● 95.33/56.82 100 100/57.19 100 ● Morus insignis Vasquez28068 Paratrophis insignis Vasquez28068 ● 94/44.53 ● Morus insignis Vargas4154 Paratrophis insignis Vargas4154 ●

100 99 ● Streblus anthropophagorum Degeer4698 Paratrophis anthropophagorum Degeer4698 ● 100/49.34 100/59.96 100 ● Streblus heterophyllus Beecher sn Paratrophis microphylla Beecher sn ● 69.33/35.55 ● Streblus heterophyllus ChaseMW17825 Paratrophis microphylla ChaseMW17825 ● 24/36.4 ● Trophis philippinensis EG430 Paratrophis philippinensis EG430 ● 99 100 100/39.03 100 ● Trophis philippinensis Brambach465 Paratrophis philippinensis Brambach465 ● 56.67/38.65

100 ● Streblus glaber EG78 Paratrophis glabra EG78 ● 100/98.4 86 Streblus glaber var australianus Hyland10634 Paratrophis australiana Hyland10634 ● ● 50.67/45.6 ● Streblus pendulinus Gray3277 Paratrophis pendulina Gray3277 ● 100 100/95.47 100 ● Streblus pendulinus Degener17839 Paratrophis pendulina Degener17839 ● 100/88.96 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452100 ; this version posted August 20, 2020. The copyright holder for this preprint 100/45.86 (which was not certified by peer review) is the author/funder,● who has granted bioRxiv a license to displayStreblus the preprint pendulinus in perpetuity. Wood989 It is made Paratrophis pendulina Wood989 ● available100 under aCC-BY-NC-ND 4.0 International license. 100/95.56 ● Streblus pendulinus Fosberg12877 Paratrophis pendulina Fosberg12877 ●

100 ● Bagassa guianensis GW1677 Bagassa guianensis GW1677 ● 93.33/72.1 ● Bagassa guianensis JansenJacobs3767 Bagassa guianensis JansenJacobs3767 ● ● Sorocea subumbellata Dodson9601 Sorocea subumbellata Dodson9601 ● 100 100/92.28 12 100 ● Sorocea sprucei saxicola Nee35729 Sorocea sprucei saxicola Nee35729 ● 100/72.73 90.67/56.25 ● Sorocea duckei Stein 3931 Sorocea duckei Stein 3931 ● ● Sorocea trophoides Perea2479 Sorocea trophoides Perea2479 ● 100 100 100/97.39 ● Sorocea pubivena pubivena cufodontisii Kernan406 Sorocea pubivena pubivena cufodontisii Kernan406 ● 100/97.61 100 100/36.97 100 ● Sorocea pubivena pubivena Galdames4477 Sorocea pubivena pubivena Galdames4477 ● 100/46.43

100 ● Sorocea pubivena oligotricha Kennedy2124 Sorocea pubivena oligotricha Kennedy2124 ● 100/96.18

100 100 ● Sorocea trophoides Fuentes304 Sorocea trophoides Fuentes304 ● 98.67/43.09 ● Sorocea affinis Espinosa706 Sorocea affinis Espinosa706 ● 100/99.11 ● Sorocea jaramilloi Madison4772 Sorocea jaramilloi Madison4772 ● 79.33/98.01 ● Sorocea muriculata muriculata Schunke16489 Sorocea muriculata muriculata Schunke16489 ● 100 100 100/94.66 100 ● Sorocea briquetii Valenzula954 Sorocea briquetii Valenzula954 ● 100/94.64 ● Sorocea pubivena hirtella Vasquez19236 Sorocea pubivena hirtella Vasquez19236 ● 97.33/39.37 100 100 ● Sorocea steinbachii GW1501 Sorocea steinbachii GW1501 ● 100/69.96 100 ● Sorocea muriculata uaupensis Plowman sn Sorocea muriculata uaupensis Plowman sn ● 99.33/94.71 100/NaN 100 ● Sorocea guilleminiana Moya112 S38 Sorocea guilleminiana Moya112 S38 ● 100/44.07 100 ● Sorocea guilieminiana Maguire56625 Sorocea guilieminiana Maguire56625 ● 28 86/91.46 87 ● Sorocea hilarii Pirani1136 Sorocea hilarii Pirani1136 ● 74/98.81 100 ● Sorocea hilarii Carauta795 Sorocea hilarii Carauta795 ● 78/95.76 ● Sorocea bonplandii MonroA sn Sorocea bonplandii MonroA sn ● 100 94.67/96.67 94 ● Sorocea boplandii Tressens6347 Sorocea boplandii Tressens6347 ● 81.33/75.46 ● Sorocea bonplandii Stevens30948 Sorocea bonplandii Stevens30948 ●

100 ● Trophis involucrata Lent2243 Trophis involucrata Lent2243 ● 100/60.54

100 ● Trophis involucrata Aguilar4679 Trophis involucrata Aguilar4679 ● 100/71.77 ● Trophis racemosa Stevens37196 Trophis racemosa Stevens37196 ● 100 100/68.24 100 ● Trophis mexicana Stevens27939 Trophis mexicana Stevens27939 ● 100/43.92 ● Trophis cuspidata Gomez−Dominuez774 Trophis cuspidata Gomez−Dominuez774 ● 100 100/81.76 ● Morus notabilis SRR8138828 Morus notabilis SRR8138828 ●

100 ● Morus rubra EG141 Morus rubra EG141 ● 100/61.9

100 ● Morus rubra MOR 326−784 Morus rubra MOR 326−784 ● 100/93.13 100/51.84 100 ● Morus microphylla Stone4225 Morus microphylla Stone4225 ● 100 100/69.92 100 ● Morus celtidifolia Sandoval637 Morus celtidifolia Sandoval637 ● 98/84.12 ● Morus microphylla Fishbein1058 Morus microphylla Fishbein1058 ● 100/41.97 100 ● Morus macroura EG28 Morus macroura EG28 ● 100 100/40.58 100 ● Morus macroura Bounhong LAOS366 Morus macroura Bounhong LAOS366 ● 100/40.99 ● Morus macroura DDS14088 Morus macroura DDS14088 ● 100/84.56 100 100 ● Morus serrata Rodin 5315 Morus serrata Rodin 5315 ● 100/76.58 ● Morus serrata Koelz4788 Morus serrata Koelz4788 ● Morus cathayana Wilson10 Morus cathayana Wilson10 98/40.17 7793 ● ● ● Morus australis Koelz4431 Morus australis Koelz4431 ● 93.33/42.9 ● Morus australis Tanaka17776 Morus australis Tanaka17776 ● 99100 100/70.2191.33/88.46 100 ● Morus australis Oh110618−012 Morus australis Oh110618−012 ● 100/69.15 ● Morus australis MOR 241−716 Morus australis MOR 241−716 ● 92.67/97.55 100 94 ● Morus cf alba HamiltonMA618 Morus cf alba HamiltonMA618 ● ● Morus nigra EG29 Morus nigra EG29 ● 94.67/98.65 70.67/85.06 100100 ● Morus australis Chung3290 Morus australis Chung3290 ● 43.33/44.58 supermatrix 100 ● Morus cathayana Nie92144 Morus cathayana Nie92144 ● species tree 42.67/87.6 100 ● Morus kagayamai AA20187−A Morus kagayamai AA20187−A ● ● Morus alba MOR 920−261 Morus alba MOR 920−261 ● 56.67/60.77 100 100/66.74 ● Morus mongolica MOR 55−951 Morus mongolica MOR 55−951 ● 35 47.33/47.21 100 ● Morus alba var pendula MOR 380−871 Morus alba var pendula MOR 380−871 ● 98.67/68.62 ● Morus alba var tatarica MOR 523−305 Morus alba var tatarica MOR 523−305 ● bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1782 Figure 4. The best five maximum-pseudo-likelihood phylogenetic networks for the 1783 Paratrophis clade. 1784 1785

65 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1786 Figure 5. Time-calibrated phylogenetic tree, with revised nomenclature. 1787 1788

66 Pseudostreblus indica 100 Hulletia dumosa 100 Hulletia griffithiana 100 Parartocarpus venenosus 100 Parartocarpus bracteatus Ficus sagittifolia 100 Ficus racemosa 100 Ficus macrophylla 100 100 Streblus asper Antiaropsis decipiens 100 100 Sparratosyce dioca 100 Poulsenia armata Helicostylis tomentosa 10082 Castilla elastica 100 100 Olmedia aspera 41 Pseudolmedia spuria 100 Naucleopsis macrophylla 41 Antiaris toxicaria Fatoua pilosa Malaisia scandens 100 100 Broussonetia papyrifera 100 Broussonetia cf. papyrifera 100 Broussonetia kazinoki 100 Bleekrodea madagascariensis Sloetiopsis usambarensis 100 100 Brosimum alicastrum 100 Helianthostylis sprucei 100 Trymatococcus amazonicus 100 Bosqueiopsis gilletii 100 Trilepisium madagascariense 100 Utsetela gabonenesis 100 Utsetela neglecta 100 Dorstenia hildebrandtii 100 100 Dorstenia barteri Maclura tinctoria ssp. tinctoria Maclura africana 100 74 Maclura andamanica 100 Maclura spinosa 100 Maclura pomifera 72 Maclura brasiliensis 72 Maclura thorelii Maclura cochinchinensis 72 86 Maclura aff. pubescens 100 86 Maclura tricuspidata Maclura fruticosa 100 Maclura cf. cochinchinensis 100 Maclura amboinensis Taxotrophis zeylanica 100 Taxotrophis macrophylla 97 Taxotrophis ilicifolius 96 Taxotrophis spinosa 99 Taxotrophis taxoides Maillardia borbonica 100 Maillardia montana Afromorus mesozygia 100 100 Milicia excelsa 100 Milicia regia 100 100 Pachytrophe dimepate 100 Ampalis mauritiana 100 63 Paratrophis microphylla 96 Paratrophis anthropophagorum 100 Paratrophis insignis 35 Paratrophis pendulina 67 Paratrophis glabra 98 Paratrophis philippinensis 100 Trophis involucrata 100 Trophis racemosa 100 Trophis mexicana 100 100 Trophis cuspidata Morus notabilis Morus rubra 100 100 Morus microphylla 100 100 Morus celtidifolia Morus macroura 78 Morus serrata 70 Morus australis 100 78 Morus kagayamai 70 Morus cathayana 70 Morus nigra 63 Morus mongolica 100 Morus alba var. alba bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holderBagassa for guianensisthis preprint 100 Sorocea subumbellata (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display100 the preprint in perpetuity. It is made 68 Sorocea duckei available under aCC-BY-NC-ND 4.0 International license. 100 Sorocea sprucei subsp. saxicola Sorocea trophoides 100 100 Sorocea affinis 100 Sorocea pubivena subsp. pubivena 100Sorocea pubivena subsp. oligotricha 100 Sorocea jaramilloi Sorocea muriculata subsp. muriculata 100 100 Sorocea pubivena subsp. hirtella 100 Sorocea briquetii 39 Sorocea muriculata subsp. uaupensis 100 Sorocea steinbachii 100 Sorocea bonplandii 37 Sorocea hilarii 38 Sorocea guilleminiana Clarisia ilicifolia 100 Batocarpus amazonicus 100 Batocarpus costaricensis 100 Batocarpus orinocensis 50 Clarisia racemosa 100 Clarisia biflora Artocarpus scandens 100 Artocarpus papuanus 100 Artocarpus limpato Artocarpus altissimus 100 100 Artocarpus sepicanus Artocarpus longifolius 88 Artocarpus fulvicortex 100 Artocarpus nitidus subsp. lingnanensis 100 Artocarpus thailandicus 10 Artocarpus lacucha 100 95 Artocarpus gomezianus subsp. zeylanicus Artocarpus nitidus subsp. humilis 100 Artocarpus nitidus subsp. griffithii 100 100 Artocarpus dadah 100 4 Artocarpus tonkinensis Artocarpus styracifolius 10097 Artocarpus hypargyraeus 100 100 Artocarpus nanchuanensis 10 Artocarpus petelotii 100 Artocarpus pithecogallus 100 Artocarpus gongshanensis Artocarpus gomezianus subsp. gomezianus Artocarpus rubrisoccatus 5 Artocarpus glaucus 100 100 Artocarpus nitidus subsp. borneensis 96 Artocarpus tomentosulus 100 100 Artocarpus primackii 100 Artocarpus xanthocarpus 100 Artocarpus vrieseanus 100 100 Artocarpus vrieseanus var. refractus Artocarpus albobrunneus 100 Artocarpus fretessii 100 Artocarpus ovatus 86 Artocarpus nitidus subsp. nitidus 100 Artocarpus rubrovenius 99 Artocarpus subrotundifolius Artocarpus heterophyllus 100 Artocarpus annulatus 100 Artocarpus integer Artocarpus sarawakensis 100 Artocarpus brevipedunculatus 100 Artocarpus anisophyllus 100 100 Artocarpus lanceifolius subsp. clementis 100 Artocarpus hirsutus 100 Artocarpus nobilis 100 Artocarpus chama 100 Artocarpus melinoxylus 100 Artocarpus odoratissimus 100 Artocarpus rigidus ssp. asperulus 100 100 Artocarpus hispidus 100 Artocarpus rigidus Artocarpus treculianus (nigrescens) 100 Artocarpus pinnatisectus 100 100 Artocarpus multifidus Artocarpus treculianus 100 Artocarpus treculianus (ovatifolius) 84 100 Artocarpus blancoi Artocarpus montanus Artocarpus camansi 100 Artocarpus mariannensis 100 66 Artocarpus altilis 100 Artocarpus horridus 100 100Artocarpus cf. horridus Artocarpus excelsus Artocarpus obtusus 100100 Artocarpus lowii Artocarpus teijsmannii subsp. teijsmannii 78 97 Artocarpus sumatranus 99 Artocarpus kemando 91 100 Artocarpus maingayi Artocarpus tamaran 87 Artocarpus sericicarpus 85 Artocarpus elasticus 86 Artocarpus scortechinii 90 Artocarpus corneri 73 Artocarpus jarrettiae 84.7 66 56 33.9 23 0 Upper Paleocene Eocene Oligocene Miocene Pliocene Plei. Cretaceous Paleogene Neogene Qua. bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1789 Figure 6. Ancestral reconstruction of stamen position, with revised nomenclature. The 1790 reconstruction was identical under a trait-dependent (BiSSE) or a trait-independent model. 1791 Blue = inflexed in bud; yellow = straight in bud. 1792 1793

67 Pseudostreblus indica NewmanLA0518 Hulletia dumosa NZ242 Hullettia griffithiana Kerr16886 Parartocarpus venenosus NZ874 Parartocarpus bracteatus NZ730 Ficus sagittifolia ChaseMW19852 Ficus racemosa SRR1405699 SRR1405700 Ficus macrophylla EG30 Streblus asper EG696 Antiaropsis decipiens NZ281 Sparattosyce dioica WeiblenWW1223 Poulsenia armata Pennington14600 Helicostylis tomentosa Gomes511 Castilla elastica ChaseMW19850 Olmedia aspera Fuentes5323 S41 Pseudolmedia spuria Lobo263 Naucleopsis macrophylla BergP18534 Antiaris toxicaria 5595 Fatoua pilosa TaylorP218 Malaisia scandens EG122 Broussonetia papyrifera SRR1477753 Broussonetia cf papyrifera Heng14289 Broussonetia kazinoki ChaseMW17827 Bleekrodea madagascariensis DavisRakotonasolo3117 Sloetiopsis usambarensis Faden77 417 Brosimum alicastrum EG23 Helianthostylis sprucei Ribeiro1204 Trymatococcus amazonicus Prance13461 Bosqueiopsis gilletii Fronties243 Trilepisium madagascariense Richard403 Utsetela gabonenesis Breteler14086 Utsetela neglecta Bissiengen923 Dorstenia hildebrandtii NZ311 Dorstenia barteri ChaseMW18153 Maclura tinctoria tinctoria Campos2679 Maclura africana GreenwayKanuri15269 Maclura andamanica Maxwell89−436 Maclura spinosa Perumal RHT22554 Maclura pomifera EG139 Maclura brasiliensis NeeVargas45025 Maclura thorellii Pierre4709 Maclura cochinchinensis SAGBE887 Maclura aff pubsecens Averyanov1198 Maclura tricuspidata MOR 68−7917 Maclura fruticosa NMCuong1193 Maclura cf cochinchinensis NZ757 Maclura amboinensis Takeuchi16578 Taxotrophis zeylanica Meijer701 Taxotrophis macrophylla DDS10673 Taxotrophis ilicifolius EG720 Taxotrophis spinosa EG702 Taxotrophis taxoides EG701 Maillardia borbonica Cadet4518 Maillardia montana Andrianantoanina 1023 Afromorus mesozygia Buckner309 Milicia excelsa McPherson16087 Milicia regia Cooper332 Pachytrophe dimepate CasmirZ405 Ampalis mauritiana Hoffman Paratrophis microphylla Beecher sn Paratrophis anthropophagorum Degeer4698 Paratrophis insignis Vasquez28068 Paratrophis pendulina Gray3277 Paratrophis glabra EG78 Paratrophis philippinensis EG430 Trophis involucrata Aguilar4679 Trophis racemosa Stevens37196 Trophis mexicana Stevens27939 Trophis cuspidata Gomez−Dominuez774 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020.Morus notabilis The copyright SRR8138828 holder for this preprint Morus rubra EG141 (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license toMorus display microphylla the preprint Fishbein1058 in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseMorus. celtidifolia Sandoval637 Morus macroura EG28 Morus serrata Koelz4788 Morus australis MOR 241−716 Morus kagayamai AA20187−A Morus cathayana Nie92144 Morus nigra EG29 Morus mongolica MOR 55−951 Morus alba MOR 920−261 Bagassa guianensis GW1677 Sorocea subumbellata Dodson9601 Sorocea duckei Stein 3931 Sorocea sprucei saxicola Nee35729 Sorocea trophoides Fuentes304 Sorocea affinis Espinosa706 Sorocea pubivena pubivena Galdames4477 Sorocea pubivena oligotricha Kennedy2124 Sorocea jaramilloi Madison4772 Sorocea muriculata muriculata Schunke16489 Sorocea pubivena hirtella Vasquez19236 Sorocea briquetii Valenzula954 Sorocea muriculata uaupensis Plowman sn Sorocea steinbachii GW1501 Sorocea boplandii Tressens6347 Sorocea hilarii Carauta795 Sorocea guilleminiana Moya112 S38 Clarisia ilicifolia Carranta6386 Batocarpus amazonicus Salidas1233 Batocarpus costaricensis GW1463 Batocarpus oriniceros Vasquez27440 Clarisia racemosa Assuncao690 Clarisia biflora GW1460 Artocarpus scandens EG411 Artocarpus papuanus NZ61 Artocarpus limpato NZ609 Artocarpus altissimus EG441 Artocarpus sepicanus GW1701 Artocarpus longifolius ssp adpressus Nangkat15511 Artocarpus fulvicortex EG711 Artocarpus nitidus ssp lingnanensis NZ911 Artocarpus thailandicus NZ402 Artocarpus lacucha NZ420 Artocarpus gomezianus ssp zeylanicus NZ956 Artocarpus nitidus ssp humilis EG258 Artocarpus nitidus ssp griffithii NZ216 Artocarpus dadah NZ694 Artocarpus tonkinensis EG174 Artocarpus styracifolius EG176 Artocarpus hypargyraeus EG170 Artocarpus nanchuanensis EGL238 Artocarpus petelotii DDS14435 Artocarpus pithecogallus LiJianwu3200 Artocarpus gongshanensis HAST137747 Artocarpus gomezianus ssp gomezianus NZ533 Artocarpus cf lacucha NZ517 Artocarpus glaucus NZ852 Artocarpus nitidus ssp borneensis NZ686 Artocarpus tomentosulus NZ617 Artocarpus primackii NZ687 Artocarpus xanthocarpus Yang15648 Artocarpus vriesianus var vrieseanus GW1229 Artocarpus vrieseanus refractus Hoogland4822 Artocarpus albobrunneus AA2243 Artocarpus fretessii NZ929 Artocarpus ovatus NZ202 Artocarpus nitidus ssp nitidus PPI10374 Artocarpus rubrovenius JSB84 Artocarpus subrotundifolius Wenzel1576 Artocarpus heterophyllus EG98 Artocarpus annulatus NZ985 Artocarpus integer NZ918 Artocarpus sarawakensis EG527 Artocarpus brevipedunculatus NZ814 Artocarpus anisophyllus NZ606 Artocarpus lanceifolius ssp clementis NZ739 Artocarpus hirsutus NZ953 Artocarpus nobilis AHJ3283 Artocarpus chama NZ354 Artocarpus melinoxylus JLS2924 Artocarpus odoratissimus NZ618 Artocarpus rigidus ssp asperulus NZ507 Artocarpus hispidus NZ258 Artocarpus rigidus NZ728 Artocarpus treculianus nigrescens Ramos2107 Artocarpus pinnatisectus Escritor Artocarpus multifidus PPI3911 Artocarpus treculianus Elmer12468 Artocarpus treculianus ovatifolius NZ203 Artocarpus blancoi Ramos42018 Artocarpus aff excelsus AveryanovVH1819 Artocarpus camansi EG149 Artocarpus mariannensis DD4 Artocarpus altilis K7 UluFiti Artocarpus horridus EG437 Artocarpus cf horridus RM160 Artocarpus excelsus NZ780 Artocarpus obtusus NZ729 Artocarpus lowii MWL2 Artocarpus teijsmannii NZ946 Artocarpus sumatranus AA2766 Artocarpus kemando NZ612 Artocarpus maingayi NZ257 Artocarpus tamaran EG92 Artocarpus sericicarpus NZ771 Artocarpus elasticus EG87 Artocarpus scortechinii NZ209 Artocarpus corneri Fuchs21347 Artocarpus jarrettiae SAN120933 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1794 Figure 7. Revised classification of Moreae on a maximum-likelihood phylogenetic tree of 1795 Moreae based on "supercontig" sequences. 1796 1797

68 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. GARDNER ET AL., PHYLOGENOMICS AND GENERIC REVISION OF MOREAE

1779 Figure 7. Revised classification of Moreae on a strict consensus tree of all four main 1780 phylogenomic analyses. 1781 1782

67 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.08.030452; this version posted August 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Taxotrophis zeylanica Taxotrophis macrophylla Taxotrophis ilicifolia Taxotrophis Taxotrophis spinosa Taxotrophis taxoides Maillardia montana Maillardia borbonica Maillardia Afromorus mesozygia Afromorus Milicia excelsa Milicia regia Milicia Ampalis dimepate Ampalis mauritiana Ampalis Paratrophis pendulina Paratrophis philippinensis Paratrophis glabra Paratrophis insignis Paratrophis Paratrophis anthropophagorum Paratrophis microphylla Trophis involucrata Trophis racemosa Trophis cuspidata Trophis Trophis mexicana Morus notabilis Morus rubra Morus celtidifolia Morus microphylla Morus macroura Morus serrata Morus australis Morus Morus kagayamai Morus cathayana Morus nigra Morus mongolica Morus alba var. alba Bagassa guianensis Bagassa Sorocea subumbellata Sorocea sprucei subsp. saxicola Sorocea duckei Sorocea trophoides Sorocea affinis Sorocea pubivena subsp. oligotricha Sorocea pubivena subsp. pubivena Sorocea jaramilloi Sorocea muriculata subsp. muriculata Sorocea Sorocea briquetii Sorocea pubivena subsp. hirtella Sorocea muriculata subsp. uaupensis Sorocea steinbachii Sorocea guilleminiana Sorocea hilarii Sorocea bonplandii