Introduction to Perverse Sheaves, [85] Saper, L., Stern, M.: L2 Cohomology of Arithmetic Varieties, Ann

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Perverse Sheaves, [85] Saper, L., Stern, M.: L2 Cohomology of Arithmetic Varieties, Ann LECTURE NOTES ON SHEAVES AND PERVERSE SHEAVES MARK GORESKY version of August 9, 2021 Contents Part 1. Sheaves 3 1. Sheaves: the lightning tour 3 2. Cohomology 8 3. Complexes of sheaves 13 4. Godement and Cechˇ 18 5. The sheaf of chains 21 6. Homotopy and injectives 22 7. The derived category 25 8. Stratifications 32 9. Constructible sheaves 38 10. Sheaves and Morse theory 41 11. Intersection Homology 49 12. Truncation 54 Part 2. Perverse sheaves 61 13. Perverse sheaves 61 14. Examples of perverse sheaves 64 15. t-structures and Perverse cohomology 71 16. Algebraic varieties and the decomposition theorem 75 17. Cohomology of toric varieties 80 18. Springer Representations 86 19. Iwahori Hecke Algebra 92 20. Algebra of correspondences 95 21. The affine theory 98 22. Perverse sheaves on the affine Grassmannian 103 23. Cellular perverse sheaves 111 24. The path algebra 120 Part 3. Appendices 123 Appendix A. Transversality 123 Appendix B. Proof of Theorem 12.12 124 1 2 MARK GORESKY Appendix C. Complex Morse theory of perverse sheaves 126 References 130 Index 134 LECTURE NOTES ON SHEAVES AND PERVERSE SHEAVES 3 Acknowledgements. These notes are an expanded version of a course given by the author at Brown University, while he was a guest at ICERM in the fall of 2016. He thanks Brown University and ICERM for their hospitality. He thanks George Lusztig for help with some historical comments. The author is very much indebted to Vidit Nanda for carefully listing many errors and misprints in an earlier version of this manuscript. Part 1. Sheaves 1. Sheaves: the lightning tour 1.1. Let R be a commutative ring (with 1). Let X be a topological space. A presheaf of R modules on X is a contravariant functor S : category of open sets and inclusions ! category of R-modules: This is a fancy way to say that V ⊂ U gives S(U) ! S(V ) and W ⊂ V ⊂ U gives a commutative diagram S(U) - S(V ) - S(W ) Also, U ⊂ U gives S(U) ! S(U) identity and S(φ) = 0. Elements s 2 S(U) are called sections of S over U (for reasons that will become clear shortly). If V ⊂ U and s 2 S(U), its image in S(V ) is denoted sjV and is called the restriction of the section s to V . A morphism S ! T of presheaves is a natural transformation of functors, that is, a collection of homomorphisms S(U) ! T (U) (for every open set U ⊂ X) which commute with the restriction maps. This defines a category of presheaves of R-modules, and it is an abelian category with kernels and cokernels defined in the obvious manner, for example, the kernel presheaf of a morphism f : S ! T assigns to each open set U ⊂ X the R-module ker(S(U) ! T (U)). More generally, for any category C one may define, in a similar manner, the category of presheaves on X with coefficients in C. If C is abelian then so is the category of presheaves with coefficients in C. A presheaf S is a sheaf if the following sheaf axiom holds: Let fUαgα2I be any collection of open subsets of X, let U = [α2I Uα and let sα 2 S(Uα) be a collection of sections such that sαj(Uα \ Uβ) = sβj(Uα \ Uβ) for all α; β 2 I. Then there exists a unique section s 2 S(U) such that sjUα = sα for all α 2 I. In other words, if you have a bunch of sections over open sets that agree on the intersections of the open sets then they patch together in a unique way to give a section over the union of those open sets. [An essential point in this definition is that the index set I may have infinite cardinality. ] 4 MARK GORESKY The category of sheaves is the full subcategory of the category of presheaves, whose objects are sheaves. [This means that HomSh(S; T ) = HompreSh(S; T ).] The stalk of a presheaf S at a point x 2 X is the R-module S = limS(U) x −−! U3x This means, in particular, that for any open set U and for any x 2 U there is a canonical mapping S(U) ! Sx which we also refer to as \restriction" and denote by s 7! sjSx. The leaf space LS of S is the disjoint union ` π LS = x2X Sx −−−! X with a topology that is discrete on each Sx and that makes π into a local homeomorphism. That is, each U open ⊂ X and each s 2 S(U) defines an open set −1 Us = f(x; t)jx 2 U; t 2 Sx and t = sjSxg ⊂ π (U) ⊂ LS: Then π : Us ! U is a homeomorphism. Let Γ(U; LS) be the set of continuous sections of π over U, that is, the set of continuous mappings h : U ! LS such that πh = identity. The restriction maps of S are compatible, giving S(U) ! Sx for any U 3 x and therefore any s 2 S(U) defines a continuous section h 2 Γ(U; LS) by setting h(x) = sjSx. 1.2. Proposition. (exercise) The presheaf S is a sheaf if and only if the canonical mapping S(U) ! Γ(U; LS) is an isomorphism for every open set U ⊂ X. If S and T are sheaves then there are canonical isomorphisms ∼ ∼ HomSh(S; T ) = HomX (LS; LT ) = HompreSh(S; T ) where HomX (LS; LT ) denotes the R-module of continuous mappings LS ! LT that com- mute with the projection to X and that consist of R-module homomorphisms Sx ! Tx for all x 2 X. 1.3. Sheafification. An immediate consequence is that if S is a presheaf then we obtain a sheaf Sb by defining Sb(U) = Γ(U; LS) to be the R-module of continuous sections of the leaf space of S over the open set U. Then Sb is called the sheafification of S. The category of sheaves is the full subcategory of the category of presheaves whose objects satisfy the above sheaf axiom, in other words, HomSh(A; B) = HomPreSh(A; B): LECTURE NOTES ON SHEAVES AND PERVERSE SHEAVES 5 To simplify notation, if S is a sheaf we drop the notation LS and we write s 2 S(U) = Γ(U; S) 1.4. Proposition. (exercise) Sheafification is an exact functor from the category of presheaves to the category of sheaves. It is left adjoint to the inclusion functor i : Sheaves ! Presheaves, that is, if A is a presheaf and if B is a sheaf (on X) then =∼ HomSh(A;b B) −−−! HompreSh(A; i(B)): Here is an application of this formula. Following the identity morphisms B ! B through this series of canonical isomorphisms ∼ ∼ HomSh(B; B) = HompreSh(i(B); i(B)) = HomSh(id(B);B) gives a canonical isomorphism id(B) ! B, that is, if we take a sheaf B, look at it as a presheaf, then sheafifity it, the result is canonically isomorphic to the sheaf B that we started with. 1.5. Caution. If A; B are sheaves then the set of morphisms A ! B is the same whether we consider A; B to be sheaves or presheaves. However, care must be taken when considering the kernel, image, or cokernel of such a morphism. If we consider f : A ! B to be a morphism in the category of presheaves, then ker(f) is the presheaf which assigns to an open set U the kernel of f(U): A(U) ! B(U), and this turns out to be a sheaf. But the presheaf U 7! Image(A(U) ! B(U)) is (usually) not a sheaf, so it is necessary to define the sheaf Image(f) to be the sheafification of this presheaf. Similarly for the cokernel. Consequently, a sheaf mapping f : A ! B is injective (resp. surjective) iff the mapping fx : Ax ! Bx on stalks is injective (resp. surjective) for all x 2 X. In other words, the abelian category structure on the category of sheaves is most easily understood in terms of the leaf space picture of sheaves. 1.6. Examples. (a.) Let j : U ! S2 be the inclusion of the open complement U of the north pole i : N ! S2 and let j!(ZU ) be the constant sheaf on U extended by zero over the point fNg. Let i∗(ZN ) be the 2 2 skyscraper sheaf on S supported at fNg. Then A = j!(ZU ) ⊕ i∗(ZN ) is a sheaf on S whose stalk at every point is Z but there are no morphisms between A and the constant sheaf Z on S2. (b.) Let C0(0; 1) be the presheaf that assigns to an open set U ⊂ (0; 1) the vector space of continuous functions f : U ! R. Then this is a sheaf because a family of continuous functions defined on open sets that agree on the intersections of those sets clearly patch together to give a continuous function on the union. Similarly, smooth functions, holomorphic functions, algebraic functions etc. can be naturally interpreted as sheaves. 6 MARK GORESKY (c.) Let S be the sheaf on (0; 1) whose sections over an open set U are those C1 functions f : U ! R R 2 such that U f(x) dx < 1. This presheaf is not a sheaf because it is possible to patch (infinitely many) L2 functions (defined on smaller and smaller subintervals) together to obtain a function that grows too fast to be square integrable. In fact, the sheafification of this sheaf is the set of all smooth functions on (0; 1).
Recommended publications
  • HODGE THEORY LEFSCHETZ PENCILS 1. More on Lefschetz
    HODGE THEORY LEFSCHETZ PENCILS JACOB KELLER 1. More on Lefschetz Pencils When studying the vanishing homology of a hyperplane section, we want to view the hyperplane as one element of a Lefschetz pencil. This is because associated to each singular divisor in the pencil, there is an element of the homology of our hyperplane that is not detected by the Lefschetz hyperplane theorem. In order to do this we should know more about Lefschetz pencils, and that’s how we will start this lecture. We want to be able to produce Lefschetz pencils containing a given hyperplane section. So we should get a better characterization of a Lefschetz pencil that is easier to compute. Let X be a projective variety embedded in PN that is not contained in a hyperplane. We consider the variety N∗ Z = {(x, H)|x ∈ X ∩ H is a singular point} ⊆ X × P To better understand the geometry of Z, we consider it’s projection π1 : Z → X. For any x ∈ X and N hyperplane H ⊆ P , the tangent plane to H ∩ X at x is the intersection of H and TxX. Thus X ∩ H will −1 be singular at x if and only if H contains TxX. Thus for x ∈ X, π1 (Z) is the set of hyperplanes that contain TxX. These hyperplanes form an N − n − 1 dimensional projective space, and thus π1 exhibits Z as a PN − n − 1-bundle over X, and we deduce that Z is smooth. N∗ Now we consider the projection π2 : Z → P . The image of this map is denoted DX and is called the discriminant of X.
    [Show full text]
  • Bézout's Theorem
    Bézout's theorem Toni Annala Contents 1 Introduction 2 2 Bézout's theorem 4 2.1 Ane plane curves . .4 2.2 Projective plane curves . .6 2.3 An elementary proof for the upper bound . 10 2.4 Intersection numbers . 12 2.5 Proof of Bézout's theorem . 16 3 Intersections in Pn 20 3.1 The Hilbert series and the Hilbert polynomial . 20 3.2 A brief overview of the modern theory . 24 3.3 Intersections of hypersurfaces in Pn ...................... 26 3.4 Intersections of subvarieties in Pn ....................... 32 3.5 Serre's Tor-formula . 36 4 Appendix 42 4.1 Homogeneous Noether normalization . 42 4.2 Primes associated to a graded module . 43 1 Chapter 1 Introduction The topic of this thesis is Bézout's theorem. The classical version considers the number of points in the intersection of two algebraic plane curves. It states that if we have two algebraic plane curves, dened over an algebraically closed eld and cut out by multi- variate polynomials of degrees n and m, then the number of points where these curves intersect is exactly nm if we count multiple intersections and intersections at innity. In Chapter 2 we dene the necessary terminology to state this theorem rigorously, give an elementary proof for the upper bound using resultants, and later prove the full Bézout's theorem. A very modest background should suce for understanding this chapter, for example the course Algebra II given at the University of Helsinki should cover most, if not all, of the prerequisites. In Chapter 3, we generalize Bézout's theorem to higher dimensional projective spaces.
    [Show full text]
  • Perverse Sheaves
    Perverse Sheaves Bhargav Bhatt Fall 2015 1 September 8, 2015 The goal of this class is to introduce perverse sheaves, and how to work with it; plus some applications. Background For more background, see Kleiman's paper entitled \The development/history of intersection homology theory". On manifolds, the idea is that you can intersect cycles via Poincar´eduality|we want to be able to do this on singular spces, not just manifolds. Deligne figured out how to compute intersection homology via sheaf cohomology, and does not use anything about cycles|only pullbacks and truncations of complexes of sheaves. In any derived category you can do this|even in characteristic p. The basic summary is that we define an abelian subcategory that lives inside the derived category of constructible sheaves, which we call the category of perverse sheaves. We want to get to what is called the decomposition theorem. Outline of Course 1. Derived categories, t-structures 2. Six Functors 3. Perverse sheaves—definition, some properties 4. Statement of decomposition theorem|\yoga of weights" 5. Application 1: Beilinson, et al., \there are enough perverse sheaves", they generate the derived category of constructible sheaves 6. Application 2: Radon transforms. Use to understand monodromy of hyperplane sections. 7. Some geometric ideas to prove the decomposition theorem. If you want to understand everything in the course you need a lot of background. We will assume Hartshorne- level algebraic geometry. We also need constructible sheaves|look at Sheaves in Topology. Problem sets will be given, but not collected; will be on the webpage. There are more references than BBD; they will be online.
    [Show full text]
  • Homology Theory on Algebraic Varieties
    HOMOLOGY THEORYon ALGEBRAIC VARIETIES HOMOLOGY THEORY ON ALGEBRAIC VARIETIES by ANDREW H. WALLACE Assistant Professor of Mathematics University of Toronto PERGAMON PRESS LONDON NEW YORK PARIS LOS ANGELES 1958 . PERGAMON PRESS LTD. 4 and 5 Fitzroy Square, London W.I. PERGAMON PRESS INC. 122 East 55th Street, New York, N.Y. 10638 South Wilton Place, Los Angeles 47, California PERGAMON PRESS S.A.R.L. 24 Rue des Ecoles, Paris V" Copyright 0 1958 A. H. Wallace Library of Congress Card Number 57-14497 Printed in Northern Ireland at The Universities Press, Be fast CONTENTS INTRODUCTION vu 1. -LINEAR SECTIONS OF AN ALGEBRAIC VARIETY 1. Hyperplane sections of a non-singular variety 1 2. A family of linear sections of W 2 3. The fibring of a variety defined over the complex numbers 7. 4. Homology groups related to V(K) 17 II. THE SINGULAR SECTIONS 1. Statement of the results 23 2. Proof of Theorem 11 25 III. A PENCIL OF HYPERPLANE SECTIONS 1. The choice of a pencil 34 2. Notation 37 3. Reduction to local theorems 38. IV. LEFSCHETZ'S FIRST AND SECOND THEOREMS 1. Lefschetz's first main theorem 43 2. Statement of Lefschetz's second main theorem 49 3. Sketch proof of Theorem 19 49- .4. Some immediate consequences _ 84 V. PROOF OF LEFSCHETZ'S SECOND THEOREM 1. Deformation theorems 56 2. Some remarks dh Theorem 19 80 3. Formal verification of Theorem 19; the vanishing cycle62 4. Proof of Theorem 19, parts (1) and (2) 64 5. Proof of Theorem 19, part (3) 87 v Vi CONTENTS VI.
    [Show full text]
  • The Calabi Complex and Killing Sheaf Cohomology
    The Calabi complex and Killing sheaf cohomology Igor Khavkine Department of Mathematics, University of Trento, and TIFPA-INFN, Trento, I{38123 Povo (TN) Italy [email protected] September 26, 2014 Abstract It has recently been noticed that the degeneracies of the Poisson bra- cket of linearized gravity on constant curvature Lorentzian manifold can be described in terms of the cohomologies of a certain complex of dif- ferential operators. This complex was first introduced by Calabi and its cohomology is known to be isomorphic to that of the (locally constant) sheaf of Killing vectors. We review the structure of the Calabi complex in a novel way, with explicit calculations based on representation theory of GL(n), and also some tools for studying its cohomology in terms of of lo- cally constant sheaves. We also conjecture how these tools would adapt to linearized gravity on other backgrounds and to other gauge theories. The presentation includes explicit formulas for the differential operators in the Calabi complex, arguments for its local exactness, discussion of general- ized Poincar´eduality, methods of computing the cohomology of locally constant sheaves, and example calculations of Killing sheaf cohomologies of some black hole and cosmological Lorentzian manifolds. Contents 1 Introduction2 2 The Calabi complex4 2.1 Tensor bundles and Young symmetrizers..............5 2.2 Differential operators.........................7 2.3 Formal adjoint complex....................... 11 2.4 Equations of finite type, twisted de Rham complex........ 14 3 Cohomology of locally constant sheaves 16 3.1 Locally constant sheaves....................... 16 3.2 Acyclic resolution by a differential complex............ 18 3.3 Generalized Poincar´eduality...................
    [Show full text]
  • Lecture 3. Resolutions and Derived Functors (GL)
    Lecture 3. Resolutions and derived functors (GL) This lecture is intended to be a whirlwind introduction to, or review of, reso- lutions and derived functors { with tunnel vision. That is, we'll give unabashed preference to topics relevant to local cohomology, and do our best to draw a straight line between the topics we cover and our ¯nal goals. At a few points along the way, we'll be able to point generally in the direction of other topics of interest, but other than that we will do our best to be single-minded. Appendix A contains some preparatory material on injective modules and Matlis theory. In this lecture, we will cover roughly the same ground on the projective/flat side of the fence, followed by basics on projective and injective resolutions, and de¯nitions and basic properties of derived functors. Throughout this lecture, let us work over an unspeci¯ed commutative ring R with identity. Nearly everything said will apply equally well to noncommutative rings (and some statements need even less!). In terms of module theory, ¯elds are the simple objects in commutative algebra, for all their modules are free. The point of resolving a module is to measure its complexity against this standard. De¯nition 3.1. A module F over a ring R is free if it has a basis, that is, a subset B ⊆ F such that B generates F as an R-module and is linearly independent over R. It is easy to prove that a module is free if and only if it is isomorphic to a direct sum of copies of the ring.
    [Show full text]
  • MORSE THEORY and TILTING SHEAVES 1. Introduction This
    MORSE THEORY AND TILTING SHEAVES DAVID BEN-ZVI AND DAVID NADLER 1. Introduction This paper is a result of our trying to understand what a tilting perverse sheaf is. (See [1] for definitions and background material.) Our basic example is that of the flag variety B of a complex reductive group G and perverse sheaves on the Schubert stratification S. In this setting, there are many characterizations of tilting sheaves involving both their geometry and categorical structure. In this paper, we propose a new geometric construction of such tilting sheaves. Namely, we show that they naturally arise via the Morse theory of sheaves on the opposite Schubert stratification Sopp. In the context of a flag variety B, our construction takes the following form. Given a sheaf F on B, a point p ∈ B, and a germ F of a function at p, we have the ∗ corresponding local Morse group (or vanishing cycles) Mp,F (F) which measures how F changes at p as we move in the family defined by F . If we restrict to sheaves F constructible with respect to Sopp, then it is possible to find a sheaf ∗ Mp,F on a neighborhood of p which represents the functor Mp,F (though Mp,F is not constructible with respect to Sopp.) To be precise, for any such F, we have a natural isomorphism ∗ ∗ Mp,F (F) ' RHomD(B)(Mp,F , F). Since this may be thought of as an integral identity, we call the sheaf Mp,F a Morse kernel. The local Morse groups play a central role in the theory of perverse sheaves.
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • A Algebraic Varieties
    A Algebraic Varieties A.1 Basic definitions Let k[X1,X2,...,Xn] be a polynomial algebra over an algebraically closed field k with n indeterminates X1,...,Xn. We sometimes abbreviate it as k[X]= k[X1,X2,...,Xn]. Let us associate to each polynomial f(X)∈ k[X] its zero set n V(f):= {x = (x1,x2,...,xn) ∈ k | f(x)= f(x1,x2,...,xn) = 0} n 2in the n-fold product set k of k. For any subset S ⊂ k[X] we also set V(S) = f ∈S V(f). Then we have the following properties: n (i) 2V(1) =∅,V(0) =k . = (ii) i∈I V(Si) V( i∈I Si). (iii) V(S1) ∪ V(S2) = V(S1S2), where S1S2 := {fg | f ∈ S1,g∈ S2}. The inclusion ⊂ of (iii) is clear. We will prove only the inclusion ⊃. For x ∈ V(S1S2) \ V(S2) there is an element g ∈ S2 such that g(x) = 0. On the other hand, it ∀ ∀ follows from x ∈ V(S1S2) that f(x)g(x) = 0( f ∈ S1). Hence f(x)= 0( f ∈ S1) and x ∈ V(S1). So the part ⊃ was also proved. By (i), (ii), (iii) the set kn is endowed with the structure of a topological space by taking {V(S) | S ⊂ k[X]} to be its closed subsets. We call this topology of kn the Zariski topology. The closed subsets V(S) of kn with respect to it are called algebraic sets in kn. Note that V(S)= V(S), where S denotes the ideal of k[X] generated by S.
    [Show full text]
  • Refined Invariants in Geometry, Topology and String Theory Jun 2
    Refined invariants in geometry, topology and string theory Jun 2 - Jun 7, 2013 MEALS Breakfast (Bu↵et): 7:00–9:30 am, Sally Borden Building, Monday–Friday Lunch (Bu↵et): 11:30 am–1:30 pm, Sally Borden Building, Monday–Friday Dinner (Bu↵et): 5:30–7:30 pm, Sally Borden Building, Sunday–Thursday Co↵ee Breaks: As per daily schedule, in the foyer of the TransCanada Pipeline Pavilion (TCPL) Please remember to scan your meal card at the host/hostess station in the dining room for each meal. MEETING ROOMS All lectures will be held in the lecture theater in the TransCanada Pipelines Pavilion (TCPL). An LCD projector, a laptop, a document camera, and blackboards are available for presentations. SCHEDULE Sunday 16:00 Check-in begins @ Front Desk, Professional Development Centre 17:30–19:30 Bu↵et Dinner, Sally Borden Building Monday 7:00–8:45 Breakfast 8:45–9:00 Introduction and Welcome by BIRS Station Manager 9:00–10:00 Andrei Okounkov: M-theory and DT-theory Co↵ee 10.30–11.30 Sheldon Katz: Equivariant stable pair invariants and refined BPS indices 11:30–13:00 Lunch 13:00–14:00 Guided Tour of The Ban↵Centre; meet in the 2nd floor lounge, Corbett Hall 14:00 Group Photo; meet in foyer of TCPL 14:10–15:10 Dominic Joyce: Categorification of Donaldson–Thomas theory using perverse sheaves Co↵ee 15:45–16.45 Zheng Hua: Spin structure on moduli space of sheaves on CY 3-folds 17:00-17.30 Sven Meinhardt: Motivic DT-invariants of (-2)-curves 17:30–19:30 Dinner Tuesday 7:00–9:00 Breakfast 9:00–10:00 Alexei Oblomkov: Topology of planar curves, knot homology and representation
    [Show full text]
  • The Smooth Locus in Infinite-Level Rapoport-Zink Spaces
    The smooth locus in infinite-level Rapoport-Zink spaces Alexander Ivanov and Jared Weinstein February 25, 2020 Abstract Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let M8 be an infinite-level Rapoport-Zink space of ˝ ˝ EL type, and let M8 be one connected component of its geometric fiber. We show that M8 contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve Xpp8q˝ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms. 1 Main theorem Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomor- phisms + level structure). In particular we consider the infinite-level spaces MD;8, which are preperfectoid spaces [SW13]. An example is the space MH;8, where H{Fp is a p-divisible group of height n. The points of MH;8 over a nonarchimedean field K containing W pFpq are in correspondence with isogeny classes of p-divisible groups G{O equipped with a quasi-isogeny G b O {p Ñ H b O {p and an isomorphism K OK K Fp K n Qp – VG (where VG is the rational Tate module).
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]