Landscape Characteristics of Rhizophora Mangle Forests and Propagule Deposition in Coastal Environments of Florida (USA)

Total Page:16

File Type:pdf, Size:1020Kb

Landscape Characteristics of Rhizophora Mangle Forests and Propagule Deposition in Coastal Environments of Florida (USA) Landscape Ecology (2005) 20: 63–72 Ó Springer 2005 DOI 10.1007/s10980-004-0468-8 0 Research article Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA) Raja Sengupta1,2, Beth Middleton3,4,*, Chen Yan1, Michelle Zuro1 and Heidi Hartman4 1Department of Geography, Southern Illinois University at Carbondale, Carbondale, IL 62901-4514, USA 2Department of Geography, 805 Sherbrooke Street W., McGill University, Montreal, Canada QC H3A 3Department of Plant Biology, Southern Illinois University at Carbondale, Carbondale, IL 62901-4501 USA 4National Wetlands Research Center, U.S. Geological Survey, 700 Cajundome Boulevard, Lafayette LA 70506, USA; *Author for correspondence ([email protected]) Received 18 December 2003; Accepted in revised form 27 May 2004 Key words: Coastal wetlands, Dispersal, Fragmentation, GIS, Landscape connectivity, Modeling, Recruitment limitation, Remote sensing, Restoration ecology Abstract Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape charac- teristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. Introduction fragmented forests to deposition sites if landscape characteristics associated with fragment size and Mangrove forests are becoming more isolated in many connectivity are altered (With and Crist 1995; Gu locations as coastal regions of the tropics develop. et al. 2002). Smaller and more distant fragments of This isolation could lead to regeneration limitation mangrove forests may disperse fewer propagules than that could reduce recruitment into safe sites (sensu- larger, less distant fragments (sensu island biogeog- Harper 1977). Specifically, too few mangrove propa- raphy theory as stated in Middleton 1999). Therefore, gules or other disseminules may be dispersed from the fragmentation characteristics of these forest 64 sources of propagules ultimately may dictate the po- long-distance dispersal in high-energy oceanic envi- tential for regeneration within landscapes (Gustafson ronments, where ocean currents were thought to carry and Gardner 1996). Even though deposition charac- Rhizophora mangle propagules at least 100 km (Davis teristics of propagules relative to landscape fragmen- 1940; Murray 1986). However, more recent studies tation have been studied little in the field and mostly that focused on propagule dispersal at local scales on localized levels within or directly adjacent to for- indicate that dispersal is more limited for most species ests (Pither and Taylor 1998; Middleton 2000), many (Nathan 2001). For example, the majority of propa- models rely on basic information concerning dispersal gules of R. mucronata in Malaysia dispersed less than dynamics (Doak and Mills 1994; Gu et al. 2002; 20 m from the parent tree, and only a few propagules Tischendorf and Fahrig 2000). In biogeographical dispersed more than 65 m (Chan and Husin 1985). models, dispersal dynamics are recognized as a key Most propagules of Avicennia marina dispersed near factor limiting worldwide mangrove distribution their parent trees (Clarke and Myerscough 1991), (Drexler 2001; de Lange and de Lange 1994; Higgins although a few propagules can disperse up to 10 km et al. 2003). Field studies that provide information for (Clarke 1993). Similarly, most propagules of Ceriops dispersal deposition traits in modeling are necessary tagal dispersed less than 3 m from their sources but lacking, and would be particularly helpful to make (McGuinness 1997). The argument that propagule predictions about regional landscape function in set- dispersal is very local (de Lange and de Lange 1994) tings of anthropogenic fragmentation. Nonetheless, is further bolstered by findings that suggest a limited post-dispersal factors such as herbivory and shade duration of propagule bouyancy (e.g., A. marina is ultimately may be more important in determining the bouyant for only 4 days; Steinke 1975). Some species zonation patterns of mangrove species than dispersal of propagules may have a greater capacity for long- (Clarke et al. 2001; Clarke and Kerrigan 2002; Clarke distance dispersal than A. marina, and these dispersal 2004). However, dispersal undoubtedly is important characteristics could ultimately affect supply. Rhizo- from the perspective of supply. phora mangle propagules remain bouyant for 20–100 Past engineering projects in riverine and tidal wet- days, and are viable for up to a year or more (Rabi- lands that fragment forests may limit the available nowitz 1978), although certain other species will sink propagules if forest characteristics (e.g., size, distance in as little as 15 days (Clarke et al. 2001). Objects that and interconnectivity; Middleton 1999, 2003) are al- float for long periods of time have a great potential for tered on a regional scale. At local scales within for- long-distance migration as a result of transport by ests, foresters have recognized the importance of ocean currents; for example, Nike shoes from five having adequate amounts of seed for the regeneration containers that were swept off a ship in the mid- of forests in logged sites (Clark et al. 1999), but little Pacific and spilled onto the ocean traveled 2800 km in thought has been given to the process at a regional 174–211 days, and subsequently were stranded on scale (directly adjacent to and up to 5 km distant from several beaches in Washington and Oregon (Ebbes- the source forest). The relationship of regional dis- meyer and Ingraham 1992). Undoubtedly, long-dis- persal to regeneration limitation may be very direct, so tance dispersal is relevant to this discussion. We test in that an understanding of the relationship of propagule this paper that shorter-range dispersal is primarily deposition to mangrove source characteristics is responsible for regeneration limitation in mangrove essential both to the restoration of coastal mangroves forests, and that propagules deposition may be related and the recolonization of gaps after disturbances such primarily to local fragmentation characteristics (i.e., as hurricanes, wind-throw, or insect damage (sensu- forest distance and size). Duke 2001; Sousa et al. 2003). Studies of mangrove The objectives of this research, therefore, were to dispersal also are relevant because some restoration document deposition patterns of Rhizophora mangle projects have relied solely on naturally dispersed propagules on beaches with regard to the distance and propagules; however, the landscape characteristics of degree of the fragmentation of regional source forest in these settings are not known (Buchanan 1989; Lewis both high- and low-energy coastal settings, i.e., facing 1990; Middleton 1999). open gulf waters vs. sheltered, respectively. Our For the purposes of modeling, field studies of the objectives were related to dispersal potential and not to deposition characteristics of mangrove propagules in a regenerative potential since propagules do not regen- regional context are warranted. Anecdotal research on erate on beaches. Necessarily, we observed the rela- the dispersal of mangrove propagules emphasized tionship of dispersal and fragmentation to deposition 65 Figure 1. Location of study beaches along the coast of southwestern Florida (USGS Terra Server. 2003). patterns in non-regenerating sites, since there is the beaches that were farther away, and, (2) adjacent to potential for recording larger scale deposition patterns source forests of larger, rather than smaller areal on beaches rather than on mangrove forests. extent. The study area was located in southwestern Florida (Fort Myers to Ten Thousand Islands) Study area (Figure 1, Figure 2) and consisted of mangrove forests naturally isolated by physical geography and/ The study area was located in southwest Florida from or anthropogenic development. In both low- and Fort Myers to Ten Thousand Islands (Figure 1; 25.85° high-energy environments, we tested whether the N to 26.4° N latitude, and 81.88 to 81.54° W longi- density of mangrove
Recommended publications
  • Relative Importance of Propagule Size and Propagule Number for Establishment of Non-Indigenous Species: a Stochastic Simulation Study
    Aquatic Invasions (2016) Volume 11, Issue 1: 101–110 DOI: http://dx.doi.org/10.3391/ai.2016.11.1.11 Open Access © 2016 The Author(s). Journal compilation © 2016 REABIC Research Article Relative importance of propagule size and propagule number for establishment of non-indigenous species: a stochastic simulation study 1,2 3 David Drolet * and Andrea Locke 1Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3 Canada 2Current address: Fisheries and Oceans Canada, Institut Maurice-Lamontagne, 850 route de la Mer, Mont-Joli, Québec, G5H 3Z4 Canada 3Department of Fisheries and Oceans Canada, Gulf Fisheries Centre, P.O. Box 5030, Moncton, New Brunswick, E1C 9B6 Canada E-mail: [email protected] (DD), [email protected] (AL) *Corresponding author Received: 11 February 2015 / Accepted: 23 September 2015 / Published online: 8 December 2015 Handling editor: Charles W. Martin Abstract Propagule pressure is emerging as the most consistent predictor of establishment in non-indigenous species. Increasing propagule size (the number of individuals arriving in a novel environment at one time) is thought to increase probability of establishment by counteracting demographic stochasticity and Allee effects. Increasing propagule number (the number of introduction events) is thought to increase probability of establishment by counteracting environmental stochasticity. However, the relative importance of these effects and the conditions under which one effect may become predominant is largely unexplored. We first used stochastic population simulations, with a constant number of immigrants distributed over varying numbers of introduction events, to determine the relative importance of propagule size and number on the probability of establishment.
    [Show full text]
  • Effects of Propagule Settlement Density and Adult Canopy on Survival of Recruits of Sargassum Spp. (Sargassaceae: Phaeophyta)
    MARINE ECOLOGY PROGRESS SERIES Vol. 103: 129-140, 1994 Published January 6 Mar. Ecol. Prog. Ser. Effects of propagule settlement density and adult canopy on survival of recruits of Sargassum spp. (Sargassaceae: Phaeophyta) Gary A. Kendrick* Department of Botany, University of Western Australia. Nedlands, Western Australia 6009, Australia ABSTRACT The effects of increased densities of settled propagules and the presence of adults on sur- vlval of recruits were lnvest~gatedto determine whether patterns of propagule settlement would pel- slst and be expressed as distribution of recruits for Sargassum spln~lllgeru~nS d~stlchun~and S poda- canthum in a subtidal mixed specles bed at Rottnest Island, Western Australia The effect of highei densities of settled propagules (recruit-recruit lnteractions) was studied uslng l~mestonesettlement plates seeded with known densities of propagules Density-dependent n~ortal~tyoccurred at settlement densities < 105 propagules m A large component of recruit mortality was density independent (57 "/;> of total mortality) Vanabllity in recruit survival at any one settlement density was also great Growth of recruits was negatively density dependent Two distinct sizes of recru~tswere observed (< 10 and > 10 mm in height) The effect of adult canopy (recruit-adult interactions) on recruit sur\ilval was stud- ied using a cleanng expenment where adult thalli were removed from 4 m2areas For the flrst 6 mo the presence of adults had llttle effect on recruit survival Aftei 6 mo, the presence of adults leduced recruit
    [Show full text]
  • Assessing the Relationship Between Propagule Pressure and Invasion Risk in Ballast Water
    ASSESSING THE RELATIONSHIP BETWEEN PROPAGULE PRESSURE AND INVASION RISK IN BALLAST WATER Committee on Assessing Numeric Limits for Living Organisms in Ballast Water Water Science and Technology Board Division on Earth and Life Studies THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the panel responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this study was provided by the EPA under contract no. EP-C-09-003, TO#11. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the organizations or agencies that provided support for the project. International Standard Book Number X-XXX-XXXXX-X Library of Congress Catalog Card Number XX-XXXXX Additional copies of this report are available from the National Academies Press, 500 5th Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu. Copyright 2011 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. PREPUBLICATION COPY The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare.
    [Show full text]
  • Arbuscular Mycorrhizal Propagule Densities Respond Rapidly to Ponderosa Pine Restoration Treatments
    Journal of Applied Blackwell Science, Ltd Ecology 2003 Arbuscular mycorrhizal propagule densities respond 40, 101–110 rapidly to ponderosa pine restoration treatments JULIE E. KORB*†, NANCY C. JOHNSON‡ and W. W. COVINGTON* *Ecological Restoration Institute, College of Ecosystem Science and Management, Northern Arizona University, Flagstaff, AZ 86011, USA; †Biology Department, Fort Lewis College, Durango, CO 81301, USA; and ‡Environmental and Biological Sciences and the Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA Summary 1. Mycorrhizae form a critical link between above-ground plants and the soil system by influencing plant nutrition, nutrient cycling and soil structure. Understanding how mycorrhizae respond to disturbances may lead to important advances in interpreting above-ground plant recovery. 2. The inoculum potential for arbuscular mycorrhizae (AM) and ectomycorrhizal (EM) fungi was investigated in thinned-only, thinned and prescribed burned (both restoration treatments) and unthinned and unburned control stands in northern Arizona ponderosa pine forests. The relationships between mycorrhizal fungal propagule densities and plant community and soil properties were quantified. 3. The relative amount of infective propagules of AM fungi was significantly higher in samples collected from both restoration treatments than their paired controls (unthinned and unburned stands). In contrast, the same restoration treatments had no significant effect on the relative amount of infective propagules of EM fungi. 4. The relative amount of infective propagules of AM fungi was significantly positively correlated with graminoid cover and herbaceous understorey species richness and negatively correlated with overstorey tree canopy cover and litter cover. 5. Synthesis and applications. These results indicate that population densities of AM fungi can rapidly increase following restoration treatments in northern Arizona pon- derosa pine forests.
    [Show full text]
  • Running Head 'Biology of Mangroves'
    BIOLOGY OF MANGROVES AND MANGROVE ECOSYSTEMS 1 Biology of Mangroves and Mangrove Ecosystems ADVANCES IN MARINE BIOLOGY VOL 40: 81-251 (2001) K. Kathiresan1 and B.L. Bingham2 1Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, India 2Huxley College of Environmental Studies, Western Washington University, Bellingham, WA 98225, USA e-mail [email protected] (correponding author) 1. Introduction.............................................................................................. 4 1.1. Preface........................................................................................ 4 1.2. Definition ................................................................................... 5 1.3. Global distribution ..................................................................... 5 2. History and Evolution ............................................................................. 10 2.1. Historical background ................................................................ 10 2.2. Evolution.................................................................................... 11 3. Biology of mangroves 3.1. Taxonomy and genetics.............................................................. 12 3.2. Anatomy..................................................................................... 15 3.3. Physiology ................................................................................. 18 3.4. Biochemistry ............................................................................. 20 3.5. Pollination
    [Show full text]
  • Dispersal Modes of Free-Living, Aquatic Nematodes
    Hydrobiologia (2020) 847:3519–3547 https://doi.org/10.1007/s10750-020-04373-0 (0123456789().,-volV)( 0123456789().,-volV) REVIEW PAPER The ability to get everywhere: dispersal modes of free-living, aquatic nematodes Christoph Ptatscheck . Walter Traunspurger Received: 30 January 2020 / Revised: 30 July 2020 / Accepted: 1 August 2020 / Published online: 11 August 2020 Ó The Author(s) 2020 Abstract Nematodes colonize almost all aquatic parthenogenetic reproduction, nematodes are effective habitats worldwide. Despite their small size, restricted pioneers with the ability to (re)colonize new or locomotion and lack of pelagic larvae, they can reach disturbed habitats or rebalance already existing even isolated habitats within a short time. In this communities. review, we examine the underlying dispersal modes, considering their active movement in substrates and Keywords Meiofauna paradox Á Rafting Á water, their drift by water and wind, rafting, zoochory Zoochory Á Drifting Á Wind dispersal Á Locomotion as well as human-mediated vectors. These modes are limited by morphology and habitat structure, ecolog- ical factors and especially by hydrodynamics. Active dispersal is effective over short distances, but with Introduction increasing water-flow velocity, passive dispersal modes, which enable long-range transfer, become Nematodes are the most abundant metazoans in the important. In fact, the transport of nematodes over biosphere and colonize nearly all aquatic and semi- thousands of kilometers via ship water tanks and by aquatic habitats worldwide. They can be found in hitchhiking on sea turtles has been documented. permanent lotic and lentic surface waters, such as Overland dispersal vectors include wind and birds lakes and streams, and in the seabed.
    [Show full text]
  • Propagule Dispersal Determines Mangrove Zonation at Intertidal and Estuarine Scales
    Article Propagule Dispersal Determines Mangrove Zonation at Intertidal and Estuarine Scales Wenqing Wang, Xiaofei Li and Mao Wang * Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; [email protected] (W.W.); [email protected] (X.L.) * Correspondence: [email protected]; Tel.: +86-136-6603-7893 Received: 1 February 2019; Accepted: 7 March 2019; Published: 10 March 2019 Abstract: Propagule dispersal has generally been recognized as a vital factor affecting the spatial structure of tropical forest plants. However, available research shows that this hypothesis does not apply to mangrove species the propagules of which are dispersed by water. Due to the lack of comprehensive and quantitative information as well as the high spatio-temporal heterogeneity of the mangrove environment, the exact factors affecting the spatial structure of mangrove forests are poorly understood. To assess this, we selected a mangrove estuary with high mangrove species richness that experiences great changes in water salinity. After investigating the zonation of mature mangrove individuals across tides and the estuary, we measured the size and initial specific gravity of the propagules and then selected the eight most common species from which to observe the changes in specific gravity, buoyancy, and root initiation during dispersal at different sites with different water salinity regimes. The relationships among distribution patterns, propagule establishment, and dispersal behavior were investigated. We found that mangrove propagule dispersal is not a passively buoyant process controlled by water currents. During dispersal, mangrove propagules can actively adjust their specific gravity and root initiation.
    [Show full text]
  • Asexual Propagation of Plants Introduction - Asexual Propagation of Plants
    ASEXUAL PROPAGATION OF PLANTS INTRODUCTION - ASEXUAL PROPAGATION OF PLANTS Asexual propagation has been widely used within the plant sciences as a method of maintaining genetic purity. Most of the uses have been within horticulture, although we do have examples in both forages and agronomic cropping systems. We have also found this to be an efficient method of maintaining some botanical varieties. When using asexual propagation, we are essentially producing clones. Clones are groups of plants that are identical to their parent (or donor) plant. We also use this process for plant types that can only be propagated asexually. Several classic examples of these are the Bartlett pear and the Red Delicious apple. The specific genetic composition has been asexually propagated for many years. Major methods of asexual propagation of stems and leaves are cuttings, layering, division, and grafting. We also find the production of specialized plant parts that allow for asexual propagation. One of the widely used plant parts are the production of modified stems. These can be found in the form of tubers, bulbs, rhizome , corms and stolons. Although less frequent, we do find the use of root tissue for plant propagation. LEARNING OUTCOMES 1. Understand the importance of economically important, asexually propagated species and the unique characteristics or each type of classification. 2. Be able to correctly use the terminology and identify the structures of the asexually propagated plant parts that are commonly found in horticultural species. 3. Learn the proper methods associated with asexually propagating economically important plant species. Advantages of vegetative reproduction Since higher levels of stored reserves are available throughout the year and the parent plant with its root system can absorb water from quite a wide area, two of the hazards of seed germination are reduced.
    [Show full text]
  • Factors Limiting the Intertidal Distribution of the Mangrove
    Oecologia (2003) 135:110-121 DOI 10.1007/s00442-002-1167-2 James A. Allen * Ken W. Krauss * Robert D. Hauff Factorslimiting the intertidaldistribution of the mangrovespecies Xylocarpusgranatum Received: 28 October 2002 / Accepted: 27 November 2002 / Published online: 1 February2003 ? Springer-Verlag2003 Abstract The tree species Xylocarpus granatum is com- important, especially relative to a potential contribution to monly described as occurring in the upper intertidal zone secondary stress mortality. Other factors may ultimately of mangrove forests, but mature trees are occasionally prove to be more critical, such as physiological effects of found at lower elevations. In the Utwe River basin, on the salinity on seed germination, effects of tides on seed Pacific island of Kosrae, we investigated the relative dispersal and rooting, or differential herbivory on importance of several biotic and abiotic factors that may seedlings. control the intertidal distribution of X. granatum. Factors we evaluated included differential seed predation across Keywords Kosrae Federated States of Micronesia the lower, mid, and upper intertidal zones and seedling Seed predation. Salinity tolerance Flood tolerance responses to salinity, tidal flooding, and shade. Seed predation was 22.4% over the first 34 days and varied little among zones or in gaps versus under the forest Introduction canopy. By day 161, there were still no differences in seed mortality, but a significant difference was found in Patterns of mangrove tree species zonation have been the seedling establishment, with much greater establishment subject of scientific interest for many decades (Watson in the upper intertidal plots. X. granatum seedlings in a 1928; Davis 1940; Egler 1950; Macnae 1968; Chapman greenhouse experiment exhibited greater growth in 1976).
    [Show full text]
  • Vegetative Propagules
    Glime, J. M. 2017. Adaptive Strategies: Vegetative Propagules. Chapt. 4-10. In: Glime, J. M. Bryophyte Ecology. Volume 1. 4-10-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 24 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 4-10 ADAPTIVE STRATEGIES: VEGETATIVE PROPAGULES TABLE OF CONTENTS Vegetative Reproduction ................................................................................................................................... 4-10-2 Adaptations ....................................................................................................................................................... 4-10-8 Fragmentation ................................................................................................................................................... 4-10-8 Leaves and Stems ..................................................................................................................................... 4-10-10 Regenerants .............................................................................................................................................. 4-10-14 Protonemata ............................................................................................................................................. 4-10-14 Perianths ..................................................................................................................................................
    [Show full text]
  • Marine Ecology Progress Series 524:95
    Vol. 524: 95–106, 2015 MARINE ECOLOGY PROGRESS SERIES Published March 30 doi: 10.3354/meps11206 Mar Ecol Prog Ser Impact of landscape structure on propagule dispersal in mangrove forests T. Van der Stocken1,2,*, D. J. R. De Ryck1,2, B. Vanschoenwinkel1, E. Deboelpaep1, T. J. Bouma3, F. Dahdouh-Guebas1,2, N. Koedam1 1Laboratory of Plant Biology and Nature Management, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium 2Laboratory of Systems Ecology and Resource Management, Université Libre de Bruxelles (ULB), Av. F.D. Roosevelt 50, CPI 264/1, 1050 Brussels, Belgium 3Department of Spatial Ecology, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands ABSTRACT: Although many riparian and semi-aquatic plant species disperse via water currents, little is known about how this process interacts with the landscape matrix. In mangroves, the dense aerial root network could act as a strong dispersal barrier for the morphologically diverse propag- ules found in these trees. In this study, we combined field and laboratory experiments to test the effect of root density, propagule morphology and hydrodynamic variables on retention rates and trajectories of the propagules of 4 common species. Overall, flume experiments showed that larger propagules were more frequently retained than smaller ones. For the larger propa gules, retention rates increased with increasing obstacle density in the landscape matrix. In elongated propagules, intraspecific variation was linked to floating orientation. Experimental wave action and increased water flow velocity reduced retention. Dispersal in the field was constrained by major tidal cur- rents and experiments confirmed less retention of smaller propagules, which moved farther than larger ones.
    [Show full text]
  • And Long-Term Effects of Disturbance and Propagule Pressure on a Biological Invasion
    Journal of Ecology 2008, 96, 68–77 doi: 10.1111/j.1365-2745.2007.01319.x ShorBlackwell Publishing Ltd t- and long-term effects of disturbance and propagule pressure on a biological invasion Kevin H. Britton-Simmons* and Karen C. Abbott† Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA Summary 1. Invading species typically need to overcome multiple limiting factors simultaneously in order to become established, and understanding how such factors interact to regulate the invasion process remains a major challenge in ecology. 2. We used the invasion of marine algal communities by the seaweed Sargassum muticum as a study system to experimentally investigate the independent and interactive effects of disturbance and propagule pressure in the short term. Based on our experimental results, we parameterized an integrodifference equation model, which we used to examine how disturbances created by different benthic herbivores influence the longer term invasion success of S. muticum. 3. Our experimental results demonstrate that in this system neither disturbance nor propagule input alone was sufficient to maximize invasion success. Rather, the interaction between these processes was critical for understanding how the S. muticum invasion is regulated in the short term. 4. The model showed that both the size and spatial arrangement of herbivore disturbances had a major impact on how disturbance facilitated the invasion, by jointly determining how much space-limitation was alleviated and how readily disturbed areas could be reached by dispersing propagules. 5. Synthesis. Both the short-term experiment and the long-term model show that S.
    [Show full text]