Essential Role of Microglial Transforming Growth Factor-Β1

Total Page:16

File Type:pdf, Size:1020Kb

Essential Role of Microglial Transforming Growth Factor-Β1 Zhang et al. Translational Psychiatry (2020)10:32 https://doi.org/10.1038/s41398-020-0733-x Translational Psychiatry ARTICLE Open Access Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1 Kai Zhang1,5, Chun Yang1,6, Lijia Chang1, Akemi Sakamoto2,ToruSuzuki3, Yuko Fujita1, Youge Qu1, Siming Wang1, Yaoyu Pu1,YunfeiTan 1, Xingming Wang1, Tamaki Ishima1, Yukihiko Shirayama1,4, Masahiko Hatano2, Kenji F. Tanaka 3 and Kenji Hashimoto 1 Abstract In rodent models of depression, (R)-ketamine has greater potency and longer-lasting antidepressant effects than (S)- ketamine; however, the precise molecular mechanisms underlying the antidepressant actions of (R)-ketamine remain unknown. Using RNA-sequencing analysis, we identified novel molecular targets that contribute to the different antidepressant effects of the two enantiomers. Either (R)-ketamine (10 mg/kg) or (S)-ketamine (10 mg/kg) was administered to susceptible mice after chronic social defeat stress (CSDS). RNA-sequencing analysis of prefrontal cortex (PFC) and subsequent GSEA (gene set enrichment analysis) revealed that transforming growth factor (TGF)-β signaling might contribute to the different antidepressant effects of the two enantiomers. (R)-ketamine, but not (S)-ketamine, ameliorated the reduced expressions of Tgfb1 and its receptors (Tgfbr1 and Tgfbr2) in the PFC and hippocampus of CSDS susceptible mice. Either pharmacological inhibitors (i.e., RepSox and SB431542) or neutralizing antibody of TGF- β1 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Moreover, depletion of microglia by 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX3397 blocked the antidepressant effects of (R)-ketamine in CSDS susceptible mice. Similar to (R)-ketamine, the recombinant TGF-β1 elicited rapid and long-lasting antidepressant effects in animal models of depression. Our data implicate a novel microglial TGF-β1-dependent mechanism underlying the antidepressant effects of (R)-ketamine in rodents with depression-like phenotype. Moreover, TGF-β1 and its receptor agonists would likely constitute a novel rapid-acting and sustained antidepressant in humans. Introduction depressive disorder (MDD). Subsequently, several groups In 1990, Trullas and Skolnick1 demonstrated that N- replicated the robust antidepressant effects of ketamine in methyl-D-aspartate receptor (NMDAR) antagonists such treatment-resistant patients with either MDD or bipolar – as (+)-MK-801 showed antidepressant-like effects in disorder3 10. Interestingly, ketamine rapidly reduced sui- rodents. In 2000, Berman et al.2 demonstrated the rapid- cidal thoughts in depressed patients with suicidal ideation acting and sustained antidepressant effects of the within 1 day and for up to 1 week11,12. In addition, it is NMDAR antagonist ketamine in patients with major suggested that suicidal thoughts may be related to symptoms of anhedonia independent of other depressive symptoms13. Meta-analyses revealed that ketamine has Correspondence: Kenji Hashimoto ([email protected]) rapid-acting and sustained antidepressant effects and anti- 1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental suicidal ideation effects in treatment-resistant patients – Health, Chiba 260-8670, Japan with depression14 16. Importantly, meta-analyses showed 2Department of Biomedical Science, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan that the effect sizes of ketamine are larger than those of Full list of author information is available at the end of the article. © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. -174- Zhang et al. Translational Psychiatry (2020)10:32 Page 2 of 12 other NMDAR antagonists14,15, suggesting that NMDAR whether the novel molecule (i.e., TGF-β) has rapid-acting blockade is not a sole mechanism of antidepressant action and sustained antidepressant effects in rodent models of for ketamine. The collective rapid-acting and sustained depression. antidepressant actions of ketamine in depressed patients – are serendipitous in the field of psychiatry;17 19 however, Materials and methods the precise molecular and cellular mechanisms underlying Animals antidepressant effects of ketamine remain to be eluci- Male adult C57BL/6 mice, aged 8 weeks (body weight – dated20 25. Off-label use of ketamine is popular in the 20–25 g, Japan SLC, Inc., Hamamatsu, Japan), male CD1 United States (US), although the adverse side-effects (i.e., mice, aged 14 weeks (body weight 40–45 g, Japan SLC, psychotomimetic effects, dissociation, and abuse liability) Inc., Hamamatsu, Japan) were used in the experiments. of ketamine remain to be resolved26,27. Male Sprague-Dawley rats, aged 7 weeks (body weight Ketamine (Ki = 0.53 μM for NMDAR), also known as (R, 200–230 g, Charles-River Japan, Co., Tokyo, Japan) were S)-ketamine, is a racemic mixture that contains equal used for learned helplessness (LH) model. No blinding for amounts of (R)-ketamine (or arketamine) (Ki = 1.4 μMfor animal experiments was done. Animals were housed NMDAR) and (S)-ketamine (or esketamine) (Ki = 0.30 μM under controlled temperature and 12 h light/dark cycles for NMDAR)24. Preclinical data have shown that (R)-keta- (lights on between 07:00–19:00), with ad libitum food and mine displays greater potency and longer -lasting anti- water. The study was approved by the Chiba University depressant effects than (S)-ketamine in rodent models of Institutional Animal Care and Use Committee. – depression28 34, suggesting that NMDARs do not play a major role in the robust antidepressant effects of keta- Compounds and treatment mine24. Importantly, in both rodents and monkey, the side- (R)-ketamine hydrochloride and (S)-ketamine hydro- effects of (R)-ketamine were lower than were those of (R,S)- chloride were prepared by recrystallization of (R,S)-keta- – ® ketamine and (S)-ketamine29,35 38. In addition, in humans, mine (Ketalar , ketamine hydrochloride, Daiichi Sankyo the incidence of psychotomimetic side-effects of (S)-keta- Pharmaceutical Ltd., Tokyo, Japan) and D-(-)-tartaric acid mine (0.45 mg/kg) was higher than that of (R)-ketamine (or L− (+)-tartaric acid), respectively28. The purity of (1.8 mg/kg), although the dose of (S)-ketamine was lower these enantiomers was determined by a high-performance ® than was that of (R)-ketamine39.Though(S)-ketamine liquid chromatography (CHIRALPAK IA, Column size: produced psychotic reactions, including depersonalization 250 × 4.6 mm, Mobile phase: n-hexane/dichloromethane/ and hallucinations, the same dosage of (R)-ketamine did not diethylamine (75/25/0.1), Daicel Corporation, Tokyo, induce psychotic symptoms in the healthy subjects, and Japan)28. The dose (10 mg/kg as hydrochloride salt) of most of them experienced a state of relaxation40.These (R)-ketamine and (S)-ketamine was selected as reported – results indicate that (S)-ketamine contributes to the acute previously28,29,32 35. RepSox (10 mg/kg, i.p., a TGF-β1 side-effects of ketamine, whereas (R)-ketamine may not be receptor inhibitor; Selleck Chemicals, Co., Ltd, Houston, associated with these side-effects22,24. On 5 March 2019, the TX, USA), SB431542 (10 μM, 2 μl, i.c.v., a TGF-β1 US Food & Drug Administration approved (S)-ketamine receptor inhibitor; Tocris Bioscience, Ltd., Bristol, UK), nasal spray for treatment-resistant depressed patients. Due neutralized TGF-β antibody (Catalog #: MAB1835–500; to the risk of serious adverse effects, (S)-ketamine nasal R&D System, Inc. Minneapolis, MN), and mouse IgG1 spray can be obtained only through a restricted distribution control antibody (Catalog #: MAB002; R&D System, Inc. system under the Risk Evaluation and Mitigation Strategy. Minneapolis, MN) were used. Recombinant mouse TGF- A clinical trial of (R)-ketamine in humans is underway24. β1 (Catalog #: 7666-MB-005; R&D System, Inc. Minnea- Meanwhile, little is known about the precise molecular polis, MN) and recombinant mouse TGF-β2 (Catalog #: mechanisms underlying the different antidepressant effects 302-B2; R&D System, Inc. Minneapolis, MN) were used as of the two enantiomers24,25,41,42. previously reported45,46. PLX3397 [Pexidartinib: a colony- The aim of this study was to identify the novel mole- stimulating factor 1 receptor (CSF1R) inhibitor, Med- cular mechanisms underlying the antidepressant effects of ChemExpress Co., Ltd., Monmouth Junction, NJ] was (R)-ketamine in animal models of depression. First, we used to decrease microglia in the brain. LPS (Catalog #: L- conducted RNA-sequencing analysis of the prefrontal 4130, serotype 0111:B4, Sigma-Aldrich, St
Recommended publications
  • Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner
    microorganisms Article Modulation of the Gut Microbiota Alters the Tumour-Suppressive Efficacy of Tim-3 Pathway Blockade in a Bacterial Species- and Host Factor-Dependent Manner Bokyoung Lee 1,2, Jieun Lee 1,2, Min-Yeong Woo 1,2, Mi Jin Lee 1, Ho-Joon Shin 1,2, Kyongmin Kim 1,2 and Sun Park 1,2,* 1 Department of Microbiology, Ajou University School of Medicine, Youngtongku Wonchondong San 5, Suwon 442-749, Korea; [email protected] (B.L.); [email protected] (J.L.); [email protected] (M.-Y.W.); [email protected] (M.J.L.); [email protected] (H.-J.S.); [email protected] (K.K.) 2 Department of Biomedical Sciences, The Graduate School, Ajou University, Youngtongku Wonchondong San 5, Suwon 442-749, Korea * Correspondence: [email protected]; Tel.: +82-31-219-5070 Received: 22 August 2020; Accepted: 9 September 2020; Published: 11 September 2020 Abstract: T cell immunoglobulin and mucin domain-containing protein-3 (Tim-3) is an immune checkpoint molecule and a target for anti-cancer therapy. In this study, we examined whether gut microbiota manipulation altered the anti-tumour efficacy of Tim-3 blockade. The gut microbiota of mice was manipulated through the administration of antibiotics and oral gavage of bacteria. Alterations in the gut microbiome were analysed by 16S rRNA gene sequencing. Gut dysbiosis triggered by antibiotics attenuated the anti-tumour efficacy of Tim-3 blockade in both C57BL/6 and BALB/c mice. Anti-tumour efficacy was restored following oral gavage of faecal bacteria even as antibiotic administration continued. In the case of oral gavage of Enterococcus hirae or Lactobacillus johnsonii, transferred bacterial species and host mouse strain were critical determinants of the anti-tumour efficacy of Tim-3 blockade.
    [Show full text]
  • Table of Contents I
    Comparison of the gut microbiome of a generalist insect, Spodoptera littoralis and a specialist, leaf and root feeder one, Melolontha hippocastani Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty Of Biology and Pharmacy of the Friedrich Schiller University By Master of Science of Horticulture Erika Arias Cordero Born on 01.11.1977 in San José, Costa Rica Gutachter: 1. ___________________________ 2. ___________________________ 3. ___________________________ Tag der öffentlichen verteidigung:……………………………………. Table of Contents i Table of Contents 1. General Introduction 1 1.1 Insect-bacteria associations ......................................................................................... 1 1.1.1 Intracellular endosymbiotic associations ........................................................... 2 1.1.2 Exoskeleton-ectosymbiotic associations ........................................................... 4 1.1.3 Gut lining ectosymbiotic symbiosis ................................................................... 4 1.2 Description of the insect species ................................................................................ 12 1.2.1 Biology of Spodoptera littoralis ............................................................................ 12 1.2.2 Biology of Melolontha hippocastani, the forest cockchafer ................................... 14 1.3 Goals of this study ....................................................................................................
    [Show full text]
  • Impact Du Régime Alimentaire Sur La Dynamique Structurale Et Fonctionnelle Du Microbiote Intestinal Humain Julien Tap
    Impact du régime alimentaire sur la dynamique structurale et fonctionnelle du microbiote intestinal humain Julien Tap To cite this version: Julien Tap. Impact du régime alimentaire sur la dynamique structurale et fonctionnelle du microbiote intestinal humain. Microbiologie et Parasitologie. Université Pierre et Marie Curie - Paris 6, 2009. Français. tel-02824828 HAL Id: tel-02824828 https://hal.inrae.fr/tel-02824828 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité Physiologie et physiopathologie Présentée par M. Julien Tap Pour obtenir le grade de DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Impact du régime alimentaire sur la dynamique structurale et fonctionnelle du microbiote intestinal humain soutenue le 16 décembre 2009 devant le jury composé de : M. Philippe LEBARON, Président du jury Mme Karine CLEMENT, Examinateur Mme Annick BERNALIER, Rapporteur Mme Gabrielle POTOCKI-VERONESE, Examinateur M. Jean FIORAMONTI, Rapporteur M. Eric PELLETIER, Examinateur Mme Marion LECLERC, Examinateur Université Pierre & Marie Curie - Paris 6 Tél. Secrétariat : 01 42 34 68 35 Bureau d’accueil, inscription des doctorants et base de Fax : 01 42 34 68 40 données Tél.
    [Show full text]
  • Taxonomic and Functional Characterization of Human Gut Microbes Involved in Dietary Plant Lignan Metabolism
    Taxonomic and Functional Characterization of Human Gut Microbes Involved in Dietary Plant Lignan Metabolism Isaac M. Elkon A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2015 Committee: Johanna W. Lampe Meredith A.J. Hullar Program Authorized to Offer Degree: School of Public Health © Copyright 2015 Isaac M. Elkon University of Washington Abstract Taxonomic and Functional Characterization of Human Gut Microbes Involved in Dietary Plant Lignan Metabolism Isaac M. Elkon Chair of the Supervisory Committee: Research Professor Johanna W. Lampe Department of Epidemiology Background: Dietary plant lignans, such as secoisolariciresinol diglucoside (SDG), are metabolized to the enterolignans, enterodiol (END) and enterolactone (ENL), by gut microbes. Evidence suggests that enterolignans may reduce risk of cardiovascular disease and several forms of cancer. Our aim was to characterize the microbial community involved in enterolignan production by using an in vitro batch culture system to enrich for lignan-metabolizing organisms. Methods: Stool samples from eight participants were incubated separately for ~1 week with a mineral salts media containing formate, acetate, glucose, and 6.55 µM SDG. Daily secoisolariciresinol (SECO), END, and ENL concentrations were measured using gas chromatography–mass spectrometry (GCMS). Microbial community in initial stool (Day 1) and in vitro-incubated fecal suspensions (final-day) was assessed via Illumina paired-end 16S rRNA gene amplicon and whole-metagenome shotgun sequencing. 16S rRNA gene sequences were taxonomically annotated using an in-house QIIME pipeline. Metagenomic shotgun sequences were taxonomically annotated using MetaPhlAn and functionally annotated using DIAMOND and HUMAnN. Annotation-based alpha diversity, organism abundance, and functional gene abundance were used to assess differences between Day 1 and final-day microbial community composition.
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc) Provides Host-Specific Insight Into Cultured Diversity and Functional Potential of the Gut Microbiota
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte; Foesel, Bärbel U.; Meier-Kolthoff, Jan P.; Kumar, Neeraj; Bresciani, Anne Gøther; Martínez, Inés; Just, Sarah; Ziegler, Caroline Total number of authors: 28 Published in: Nature Microbiology Link to article, DOI: 10.1038/nmicrobiol.2016.131 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., Bresciani, A. G., Martínez, I., Just, S., Ziegler, C., Brugiroux, S., Garzetti, D., Wenning, M., Bui, T. P. N., Wang, J., Hugenholtz, F., Plugge, C. M., Peterson, D. A., Hornef, M. W., ... Clavel, T. (2016). The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1(10), [16131]. https://doi.org/10.1038/nmicrobiol.2016.131 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Thi Na Utaliblat in Un Minune Talk
    THI NA UTALIBLATUS010064900B2 IN UN MINUNE TALK (12 ) United States Patent ( 10 ) Patent No. : US 10 , 064 ,900 B2 Von Maltzahn et al . ( 45 ) Date of Patent: * Sep . 4 , 2018 ( 54 ) METHODS OF POPULATING A (51 ) Int. CI. GASTROINTESTINAL TRACT A61K 35 / 741 (2015 . 01 ) A61K 9 / 00 ( 2006 .01 ) (71 ) Applicant: Seres Therapeutics, Inc. , Cambridge , (Continued ) MA (US ) (52 ) U . S . CI. CPC .. A61K 35 / 741 ( 2013 .01 ) ; A61K 9 /0053 ( 72 ) Inventors : Geoffrey Von Maltzahn , Boston , MA ( 2013. 01 ); A61K 9 /48 ( 2013 . 01 ) ; (US ) ; Matthew R . Henn , Somerville , (Continued ) MA (US ) ; David N . Cook , Brooklyn , (58 ) Field of Classification Search NY (US ) ; David Arthur Berry , None Brookline, MA (US ) ; Noubar B . See application file for complete search history . Afeyan , Lexington , MA (US ) ; Brian Goodman , Boston , MA (US ) ; ( 56 ) References Cited Mary - Jane Lombardo McKenzie , Arlington , MA (US ); Marin Vulic , U . S . PATENT DOCUMENTS Boston , MA (US ) 3 ,009 ,864 A 11/ 1961 Gordon - Aldterton et al. 3 ,228 ,838 A 1 / 1966 Rinfret (73 ) Assignee : Seres Therapeutics , Inc ., Cambridge , ( Continued ) MA (US ) FOREIGN PATENT DOCUMENTS ( * ) Notice : Subject to any disclaimer , the term of this patent is extended or adjusted under 35 CN 102131928 A 7 /2011 EA 006847 B1 4 / 2006 U .S . C . 154 (b ) by 0 days. (Continued ) This patent is subject to a terminal dis claimer. OTHER PUBLICATIONS ( 21) Appl . No. : 14 / 765 , 810 Aas, J ., Gessert, C . E ., and Bakken , J. S . ( 2003) . Recurrent Clostridium difficile colitis : case series involving 18 patients treated ( 22 ) PCT Filed : Feb . 4 , 2014 with donor stool administered via a nasogastric tube .
    [Show full text]
  • Automated Analysis of Genomic Sequences Facilitates High- Throughput and Comprehensive Description of Bacteria ✉ ✉ Thomas C
    www.nature.com/ismecomms ARTICLE OPEN Automated analysis of genomic sequences facilitates high- throughput and comprehensive description of bacteria ✉ ✉ Thomas C. A. Hitch 1 , Thomas Riedel2,3, Aharon Oren4, Jörg Overmann2,3,5, Trevor D. Lawley6 and Thomas Clavel 1 © The Author(s) 2021 The study of microbial communities is hampered by the large fraction of still unknown bacteria. However, many of these species have been isolated, yet lack a validly published name or description. The validation of names for novel bacteria requires that the uniqueness of those taxa is demonstrated and their properties are described. The accepted format for this is the protologue, which can be time-consuming to create. Hence, many research fields in microbiology and biotechnology will greatly benefit from new approaches that reduce the workload and harmonise the generation of protologues. We have developed Protologger, a bioinformatic tool that automatically generates all the necessary readouts for writing a detailed protologue. By producing multiple taxonomic outputs, functional features and ecological analysis using the 16S rRNA gene and genome sequences from a single species, the time needed to gather the information for describing novel taxa is substantially reduced. The usefulness of Protologger was demonstrated by using three published isolate collections to describe 34 novel taxa, encompassing 17 novel species and 17 novel genera, including the automatic generation of ecologically and functionally relevant names. We also highlight the need to utilise
    [Show full text]
  • Dakotella Fusiforme Gen. Nov., Sp. Nov., Isolated from Healthy Human Feces
    Description of a new member of the family Erysipelotrichaceae: Dakotella fusiforme gen. nov., sp. nov., isolated from healthy human feces Sudeep Ghimire, Supapit Wongkuna and Joy Scaria Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States of America ABSTRACT A Gram-positive, non-motile, rod-shaped facultative anaerobic bacterial strain SG502T was isolated from healthy human fecal samples in Brookings, SD, USA. The comparison of the 16S rRNA gene placed the strain within the family Erysipelotrichaceae. Within this family, Clostridium innocuum ATCC 14501T, Longicatena caecimuris strain PG- 426-CC-2, Eubacterium dolichum DSM 3991T and E. tortuosum DSM 3987T (=ATCC 25548T) were its closest taxa with 95.28%, 94.17%, 93.25%, and 92.75% 16S rRNA sequence identities respectively. The strain SG502T placed itself close to C. innocuum in the 16S rRNA phylogeny. The members of genus Clostridium within family Erysipelotrichaceae was proposed to be reassigned to genus Erysipelatoclostridium to resolve the misclassification of genus Clostridium. Therefore, C. innocuum was also classified into this genus temporarily with the need to reclassify it in the future because of its difference in genomic properties. Similarly, genome sequencing of the strain and comparison with its 16S phylogenetic members and proposed members of the genus Erysipelatoclostridium, SG502T warranted a separate genus even though its 16S rRNA similarity was >95% when comapred to C. innocuum. The strain was 71.8% similar at ANI, 19.8% [17.4–22.2%] at dDDH and 69.65% similar at AAI to its closest neighbor C. innocuum. The genome size was nearly 2,683,792 bp with 32.88 mol% G+C content, Submitted 19 November 2019 which is about half the size of C.
    [Show full text]
  • In Vivo Selection to Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications Janina A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in Food Science and Food Science and Technology Department Technology 1-2015 In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications Janina A. Krumbeck University of Nebraska-Lincoln, [email protected] Maria X. Maldonado-Gomez University of Nebraska-Lincoln, [email protected] Ines Martınez University of Nebraska-Lincoln Steven Frese University of Nebraska-Lincoln, [email protected] Thomas E. Burkey University of Nebraska-Lincoln, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/foodsciefacpub Part of the Food Science Commons Krumbeck, Janina A.; Maldonado-Gomez, Maria X.; Martınez, Ines; Frese, Steven; Burkey, Thomas E.; Rasineni, Karuna; Ramer-Tait, Amanda E.; Harris, Edward N.; Hutkins, Robert W.; and Walter, Jens, "In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications" (2015). Faculty Publications in Food Science and Technology. 207. http://digitalcommons.unl.edu/foodsciefacpub/207 This Article is brought to you for free and open access by the Food Science and Technology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in Food Science and Technology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Janina A. Krumbeck, Maria X. Maldonado-Gomez, Ines Martınez, Steven Frese, Thomas E. Burkey, Karuna Rasineni, Amanda E. Ramer-Tait, Edward N. Harris, Robert W. Hutkins, and Jens Walter This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/foodsciefacpub/207 In Vivo Selection To Identify Bacterial Strains with Enhanced Ecological Performance in Synbiotic Applications Janina A.
    [Show full text]
  • Supporting Information
    Supporting Information Claesson et al. 10.1073/pnas.1000097107 SI Materials and Methods with their classifications were imported into a MySQL database Subject Recruitment. Subjects were clinically examined at either of for efficient storage and advanced querying. Pyrosequencing two local hospitals that serve a population base of ∼481,000 in the reads were aligned using Infernal (6) and associated covariance Cork city and county region. The subjects were defined as (i) models obtained from the Ribosomal Database Project Group. community-dwelling (control healthy), (ii) attending an outpatient These were based on secondary structural information from full- day hospital (out-patient), (iii) in short-term rehabilitation hospital length 16S rRNA genes sequences of 508 fully sequenced genomes care (Rehabilitation; under 6-wk stay), or (iv) in long-term insti- and were further trimmed to encompass only the V4 region to in- tutionalized care (Long stay; more than 6 wk). The mean age of crease alignment speeds. the subjects was 78 (± 7) y, with a range of 65–96 y. A full-analysis proforma was also applied to all subjects returning after 3 mo to Statistical Analysis. The average proportion of total reads assigned allow for the identification of changes in lifestyle or health status or to the different phyla and genera was compared according to major dietary changes during this time. antibiotic use for the 161 baseline samples using the nonparametric Mann–Whitney test. Although the data are more suitable to the Sequence-Based Microbiota Analysis and Phylogeny. The 16S rRNA nonparametric methods, independent-sample t tests were also V4 amplicons were sequenced on a 454 Genome Sequencer FLX conducted in tandem with the Mann–Whitney tests and provided platform (Roche Diagnostics) according to 454 protocols.
    [Show full text]
  • Macronutrient Metabolism by the Human Gut Microbiome: Major Fermentation By- Products and Their Impact on Host Health Kaitlyn Oliphant* and Emma Allen-Vercoe
    Oliphant and Allen-Vercoe Microbiome (2019) 7:91 https://doi.org/10.1186/s40168-019-0704-8 REVIEW Open Access Macronutrient metabolism by the human gut microbiome: major fermentation by- products and their impact on host health Kaitlyn Oliphant* and Emma Allen-Vercoe Abstract The human gut microbiome is a critical component of digestion, breaking down complex carbohydrates, proteins, and to a lesser extent fats that reach the lower gastrointestinal tract. This process results in a multitude of microbial metabolites that can act both locally and systemically (after being absorbed into the bloodstream). The impact of these biochemicals on human health is complex, as both potentially beneficial and potentially toxic metabolites can be yielded from such microbial pathways, and in some cases, these effects are dependent upon the metabolite concentration or organ locality. The aim of this review is to summarize our current knowledge of how macronutrient metabolism by the gut microbiome influences human health. Metabolites to be discussed include short-chain fatty acids and alcohols (mainly yielded from monosaccharides); ammonia, branched-chain fatty acids, amines, sulfur compounds, phenols, and indoles (derived from amino acids); glycerol and choline derivatives (obtained from the breakdown of lipids); and tertiary cycling of carbon dioxide and hydrogen. Key microbial taxa and related disease states will be referred to in each case, and knowledge gaps that could contribute to our understanding of overall human wellness will be identified. Keywords: Human gut microbiome, Microbial metabolism, Macronutrients, Human health Introduction has been shown to regulate nutrient absorption and metab- The human gut microbiota is a complex ecosystem of mi- olism conducted by the host [8].
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc)
    ARTICLES PUBLISHED: 8 AUGUST 2016 | ARTICLE NUMBER: 16131 | DOI: 10.1038/NMICROBIOL.2016.131 OPEN The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Ilias Lagkouvardos1, Rüdiger Pukall2, Birte Abt2,3,BärbelU.Foesel2,3, Jan P. Meier-Kolthoff2, Neeraj Kumar1, Anne Bresciani4, Inés Martínez5, Sarah Just1, Caroline Ziegler1, Sandrine Brugiroux6, Debora Garzetti6, Mareike Wenning7,ThiP.N.Bui8,JunWang9, Floor Hugenholtz8, Caroline M. Plugge8,DanielA.Peterson10,MathiasW.Hornef11,JohnF.Baines9,12,HaukeSmidt8, Jens Walter5, Karsten Kristiansen13,HenrikB.Nielsen4,DirkHaller1,14,JörgOvermann2,3, Bärbel Stecher3,6 and Thomas Clavel1* Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50–75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota–host interactions in health and disease, as it will facilitate targeted colonization and molecular studies.
    [Show full text]