A Measurement of Inclusive Radiative Penguin Decays Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constraints from Electric Dipole Moments on Chargino Baryogenesis in the Minimal Supersymmetric Standard Model
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by National Tsing Hua University Institutional Repository PHYSICAL REVIEW D 66, 116008 ͑2002͒ Constraints from electric dipole moments on chargino baryogenesis in the minimal supersymmetric standard model Darwin Chang NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and Theory Group, Lawrence Berkeley Lab, Berkeley, California 94720 We-Fu Chang NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and TRIUMF Theory Group, Vancouver, British Columbia, Canada V6T 2A3 Wai-Yee Keung NCTS and Physics Department, National Tsing-Hua University, Hsinchu 30043, Taiwan, Republic of China and Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607-7059 ͑Received 9 May 2002; revised 13 September 2002; published 27 December 2002͒ A commonly accepted mechanism of generating baryon asymmetry in the minimal supersymmetric standard model ͑MSSM͒ depends on the CP violating relative phase between the gaugino mass and the Higgsino term. The direct constraint on this phase comes from the limit of electric dipole moments ͑EDM’s͒ of various light fermions. To avoid such a constraint, a scheme which assumes that the first two generation sfermions are very heavy is usually evoked to suppress the one-loop EDM contributions. We point out that under such a scheme the most severe constraint may come from a new contribution to the electric dipole moment of the electron, the neutron, or atoms via the chargino sector at the two-loop level. As a result, the allowed parameter space for baryogenesis in the MSSM is severely constrained, independent of the masses of the first two generation sfermions. -
Spin and Parity of the Λ(1405) Baryon
Spin and Parity of the (1405) Baryon here [1], precisely because of the difficulty in producing it, and in particular because it must be produced spin polarized for a measurement to be made. We used photoproduction data from the CLAS detector at Jefferson Lab. The reaction + p K+ + (1405) was analyzed in the decay channel (1405) + + , where the decay distribution to + and the variation of the + polarization with respect to the (1405) polarization direction determined the spin and parity. The (1405) was produced in the c.m. energy range K 2.55 < W < 2.85 GeV and for 0.6 coscm.. 0.9 . The decay angular distribution of the (1405) in its rest Every subatomic particle has a set of properties that frame was found to be isotropic, which means the define its identity. Beyond mass, charge, and magnetic particle is consistent with spin J = ½. The first figure moment, each particle has discrete quantum numbers illustrates how the polarization P of a parent particle that include its spin angular momentum J and its with spin ½, in this case the (1405), transfers intrinsic parity P. The spin comes in integer steps of + starting from ½ for 3-quark objects (baryons). The polarization Q to the daughter baryon, in this case the , depending on whether the decay is in a spatial S wave parity is either positive (“+”) or negative (“”) (L=0) or P wave (L=1). This distinction is what depending on the inversion symmetry of its spatial wave determines the parity of the final state, and hence of the function. For example, the familiar proton and neutron parent. -
Table of Contents (Print)
PERIODICALS PHYSICAL REVIEW D Postmaster send address changes to: For editorial and subscription correspondence, PHYSICAL REVIEW D please see inside front cover APS Subscription Services „ISSN: 0556-2821… Suite 1NO1 2 Huntington Quadrangle Melville, NY 11747-4502 THIRD SERIES, VOLUME 69, NUMBER 7 CONTENTS D1 APRIL 2004 RAPID COMMUNICATIONS ϩ 0 ⌼ ϩ→ ϩ 0→ 0 Measurement of the B /B production ratio from the (4S) meson using B J/ K and B J/ KS decays (7 pages) ............................................................................ 071101͑R͒ B. Aubert et al. ͑BABAR Collaboration͒ Cabibbo-suppressed decays of Dϩ→ϩ0,KϩK¯ 0,Kϩ0 (5 pages) .................................. 071102͑R͒ K. Arms et al. ͑CLEO Collaboration͒ Ϯ→ Ϯ ͑ ͒ Measurement of the branching fraction for B c0K (7 pages) ................................... 071103R B. Aubert et al. ͑BABAR Collaboration͒ Generalized Ward identity and gauge invariance of the color-superconducting gap (5 pages) .............. 071501͑R͒ De-fu Hou, Qun Wang, and Dirk H. Rischke ARTICLES Measurements of (2S) decays into vector-tensor final states (6 pages) ............................... 072001 J. Z. Bai et al. ͑BES Collaboration͒ Measurement of inclusive momentum spectra and multiplicity distributions of charged particles at ͱsϳ2 –5 GeV (7 pages) ................................................................... 072002 J. Z. Bai et al. ͑BES Collaboration͒ Production of ϩ, Ϫ, Kϩ, KϪ, p, and ¯p in light ͑uds͒, c, and b jets from Z0 decays (26 pages) ........ 072003 Koya Abe et al. ͑SLD Collaboration͒ Heavy flavor properties of jets produced in pp¯ interactions at ͱsϭ1.8 TeV (21 pages) .................. 072004 D. Acosta et al. ͑CDF Collaboration͒ Electric charge and magnetic moment of a massive neutrino (21 pages) ............................... 073001 Maxim Dvornikov and Alexander Studenikin → decays in the resonance effective theory (13 pages) .................................... -
The Subatomic Particle Mass Spectrum
The Subatomic Particle Mass Spectrum Robert L. Oldershaw 12 Emily Lane Amherst, MA 01002 USA [email protected] Key Words: Subatomic Particles; Particle Mass Spectrum; General Relativity; Kerr Metric; Discrete Self-Similarity; Discrete Scale Relativity 1 Abstract: Representative members of the subatomic particle mass spectrum in the 100 MeV to 7,000 MeV range are retrodicted to a first approximation using the Kerr solution of General Relativity. The particle masses appear to form a restricted set of quantized values of a Kerr- based angular momentum-mass relation: M = n1/2 M, where values of n are a set of discrete integers and M is a revised Planck mass. A fractal paradigm manifesting global discrete self- similarity is critical to a proper determination of M, which differs from the conventional Planck mass by a factor of roughly 1019. This exceedingly simple and generic mass equation retrodicts the masses of a representative set of 27 well-known particles with an average relative error of 1.6%. A more rigorous mass formula, which includes the total spin angular momentum rule of Quantum Mechanics, the canonical spin values of the particles, and the dimensionless rotational parameter of the Kerr angular momentum-mass relation, is able to retrodict the masses of the 8 dominant baryons in the 900 MeV to 1700 MeV range at the < 99.7% > level. 2 “There remains one especially unsatisfactory feature [of the Standard Model of particle physics]: the observed masses of the particles, m. There is no theory that adequately explains these numbers. We use the numbers in all our theories, but we do not understand them – what they are, or where they come from. -
FUNDAMENTAL PARTICLES Year 14 Physics Erin Hannigan
FUNDAMENTAL PARTICLES Year 14 Physics Erin Hannigan 1 Key Word List ■ Natural Philosophy – the science of matter and energy and their interactions. ■ Hadron – any elementary particle that interacts strongly with other particles. ■ Lepton – an elementary particle that participates in weak interactions. ■ Subatomic Particle – a body having finite mass and internal structure but negligible dimensions. ■ Quark – any of a number f subatomic particles carrying a fractional electric charge, postulated as building blocks of the hadrons. Quarks have not been directly observed but theoretical predictions based on their existence have been confirmed experimentally. ■ Atom – the smallest component of an element having the chemical properties of the element. 2 Fundamental Particles ■ Fundamental particles (also called elementary particles) are the smallest building blocks of the universe. The key characteristic of fundamental particles is that they have no internal structure. ■ There are two type of fundamental particles: – Particles that make up all matter, called fermions – Particles that carry force, called bosons ■ The four fundamental forces include: – Gravity – The weak force – Electromagnetism – The strong force 3 The Four Fundamental Forces ■ The four fundamental forces of nature govern everything that happens in the universe. ■ Gravity – The attraction between two objects that have mass or energy ■ The weak force – Responsible for particle decay – Physicists describe this interaction through the exchange of force-carrying particles called -
Study of $ S\To D\Nu\Bar {\Nu} $ Rare Hyperon Decays Within the Standard
Study of s dνν¯ rare hyperon decays in the Standard Model and new physics → Xiao-Hui Hu1 ∗, Zhen-Xing Zhao1 † 1 INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, MOE Key Laboratory for Particle Physics, Astrophysics and Cosmology, School of Physics and Astronomy, Shanghai Jiao-Tong University, Shanghai 200240, P.R. China FCNC processes offer important tools to test the Standard Model (SM), and to search for possible new physics. In this work, we investigate the s → dνν¯ rare hyperon decays in SM and beyond. We 14 11 find that in SM the branching ratios for these rare hyperon decays range from 10− to 10− . When all the errors in the form factors are included, we find that the final branching fractions for most decay modes have an uncertainty of about 5% to 10%. After taking into account the contribution from new physics, the generalized SUSY extension of SM and the minimal 331 model, the decay widths for these channels can be enhanced by a factor of 2 ∼ 7. I. INTRODUCTION The flavor changing neutral current (FCNC) transitions provide a critical test of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism in the Standard Model (SM), and allow to search for the possible new physics. In SM, FCNC transition s dνν¯ proceeds through Z-penguin and electroweak box diagrams, and thus the decay probablitities are strongly→ suppressed. In this case, a precise study allows to perform very stringent tests of SM and ensures large sensitivity to potential new degrees of freedom. + + 0 A large number of studies have been performed of the K π νν¯ and KL π νν¯ processes, and reviews of these two decays can be found in [1–6]. -
Introduction to Subatomic- Particle Spectrometers∗
IIT-CAPP-15/2 Introduction to Subatomic- Particle Spectrometers∗ Daniel M. Kaplan Illinois Institute of Technology Chicago, IL 60616 Charles E. Lane Drexel University Philadelphia, PA 19104 Kenneth S. Nelsony University of Virginia Charlottesville, VA 22901 Abstract An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle in- teractions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrom- eters and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely. arXiv:physics/9805026v3 [physics.ins-det] 17 Jul 2015 ∗To appear in the Wiley Encyclopedia of Electrical and Electronics Engineering. yNow at Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723. 1 Contents 1 Introduction 5 2 Overview of Subatomic Particles 5 2.1 Leptons, Hadrons, Gauge and Higgs Bosons . 5 2.2 Neutrinos . 6 2.3 Quarks . 8 3 Overview of Particle Detection 9 3.1 Position Measurement: Hodoscopes and Telescopes . 9 3.2 Momentum and Energy Measurement . 9 3.2.1 Magnetic Spectrometry . 9 3.2.2 Calorimeters . 10 3.3 Particle Identification . 10 3.3.1 Calorimetric Electron (and Photon) Identification . 10 3.3.2 Muon Identification . 11 3.3.3 Time of Flight and Ionization . 11 3.3.4 Cherenkov Detectors . 11 3.3.5 Transition-Radiation Detectors . 12 3.4 Neutrino Detection . 12 3.4.1 Reactor Neutrinos . 12 3.4.2 Detection of High Energy Neutrinos . -
Thesissubmittedtothe Florida State University Department of Physics in Partial Fulfillment of the Requirements for Graduation with Honors in the Major
Florida State University Libraries 2016 Search for Electroweak Production of Supersymmetric Particles with two photons, an electron, and missing transverse energy Paul Myles Eugenio Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] ASEARCHFORELECTROWEAK PRODUCTION OF SUPERSYMMETRIC PARTICLES WITH TWO PHOTONS, AN ELECTRON, AND MISSING TRANSVERSE ENERGY Paul Eugenio Athesissubmittedtothe Florida State University Department of Physics in partial fulfillment of the requirements for graduation with Honors in the Major Spring 2016 2 Abstract A search for Supersymmetry (SUSY) using a final state consisting of two pho- tons, an electron, and missing transverse energy. This analysis uses data collected by the Compact Muon Solenoid (CMS) detector from proton-proton collisions at a center of mass energy √s =13 TeV. The data correspond to an integrated luminosity of 2.26 fb−1. This search focuses on a R-parity conserving model of Supersymmetry where electroweak decay of SUSY particles results in the lightest supersymmetric particle, two high energy photons, and an electron. The light- est supersymmetric particle would escape the detector, thus resulting in missing transverse energy. No excess of missing energy is observed in the signal region of MET>100 GeV. A limit is set on the SUSY electroweak Chargino-Neutralino production cross section. 3 Contents 1 Introduction 9 1.1 Weakly Interacting Massive Particles . ..... 10 1.2 SUSY ..................................... 12 2 CMS Detector 15 3Data 17 3.1 ParticleFlowandReconstruction . .. 17 3.1.1 ECALClusteringandR9. 17 3.1.2 Conversion Safe Electron Veto . 18 3.1.3 Shower Shape . 19 3.1.4 Isolation . -
The Ghost Particle 1 Ask Students If They Can Think of Some Things They Cannot Directly See but They Know Exist
Original broadcast: February 21, 2006 BEFORE WATCHING The Ghost Particle 1 Ask students if they can think of some things they cannot directly see but they know exist. Have them provide examples and reasoning for PROGRAM OVERVIEW how they know these things exist. NOVA explores the 70–year struggle so (Some examples and evidence of their existence include: [bacteria and virus- far to understand the most elusive of all es—illnesses], [energy—heat from the elementary particles, the neutrino. sun], [magnetism—effect on a com- pass], and [gravity—objects falling The program: towards Earth].) How do scientists • relates how the neutrino first came to be theorized by physicist observe and measure things that cannot be seen with the naked eye? Wolfgang Pauli in 1930. (They use instruments such as • notes the challenge of studying a particle with no electric charge. microscopes and telescopes, and • describes the first experiment that confirmed the existence of the they look at how unseen things neutrino in 1956. affect other objects.) • recounts how scientists came to believe that neutrinos—which are 2 Review the structure of an atom, produced during radioactive decay—would also be involved in including protons, neutrons, and nuclear fusion, a process suspected as the fuel source for the sun. electrons. Ask students what they know about subatomic particles, • tells how theoretician John Bahcall and chemist Ray Davis began i.e., any of the various units of mat- studying neutrinos to better understand how stars shine—Bahcall ter below the size of an atom. To created the first mathematical model predicting the sun’s solar help students better understand the neutrino production and Davis designed an experiment to measure size of some subatomic particles, solar neutrinos. -
Jhep11(2016)148
Published for SISSA by Springer Received: August 9, 2016 Revised: October 28, 2016 Accepted: November 20, 2016 Published: November 24, 2016 JHEP11(2016)148 Split NMSSM with electroweak baryogenesis S.V. Demidov,a;b D.S. Gorbunova;b and D.V. Kirpichnikova aInstitute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312, Russia bMoscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny 141700, Russia E-mail: [email protected], [email protected], [email protected] Abstract: In light of the Higgs boson discovery and other results of the LHC we re- consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos. Keywords: Supersymmetry Phenomenology ArXiv ePrint: 1608.01985 Open Access, c The Authors. doi:10.1007/JHEP11(2016)148 Article funded by SCOAP3. Contents 1 Introduction1 2 Non-minimal split supersymmetry3 3 Predictions for the Higgs boson mass5 4 Strong first order EWPT8 JHEP11(2016)148 5 Baryon asymmetry9 6 EDM constraints and light chargino phenomenology 12 7 Conclusion 13 A One loop corrections to Higgs mass in split NMSSM 14 A.1 Tree level potential of scalar sector in the broken phase 14 A.2 Chargino-neutralino sector of split NMSSM 16 A.3 One-loop correction to Yukawa coupling of top quark 17 1 Introduction Any phenomenologically viable particle physics model should explain the observed asym- metry between matter and antimatter in the Universe. -
Mass Degeneracy of the Higgsinos
CERN–TH/95–337 Mass Degeneracy of the Higgsinos Gian F. Giudice1 and Alex Pomarol Theory Division, CERN CH-1211 Geneva 23, Switzerland Abstract The search for charginos and neutralinos at LEP2 can become problematic if these particles are almost mass degenerate with the lightest neutralino. Unfortunately this is the case in the region where these particles are higgsino-like. We show that, in this region, radiative corrections to the higgsino mass splittings can be as large as the tree-level values, if the mixing between the two stop states is large. We also show that the degree of degeneracy of the higgsinos substantially increases if a large phase is present in the higgsino mass term µ. CERN–TH/95–337 December 1995 1On leave of absence from INFN Sezione di Padova, Padua, Italy. The search for charginos (˜χ+) at LEP2 is one of the most promising ways of discovering low-energy supersymmetry. If theχ ˜+ decays into the lightest neutralino (˜χ0) and a virtual W +, it can be discovered at LEP2 (with a L = 500 pb−1) whenever its production cross R section is larger than about 0.1–0.3pbandmχ˜0 is within the range mχ˜0 ∼> 20 GeV and mχ˜+ − mχ˜0 ∼> 5–10 GeV [1]. Therefore, the chargino can be discovered almost up to the LEP2 kinematical limit, unless one of the following three conditions occurs: i) The sneutrino (˜ν) is light and the chargino is mainly gaugino-like. In this case theν ˜ t-channel exchange interferes destructively with the gauge-boson exchange and can reduce the chargino production cross section below the minimum values required for observability, 0.1–0.3 pb. -
Table of Contents (Print)
PERIODICALS PHYSICAL REVIEW D Postmaster send address changes to: For editorial and subscription correspondence, American Institute of Physics please see inside front cover 500 Sunnyside Boulevard (ISSN: 0556-2821) Woodbury, NY 11797-2999 THIRD SERIES, VOLUME 55, NUMBER 3 CONTENTS 1 FEBRUARY 1997 RAPID COMMUNICATIONS Search for f mesons in t lepton decay ............................................................. R1119 P. Avery et al. ~CLEO Collaboration! Is factorization for isolated photon cross sections broken? .............................................. R1124 P. Aurenche, M. Fontannaz, J. Ph. Guillet, A. Kotikov, and E. Pilon Long distance contribution to D pl1l2 ........................................................... R1127 Paul Singer and Da-Xin Zhang→ Forward scattering amplitude of virtual longitudinal photons at zero energy ............................... R1130 B. L. Ioffe Improving flavor symmetry in the Kogut-Susskind hadron spectrum ...................................... R1133 Tom Blum, Carleton DeTar, Steven Gottlieb, Kari Rummukainen, Urs M. Heller, James E. Hetrick, Doug Toussaint, R. L. Sugar, and Matthew Wingate Anomalous U~1!-mediated supersymmetry breaking, fermion masses, and natural suppression of FCNC and CP-violating effects ............................................................................. R1138 R. N. Mohapatra and Antonio Riotto ARTICLES 0 Observation of L b J/c L at the Fermilab proton-antiproton collider .................................... 1142 F. Abe et al.→~CDF Collaboration! Measurement of the branching ratios c8 e1e2, c8 J/cpp, and c8 J/ch ............................ 1153 T. A. Armstrong et al. ~Fermilab→ E760 Collaboration→ ! → Measurement of the differences in the total cross section for antiparallel and parallel longitudinal spins and a measurement of parity nonconservation with incident polarized protons and antiprotons at 200 GeV/c .......... 1159 D. P. Grosnick et al. ~E581/704 Collaboration! Statistical properties of the linear s model used in dynamical simulations of DCC formation ................