Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More Information

Total Page:16

File Type:pdf, Size:1020Kb

Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More Information Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information Monopoles and Three-Manifolds Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in 3- and 4-dimensional geometry and topology. This book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten monopole equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general 3-manifold are then defined, and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups, and to applications of the theory in topology. Suitable for beginning graduate students and researchers in the field, this book pro- vides the first full discussion of a central part of the study of the topology of manifolds since the mid 1990s. © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information New Mathematical Monographs Editorial Board Béla Bollobás, University of Memphis William Fulton, University of Michigan Frances Kirwan, Mathematical Institute, University of Oxford Peter Sarnak, Princeton University Barry Simon, California Institute of Technology Burt Totaro, University of Cambridge For information about Cambridge University Press mathematics publications visit http://www.cambridge.org/mathematics © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information Monopoles and Three-Manifolds PETER KRONHEIMER Harvard University TOMASZ MROWKA Massachusetts Institute of Technology © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521880220 © Peter Kronheimer and Tomasz Mrowka 2007 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2007 Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this publication is available from the British Library ISBN 978-0-521-88022-0 hardback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information To Jenny and Gigliola © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information Contents Preface page xi I Outlines 1 1 Monopole invariants of four-manifolds 2 2 Morse theory 14 3 Monopole Floer homology for three-manifolds 49 Notes and references for Chapter I 82 II The Seiberg–Witten equations and compactness 84 4Basic terms 85 5 Compactness and properness 99 6 The blown-up configuration space 112 7 Unique continuation 120 8 Compactness in the blown-up configuration space 130 Notes and references for Chapter II 132 III Hilbert manifolds and perturbations 134 9 Completions and Hilbert manifolds 134 10 Abstract perturbations 152 11 Constructing tame perturbations 171 Notes and references for Chapter III 194 IV Moduli spaces and transversality 195 12 Transversality for the three-dimensional equations 196 13 Moduli spaces of trajectories 217 14Local structure of moduli spaces 239 15 Transversality for moduli spaces of trajectories 265 Notes and references for Chapter IV 272 vii © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information viii Contents V Compactness and gluing 274 16 Compactness of trajectory spaces 275 17 The moduli space on a finite cylinder 294 18 Stable manifolds and gluing near critical points 317 19 Gluing trajectories 343 Notes and references for Chapter V 374 VI Floer homology 375 20 Orienting moduli spaces 375 21 A version of Stokes’ theorem 405 22 Floer homology 410 Notes and references for Chapter VI 448 VII Cobordisms and invariance 449 23 Summary of results 449 24The moduli space on a manifold with boundary 461 25 Maps from cobordisms 508 26 Composing cobordisms 535 27 Closed four-manifolds 551 28 Canonical gradings 581 Notes and references for Chapter VII 589 VIII Non-exact perturbations 590 29 Closed two-forms as perturbations 590 30 Floer groups and non-exact perturbations 597 31 Some isomorphisms 605 32 Applications to gluing 622 Notes and references for Chapter VIII 633 IX Calculations 634 33 Coupled Morse theory 634 34Calculation of coupled homology 658 35 Application to the Floer groups HM 678 36 The manifold S1 × S2 695 37 The three-torus 699 38 Elliptic surfaces 711 Notes and references for Chapter IX 719 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information Contents ix X Further developments 721 39 Homology spheres and negative-definite cobordisms 722 40 Genus bounds and scalar curvature 733 41 Foliations and non-vanishing theorems 741 42 Surgery and exact triangles 757 Notes and references for Chapter X 778 References 779 Glossary of notation 785 Index 792 © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information Preface Gauge theory and related areas of geometry have been an important tool for the study of 4-dimensional manifolds since the early 1980s, when Donaldson introduced ideas from Yang–Mills theory to solve long-standing problems in topology. In dimension 3, the same techniques formed the basis of Floer’s con- struction of his “instanton homology” groups of 3-manifolds [32]. Today, Floer homology is an active area, and there are several varieties of Floer homology theory, all with closely related structures. While Floer’s construction used the anti-self-dual Yang–Mills (or instanton) equations, the theory presented in this book is based instead on the Seiberg–Witten equations (or monopole equations). We have aimed to lay a secure foundation for the study of the Seiberg–Witten equations on a general 3-manifold, and for the construction of the associated Floer groups. Our goal has been to write a book that is complete in its coverage of several aspects of the theory that are hard to find in the existing literature, providing at the same time an introduction to the techniques from analysis and geometry that are used. We have omitted some background topics that are now well treated in several good sources: in particular, the Seiberg–Witten invariants of closed 4-manifolds and related topics in gauge theory are given only a brief exposition here. The main results of this book – the formal properties of the Floer groups that we construct – can be summarized without delving too far into the techniques which lie beneath; so we present such a summary in Chapter I. The final chapter of the book touches on some further topics and describes how the theory has been applied to questions in topology. The definition of the Floer groups that we present here is new in some aspects. We believe that our approach to the Morse homology of a manifold with circle action has not appeared before. It is described in Section 2, along with a closely related approach to Morse theory on a manifold with boundary. Our definition of the groups that we call HM(Y ) and HM(Y ) has roots in lectures given by Donaldson in Oxford in 1993. For the case that the first Betti number of Y is xi © Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-88022-0 - Monopoles and Three-Manifolds Peter Kronheimer and Tomasz Mrowka Frontmatter More information xii Preface zero, a similar construction is described in [22] for the case of the instanton Floer theory, and there is related material due to Frøyshov in [40]. Another approach to the Seiberg–Witten version of Floer homology is presented by Marcolli and Wang in [71]. During the course of this work, a completely different approach to Floer homology was introduced by Ozsváth and Szabó in [93]. The construction of their “Heegaard homology” of 3-manifolds is not based on gauge theory, but appears to be entirely equivalent to the Seiberg–Witten version. Ozsváth and Szabó’s theory has influenced the development of this book, most particu- larly because of the way in which it has clarified the formal structure of Floer homology. We have sometimes tailored our account to emphasize the similar- ities between the two versions. Heegaard homology has spurred tremendous activity in the topological applications of Floer theory. Chapter X provides a small sample of results from this rapidly moving field. Acknowledgements. Gauge theory is now a mature subject, and the analysis on which it rests has deep roots. Much of the material that we present is therefore not original. When a particular argument is taken directly from a unique source, we have tried to cite the source at the relevant point in the text.
Recommended publications
  • Department of Mathematics
    Department of Mathematics The Department of Mathematics seeks to maintain its top ranking in mathematics research and education in the United States. The department is a key part of MIT’s educational mission at both the undergraduate and graduate levels and produces the most sought-after young researchers. Key to the department’s success is recruitment of the best faculty members, postdoctoral associates, and graduate students in an ever more competitive environment. The department strives to be diverse at all levels in terms of race, gender, and ethnicity. It continues to serve the varied needs of its graduate students, undergraduate students majoring in mathematics, and the broader MIT community. Awards and Honors The faculty received numerous distinctions this year. Professor Victor Kac received the Leroy P. Steele Prize for Lifetime Achievement, for “groundbreaking contributions to Lie Theory and its applications to Mathematics and Mathematical Physics.” Larry Guth (together with Netz Katz of the California Institute of Technology) won the Clay Mathematics Institute Research Award. Tomasz Mrowka was elected as a member of the National Academy of Sciences and William Minicozzi was elected as a fellow of the American Academy of Arts and Sciences. Alexei Borodin received the 2015 Loève Prize in Probability, given by the University of California, Berkeley, in recognition of outstanding research in mathematical probability by a young researcher. Alan Edelman received the 2015 Babbage Award, given at the IEEE International Parallel and Distributed Processing Symposium, for exceptional contributions to the field of parallel processing. Bonnie Berger was elected vice president of the International Society for Computational Biology.
    [Show full text]
  • Helmut Hofer Publication List
    Helmut Hofer Publication List Journal Articles: (1) A multiplicity result for a class of nonlinear problems with ap- plications to a nonlinear wave equation. Jour. of Nonlinear Analysis, Theory, Methods and Applications, 5, No. 1 (1981), 1-11 (2) Existence and multiplicity result for a class of second order el- liptic equations. Proc. of the Royal Society of Edinburgh, 88A (1981), 83-92 (3) A new proof for a result of Ekeland and Lasry concerning the number of periodic Hamiltonian trajectories on a prescribed energy surface. Bolletino UMI 6, 1-B (1982), 931-942 (4) A variational approach to a wave equation problem at resonance. Metodi asintoctici e topologici in problemi differenziali non lin- eari; ed. L. Boccardo, A.M. Micheletti, Collano Atti di Con- gressi, Pitagora Editrice, Bologna (1981), 187-200 (5) On the range of a wave operator with nonmonotone nonlinear- ity. Math. Nachrichten 106 (1982), 327-340 (6) Variational and topological methods in partially ordered Hilbert spaces. Math. Annalen 261 (1982), 493-514 (7) On strongly indefinite funtionals with applications. Transactions of the AMS 275, No. 1 (1983), 185-213 (8) A note on the topological degree at a critical point of moun- tainpass-type. Proc. of the AMS 90, No. 2 (1984), 309-315 (9) Homoclinic, heteroclinic and periodic orbits for indefinite Hamil- tonian systems (with J. Toland). Math. Annalen 268 (1984), 387-403 (10) The topological degree at a critical point of mountainpasstype. AMS Proceedings of Symposia in Pure Math. 45, Part 1 (1986) 501-509 (11) A geometric description of the neighborhood of a critical point given by the mountainpass-theorem.
    [Show full text]
  • Instantons, Knots and Knotted Graphs
    Annual McKnight-Zame Lecture INSTANTONS, KNOTS AND KNOTTED GRAPHS Thursday February 27th, 2020 5:30 PM Newman Alumni Center 6200 San Amaro Drive Coral Gables, FL 33146 RSVP ummcknight-zame2020.eventbrite.com Tomasz Mrowka, Ph.D. Professor of Mathematics, MIT Member of the National Academy of Sciences Fellow of the American Academy of Arts & Sciences 2007 Veblen Prize in Geometry Recipient Over the past four decades, input from geometry and analysis has been central to progress in the ield of low-dimensional topology. This talk will focus on one aspect of these developments, namely, the use of Yang-Mills theory, or gauge theory. These techniques were pioneered by Simon Donaldson in his work on 4-manifolds beginning in 1982. The past ten years have seen new applications of gauge theory and new interactions with more recent threads in the subject, particularly in 3-dimensional topology and knot theory. In our exploration of this subject, a recurring question will be, "How can we detect knottedness?" Many mathematical techniques have found application to this question, but gauge theory in particular has provided its own collection of answers, both directly and through its connection with other tools. Beyond classical knots, we will also take a look at the nearby but less-explored world of spatial graphs. Hosted by Department of Mathematics UNIVERSITY OF MIAMI The McKnight-Zame Distinguished Lecture Series is made possible by a COLLEGE of generous donation from Dr. Jery Fuqua (Ph.D., UM, 1972). These annual lectures ARTS & SCIENCES are named in honor of Professor James McKnight, who directed Dr.
    [Show full text]
  • January 2007 Prizes and Awards
    January 2007 Prizes and Awards 4:25 P.M., Saturday, January 6, 2007 MATHEMATICAL ASSOCIATION OF AMERICA DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS In 1991, the Mathematical Association of America instituted the Deborah and Franklin Tepper Haimo Awards for Distinguished College or University Teaching of Mathematics in order to honor college or university teachers who have been widely recognized as extraordinarily successful and whose teaching effectiveness has been shown to have had influence beyond their own institutions. Deborah Tepper Haimo was president of the Association, 1991–1992. Citation Jennifer Quinn Jennifer Quinn has a contagious enthusiasm that draws students to mathematics. The joy she takes in all things mathematical is reflected in her classes, her presentations, her publications, her videos and her on-line materials. Her class assignments often include nonstandard activities, such as creating time line entries for historic math events, or acting out scenes from the book Proofs and Refutations. One student created a children’s story about prime numbers and another produced a video documentary about students’ perceptions of math. A student who had her for six classes says, “I hope to become a teacher after finishing my master’s degree and I would be thrilled if I were able to come anywhere close to being as great a teacher as she is.” Jenny developed a variety of courses at Occidental College. Working with members of the physics department and funded by an NSF grant, she helped develop a combined yearlong course in calculus and mechanics. She also developed a course on “Mathematics as a Liberal Art” which included computer discussions, writing assignments, and other means to draw technophobes into the course.
    [Show full text]
  • Instanton and the Depth of Taut Foliations
    Instanton and the depth of taut foliations Zhenkun Li Abstract Sutured instanton Floer homology was introduced by Kronheimer and Mrowka in [8]. In this paper, we prove that for a taut balanced sutured man- ifold with vanishing second homology, the dimension of the sutured instanton Floer homology provides a bound on the minimal depth of all possible taut foliations on that balanced sutured manifold. The same argument can be adapted to the monopole and even the Heegaard Floer settings, which gives a partial answer to one of Juhasz’s conjectures in [5]. Using the nature of instanton Floer homology, on knot complements, we can construct a taut foliation with bounded depth, given some information on the representation varieties of the knot fundamental groups. This indicates a mystery relation between the representation varieties and some small depth taut foliations on knot complements, and gives a partial answer to one of Kronheimer and Mrowka’s conjecture in [8]. 1 Introduction Sutured manifolds and sutured manifold hierarchies were introduced by Gabai in 1983 in [2] and subsequent papers. They are powerful tools in the study of 3-dimensional topology. A sutured manifold is a compact oriented 3-manifold with boundary, together with an oriented closed 1-submanifold γ on BM, which is called the suture. If S Ă M is a properly embedded surface inside M, which satisfies some milt conditions, then we can perform a decomposition of pM, γq along S and obtain a new sutured manifold pM 1, γ1q. We call this process a sutured manifold decomposition and write S 1 1 arXiv:2003.02891v1 [math.GT] 5 Mar 2020 pM, γq pM , γ q.
    [Show full text]
  • Surveys in Differential Geometry
    Surveys in Differential Geometry Vol. 1: Lectures given in 1990 edited by S.-T. Yau and H. Blaine Lawson Vol. 2: Lectures given in 1993 edited by C.C. Hsiung and S.-T. Yau Vol. 3: Lectures given in 1996 edited by C.C. Hsiung and S.-T. Yau Vol. 4: Integrable systems edited by Chuu Lian Terng and Karen Uhlenbeck Vol. 5: Differential geometry inspired by string theory edited by S.-T. Yau Vol. 6: Essays on Einstein manifolds edited by Claude LeBrun and McKenzie Wang Vol. 7: Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer edited by S.-T. Yau Vol. 8: Papers in honor of Calabi, Lawson, Siu, and Uhlenbeck edited by S.-T. Yau Vol. 9: Eigenvalues of Laplacians and other geometric operators edited by A. Grigor’yan and S-T. Yau Vol. 10: Essays in geometry in memory of S.-S. Chern edited by S.-T. Yau Vol. 11: Metric and comparison geometry edited by Jeffrey Cheeger and Karsten Grove Vol. 12: Geometric flows edited by Huai-Dong Cao and S.-T. Yau Vol. 13: Geometry, analysis, and algebraic geometry edited by Huai-Dong Cao and S.-T.Yau Vol. 14: Geometry of Riemann surfaces and their moduli spaces edited by Lizhen Ji, Scott A. Wolpert, and S.-T. Yau Vol. 15: Perspectives in mathematics and physics: Essays dedicated to Isadore Singer edited by Tomasz Mrowka and S.-T. Yau Vol. 16: Geometry of special holonomy and related topics edited by Naichung Conan Leung and S.-T. Yau Vol. 17: In Memory of C. C.
    [Show full text]
  • My Grandmother's Family: the Kronheimers and the Englȁnders
    MY GRANDMOTHER’S FAMILY: THE KRONHEIMERS AND THE ENGLȀNDERS Dr Paul Gardner* My paternal grandmother was Rosalie Gärtner. She was born in Oettingen in 1875, married my grandfather Albert and migrated to Australia in 1939, arriving just weeks before my birth. I knew her when I was a child and young adult until she passed away in Melbourne in 1959. Her maiden name was Engländer; she was the daughter of Simon Engländer and his wife Clara (nee Kronheimer). I spent much of 2014 studying the family history of several branches of my family. Early in the year, new information became available that expanded my knowledge of both branches of my grandmother’s family. In December, I learned about (and contacted) previously unknown living Kronheimer descendants in several countries. THE KRONHEIMER BRANCH In March, my wife received a message via the ancestry.com website from a German woman named Elke Kehrmann, who was studying the family trees of people with her surname. The contact came about because one member listed on our family tree, Hedwig (Hedy) Dina Kronheimer, married a man surnamed Kehrmann. Elke asked us what we knew about this man. The answer: not much; we knew that his first name was Ernst, but nothing else. We naturally wondered who Elke was, and thought that perhaps she might be a newly discovered relative. It took a couple of weeks to establish direct email communication. Elke was not a descendant of Hedy and Ernst and we are not related. One might think that Elke’s simple request, to find what I knew about the Kehrmann on our family tree – hardly anything! – would have been the end of the matter for both of us.
    [Show full text]
  • 2011 Doob Prize
    2011 Doob Prize Peter Kronheimer and Tomasz Mrowka received in 1987 under the su- the 2011 AMS Joseph Doob Prize at the 117th An- pervision of Michael nual Meeting of the AMS in New Orleans in January Atiyah. After a year as 2011. They were honored for their book Monopoles a junior research fel- and Three-Manifolds (Cambridge University Press, low at Balliol and two 2007). years at the Institute for Advanced Study, Citation he returned to Merton The study of three- and four-dimensional mani- as fellow and tutor in folds has been transformed by the development of mathematics. In 1995 gauge theories adapted from mathematical phys- he moved to Harvard, ics. The appearance of gauge-theoretic invariants where he is now the of four-manifolds led to Donaldson’s discovery of William Caspar Graus- pairs of four-manifolds that were homeomorphic tein Professor of but not diffeomorphic. For three-manifolds, a Peter Kronheimer Mathematics. He is a generalization of Morse theory introduced by Floer recipient of the Förder- gave a home to the solutions of the Yang-Mills preis from the Mathematisches Forschungsinstitut, equations and their topological interpretations. Oberwolfach, and the Whitehead Prize from the In the 1990s Seiberg and Witten developed a more London Mathematical Society. He is a corecipient direct approach to the riches of gauge invariants. (with Tomasz Mrowka) of the Oswald Veblen Prize The book by Kronheimer and Mrowka presents an from the American Mathematical Society and was ambitious and thorough account of these ideas and elected a fellow of the Royal Society in 1997.
    [Show full text]
  • 32915829-The-Simons-Foundation
    Camara lucida drawing of a Purkinje cell in the cat’s cerebellar cortex, by Santiago Ramón y Cajal. Legend: (a) axon (b) collateral (c) dendrites. This elaborate dendritic arbor forms the cell’s antenna, by which it receives incoming signals from other nerve cells. The precise drawing of a Purkinje neuron by Cajal, made using the camera lucida technique, is one of the most reproduced images of all neuroscience. Cajal’s exploitation of the silver impregnation staining technique revolutionized neuroscience, and his life’s work on the normal and injured nervous system has no parallel to this day. The Simons Foundation extends its deepest gratitude to the granddaughter of Santiago Ramón y Cajal, Ma Angeles Ramón y Cajal, who holds the copyright to the Cajal imagery featured in this Annual Report. The Foundation also thanks Dr. Ricardo Murillo and Dr. Javier DeFelipe of the Cajal Institute in Madrid for their assistance. Contents 02 President’s Message 04 Math & Science 14 SFARI 22 Financials 26 People 28 Grants 02 Simons Foundation President’s Letter 03 FY 2009 was marked by three noteworthy events, each one of them underscoring the foundation’s mission of supporting outstanding research in mathematics Letter and basic science: • An MIT conference in honor of our good friend and Jim’s mentor, Isadore Singer. from the • A groundbreaking ceremony for the Simons Center for Geometry and Physics. • The first annual meeting of our Simons Foundation Autism Research Initiative President (SFARI) researchers. The Foundation’s commitment to pure math has its roots, of course, in Jim’s work as a mathematician.
    [Show full text]
  • Knots, Three-Manifolds and Instantons
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (607–634) KNOTS, THREE-MANIFOLDS AND INSTANTONS P B. K T S. M Abstract Low-dimensional topology is the study of manifolds and cell complexes in di- mensions four and below. Input from geometry and analysis has been central to progress in this field over the past four decades, and this article will focus on one aspect of these developments in particular, namely the use of Yang–Mills theory, or gauge theory. These techniques were pioneered by Simon Donaldson in his work on 4-manifolds, but the past ten years have seen new applications of gauge the- ory, and new interactions with more recent threads in the subject, particularly in 3-dimensional topology. This is a field where many mathematical techniques have found applications, and sometimes a theorem has two or more independent proofs, drawing on more than one of these techniques. We will focus primarily on some questions and results where gauge theory plays a special role. 1 Representations of fundamental groups 1.1 Knot groups and their representations. Knots have long fascinated mathemati- cians. In topology, they provide blueprints for the construction of manifolds of dimen- sion three and four. For this exposition, a knot is a smoothly embedded circle in 3-space, and a link is a disjoint union of knots. The simplest examples, the trefoil knot and the Hopf link, are shown in Figure 1, alongside the trivial round circle, the “unknot”. Knot theory is a subject with many aspects, but one place to start is with the knot group, defined as the fundamental group of the complement of a knot K R3.
    [Show full text]
  • Monopoles Over 4–Manifolds Containing Long Necks, I
    ISSN 1364-0380 (on line) 1465-3060 (printed) 1 eometry & opology G T G T Volume 9 (2005) 1–93 GG T T T G T G T Published: 17 December 2004 G T G T T G T G T G T G T G G G G T T Monopoles over 4–manifolds containing long necks, I Kim A Frøyshov Fakult¨at f¨ur Mathematik, Universit¨at Bielefeld Postfach 100131, D-33501 Bielefeld, Germany Email: [email protected] Abstract We study moduli spaces of Seiberg–Witten monopoles over spinc Riemannian 4–manifolds with long necks and/or tubular ends. This first part discusses compactness, exponential decay, and transversality. As applications we prove two vanishing theorems for Seiberg–Witten invariants. AMS Classification numbers Primary: 57R58 Secondary: 57R57 Keywords: Floer homology, Seiberg–Witten, Bauer–Furuta, compactness, monopoles Proposed:DieterKotschick Received:9October2003 Seconded: Simon Donaldson, Tomasz Mrowka Revised: 1 December 2004 c eometry & opology ublications G T P 2 Kim A Frøyshov 1 Introduction This is the first of two papers devoted to the study of moduli spaces of Seiberg– Witten monopoles over spinc Riemannian 4–manifolds with long necks and/or tubular ends. Our principal motivation is to provide the analytical foundations for subsequent work on Floer homology. Such homology groups should appear naturally when one attempts to express the Seiberg–Witten invariants of a closed spinc 4–manifold Z cut along a hypersurface Y , say Z = Z Z , 1 ∪Y 2 in terms of relative invariants of the two pieces Z1,Z2 . The standard approach, familiar from instanton Floer theory (see [13, 10]), is to construct a 1–parameter family g of Riemannian metrics on Z by stretching along Y so as to obtain { T } a neck [ T, T ] Y , and study the monopole moduli space M (T ) over (Z, g ) − × T for large T .
    [Show full text]
  • Applications of 3-Manifold Floer Homology Tth\
    Applications of 3-Manifold Floer Homology by Ilya Elson Bachelor of Arts University of Pennsylvania, May 2001 Master of Arts University of Pennsylvania, May 2001 Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2008 @ Ilya Elson, MMVIII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author ..............'''''''•'' ' . i ''''':~,_ "1- .. J .... £ Ar_..L.I~~ .... .L:_"_ Department of Mathematics February 8, 2008 Certified by........................................ .............. Tomasz S. Mrowka Professor of Mathematics tTh\ Thesis Supervisor Accepted by................ .V . David S. Jerison MASSACHUSTTS INSTITUTE OF TEOHNOLOGY Chairman, Departmental Committee on Graduate Students MAR 1,0 2008 ARCHfVES LIBRARIES Applications of 3-Manifold Floer Homology by Ilya Elson Submitted to the Department of Mathematics on February 8, 2008, in partial fulfillment of the requirements for the degree of Master of Science Abstract In this thesis we give an exposition of some of the topological preliminaries neces- sary to understand 3-manifold Floer Homology constructed by Peter Kronheimer and Tomasz Mrowka in [16], along with some properties of this theory, calculations for specific manifolds, and applications to 3-manifold topology. Thesis Supervisor: Tomasz S. Mrowka Title: Professor of Mathematics Contents 1 Topological Preliminaries 1 1 Surgery 1.1.1 Handle Decompositions . 1.1.2 Surgery in any Dimension 1.1.3 Cobordism ...... .... 1.1.4 Rational Surgery on a Knot 3-manifold 1.2 Taut Foliations .... ....... 1.3 Spin Structures ..........
    [Show full text]