Collisionless Evolution of Galactic Disc-Halo Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Structure of the Outer Galactic Disc with Gaia DR2 Ž
A&A 637, A96 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937289 & c ESO 2020 Astrophysics Structure of the outer Galactic disc with Gaia DR2 Ž. Chrobáková1,2, R. Nagy3, and M. López-Corredoira1,2 1 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain 3 Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia Received 9 December 2019 / Accepted 31 March 2020 ABSTRACT Context. The structure of outer disc of our Galaxy is still not well described, and many features need to be better understood. The second Gaia data release (DR2) provides data in unprecedented quality that can be analysed to shed some light on the outermost parts of the Milky Way. Aims. We calculate the stellar density using star counts obtained from Gaia DR2 up to a Galactocentric distance R = 20 kpc with a deconvolution technique for the parallax errors. Then we analyse the density in order to study the structure of the outer Galactic disc, mainly the warp. Methods. In order to carry out the deconvolution, we used the Lucy inversion technique for recovering the corrected star counts. We also used the Gaia luminosity function of stars with MG < 10 to extract the stellar density from the star counts. Results. The stellar density maps can be fitted by an exponential disc in the radial direction hr = 2:07 ± 0:07 kpc, with a weak dependence on the azimuth, extended up to 20 kpc without any cut-off. -
Volume of Solids Worksheet Key
Volume Of Solids Worksheet Key chloridizingManky Mika her sometimes quadrireme embarrass smothers any while sequela Ezechiel incubated asphyxiated how. Stockier some friendlies Alonzo spools shillyshally. permanently. Thirtieth and trilingual Esme Find the area of the this distance learning and use appropriate scale factor from the of volume of water is not impossible to calculate the diameter Nothing like volume and pennsylvania department of key geometry information to solid figures show a solid worksheet, a square is ___________ and its endpoints on each pyramid. Students will use of a cube is a segment that children further their volume of solids worksheet key illuminations resources is called regular because they might be sure that all in your idea of. Kindergarten math worksheets like your choices could easily calculate the worksheet contains volume of key download or corner of water in the figure here. One of key which comes as vertical height for volume of solids worksheet key guide database some dimensions. Even calculus formulas of volume solids key types pertain to two decimal places if the. Volume of key concepts the worksheet by application to the following figures worksheets, the top basic safety procedures to it is found by calculation. Cross sections you must also called the nearest tenth of solids with every single content and the surface area of spheres the container without electricity is defined as they get our calculation. How to include the prism have the volume multiple choice digital task cards, which glass can compute the surface area is called the. Bring in solids, volume are parallelograms how do numbers and worksheets? How much time do we have two ways of revolution and gerard kwaitkowski, surface area of a geometric form a half spheres, and a building codes of. -
Arxiv:1802.01493V7 [Astro-Ph.GA] 10 Feb 2021 Ceeainbtti Oe Eoe Rbeai Tselrsae.I Scales
Variable Modified Newtonian Mechanics II: Baryonic Tully Fisher Relation C. C. Wong Department of Electrical and Electronic Engineering, University of Hong Kong. H.K. (Dated: February 11, 2021) Recently we find a single-metric solution for a point mass residing in an expanding universe [1], which apart from the Newtonian acceleration, gives rise to an additional MOND-like acceleration in which the MOND acceleration a0 is replaced by the cosmological acceleration. We study a Milky Way size protogalactic cloud in this acceleration, in which the growth of angular momentum can lead to an end of the overdensity growth. Within realistic redshifts, the overdensity stops growing at a value where the MOND-like acceleration dominates over Newton and the outer mass shell rotational velocity obeys the Baryonic Tully Fisher Relation (BTFR) with a smaller MOND acceleration. As the outer mass shell shrinks to a few scale length distances, the rotational velocity BTFR persists due to the conservation of angular momentum and the MOND acceleration grows to the phenomenological MOND acceleration value a0 at late time. PACS numbers: ?? INTRODUCTION A common response to the non-Newtonian rotational curve of a galaxy is that its ”Newtonian” dynamics requires cold dark matter (DM) particles. However, the small observed scatter of empirical Baryonic Tully-Fisher Relation (BTFR) of gas rich galaxies, see McGaugh [2]-Lelli [3], Milgrom [4] and Sanders [5], continues to motivate the hunt for a non-Newtonian connection between the rotational speeds and the baryon mass. On the modified DM theory front, Khoury [6] proposes a DM Bose-Einstein Condensate (BEC) phase where DM can interact more strongly with baryons. -
An Extended Star Formation History in an Ultra-Compact Dwarf
MNRAS 451, 3615–3626 (2015) doi:10.1093/mnras/stv1221 An extended star formation history in an ultra-compact dwarf Mark A. Norris,1‹ Carlos G. Escudero,2,3,4 Favio R. Faifer,2,3,4 Sheila J. Kannappan,5 Juan Carlos Forte4,6 and Remco C. E. van den Bosch1 1Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 2Facultad de Cs. Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina 3Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET – UNLP), Paseo del Bosque S/N, 1900 La Plata, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, C1033AAJ Ciudad Autonoma´ de Buenos Aires, Argentina 5Department of Physics and Astronomy UNC-Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255, USA 6Planetario Galileo Galilei, Secretar´ıa de Cultura, Ciudad Autonoma´ de Buenos Aires, Argentina Accepted 2015 May 29. Received 2015 May 28; in original form 2015 April 2 ABSTRACT Downloaded from There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of http://mnras.oxfordjournals.org/ stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec). -
On the Velocity at Wind Turbine and Propeller Actuator Discs Gijs A.M
https://doi.org/10.5194/wes-2020-51 Preprint. Discussion started: 28 February 2020 c Author(s) 2020. CC BY 4.0 License. On the velocity at wind turbine and propeller actuator discs Gijs A.M. van Kuik Duwind, Delft University of Technology, Kluyverweg 1, 2629HS Delft, NL Correspondence: Gijs van Kuik ([email protected]) Abstract. The first version of the actuator disc momentum theory is more than 100 years old. The extension towards very low rotational speeds with high torque for discs with a constant circulation, became available only recently. This theory gives the performance data like the power coefficient and average velocity at the disc. Potential flow calculations have added flow properties like the distribution of this velocity. The present paper addresses the comparison of actuator discs representing 5 propellers and wind turbines, with emphasis on the velocity at the disc. At a low rotational speed, propeller discs have an expanding wake while still energy is put into the wake. The high angular momentum of the wake, due to the high torque, creates a pressure deficit which is supplemented by the pressure added by the disc thrust. This results in a positive energy balance while the wake axial velocity has lowered. In the propeller and wind turbine flow regime the velocity at the disc is 0 for a certain minimum but non-zero rotational speed . 10 At the disc, the distribution of the axial velocity component is non-uniform in all flow states. However, the distribution of the velocity in the plane containing the axis, the meridian plane, is practically uniform (deviation < 0.2 %) for wind turbine disc flows with tip speed ratio λ > 5 , almost uniform (deviation 2 %) for wind turbine disc flows with λ = 1 and propeller ≈ flows with advance ratio J = π, and non-uniform (deviation 5 %) for the propeller disc flow with wake expansion at J = 2π. -
Dusty Star-Forming Galaxies and Supermassive Black Holes at High Redshifts: in Situ Coevolution
SISSA - International School for Advanced Studies Dusty Star-Forming Galaxies and Supermassive Black Holes at High Redshifts: In Situ Coevolution Thesis Submitted for the Degree of “Doctor Philosophiæ” Supervisors Candidate Prof. Andrea Lapi Claudia Mancuso Prof. Gianfranco De Zotti Prof. Luigi Danese October 2016 ii To my fiancè Federico, my sister Ilaria, my mother Ennia, Gaia and Luna, my Big family. "Quando canterai la tua canzone, la canterai con tutto il tuo volume, che sia per tre minuti o per la vita, avrá su il tuo nome." Luciano Ligabue Contents Declaration of Authorship xi Abstract xiii 1 Introduction 1 2 Star Formation in galaxies 9 2.1 Initial Mass Function (IMF) and Stellar Population Synthesis (SPS) . 10 2.1.1 SPS . 12 2.2 Dust in galaxies . 12 2.3 Spectral Energy Distribution (SED) . 15 2.4 SFR tracers . 19 2.4.1 Emission lines . 20 2.4.2 X-ray flux . 20 2.4.3 UV luminosity . 20 2.4.4 IR emission . 21 2.4.5 UV vs IR . 22 2.4.6 Radio emission . 23 3 Star Formation Rate Functions 25 3.1 Reconstructing the intrinsic SFR function . 25 3.1.1 Validating the SFR functions via indirect observables . 29 3.1.2 Validating the SFRF via the continuity equation . 32 3.2 Linking to the halo mass via the abundance matching . 35 4 Hunting dusty star-forming galaxies at high-z 43 4.1 Selecting dusty galaxies in the far-IR/(sub-)mm band . 43 iii iv CONTENTS 4.2 Dusty galaxies are not lost in the UV band . -
The Milky Way Galaxy Contents Summary
UNESCO EOLSS ENCYCLOPEDIA The Milky Way galaxy James Binney Physics Department Oxford University Key Words: Milky Way, galaxies Contents Summary • Introduction • Recognition of the size of the Milky Way • The Centre • The bulge-bar • History of the bulge Globular clusters • Satellites • The disc • Spiral structure Interstellar gas Moving groups, associations and star clusters The thick disc Local mass density The dark halo • Summary Our Galaxy is typical of the galaxies that dominate star formation in the present Universe. It is a barred spiral galaxy – a still-forming disc surrounds an old and barred spheroid. A massive black hole marks the centre of the Galaxy. The Sun sits far out in the disc and in visible light our view of the Galaxy is limited by interstellar dust. Consequently, the large-scale structure of the Galaxy must be inferred from observations made at infrared and radio wavelengths. The central bar and spiral structure in the stellar disc generate significant non-axisymmetric gravitational forces that make the gas disc and its embedded star formation strongly non-axisymmetric. Molecular hydrogen is more centrally concentrated than atomic hydrogen and much of it is contained in molecular clouds within which stars form. Probably all stars are formed in an association or cluster, and energy released by the more massive stars quickly disperses gas left over from their birth. This dispersal of residual gas usually leads to the dissolution of the association or cluster. The stellar disc can be decomposed to a thin disc, which comprises stars formed over most of the Galaxy’s lifetime, and a thick disc, which contains only stars formed in about the Galaxy’s first gigayear. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Ball Prolate Spheroidal Wave Functions in Arbitrary Dimensions
Appl. Comput. Harmon. Anal. 48 (2020) 539–569 Contents lists available at ScienceDirect Applied and Computational Harmonic Analysis www.elsevier.com/locate/acha Ball prolate spheroidal wave functions in arbitrary dimensions Jing Zhang a,1, Huiyuan Li b,∗,2, Li-Lian Wang c,3, Zhimin Zhang d,e,4 a School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China b State Key Laboratory of Computer Science/Laboratory of Parallel Computing, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China c Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore d Beijing Computational Science Research Center, Beijing 100193, China e Department of Mathematics, Wayne State University, MI 48202, USA a r t i c l e i n f o a b s t r a c t Article history: In this paper, we introduce the prolate spheroidal wave functions (PSWFs) of real Received 24 February 2018 order α > −1on the unit ball in arbitrary dimension, termed as ball PSWFs. Received in revised form 1 August They are eigenfunctions of both an integral operator, and a Sturm–Liouville 2018 differential operator. Different from existing works on multi-dimensional PSWFs, Accepted 3 August 2018 the ball PSWFs are defined as a generalization of orthogonal bal l polynomials in Available online 7 August 2018 Communicated by Gregory Beylkin primitive variables with a tuning parameter c > 0, through a “perturbation” of the Sturm–Liouville equation of the ball polynomials. From this perspective, we MSC: can explore some interesting intrinsic connections between the ball PSWFs and the 42B37 finite Fourier and Hankel transforms. -
Disk Galaxy Rotation Curves and Dark Matter Distribution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Disk galaxy rotation curves and dark matter distribution by Dilip G. Banhatti School of Physics, Madurai-Kamaraj University, Madurai 625021, India [Based on a pedagogic / didactic seminar given by DGB at the Graduate College “High Energy & Particle Astrophysics” at Karlsruhe in Germany on Friday the 20 th January 2006] Abstract . After explaining the motivation for this article, we briefly recapitulate the methods used to determine the rotation curves of our Galaxy and other spiral galaxies in their outer parts, and the results of applying these methods. We then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Finally, attempts to apply Einsteinian general relativity to the dynamics are described. The article ends with a summary and prospects for further work in this area. Recent observations and models of the very inner central parts of galaxian rotation curves are omitted, as also attempts to apply modified Newtonian dynamics to the outer parts. Motivation . Extensive radio observations determined the detailed rotation curve of our Milky Way Galaxy as well as other (spiral) disk galaxies to be flat much beyond their extent as seen in the optical band. Assuming a balance between the gravitational and centrifugal forces within Newtonian mechanics, the orbital speed V is expected to fall with the galactocentric distance r as V 2 = GM/r beyond the physical extent of the galaxy of mass M, G being the gravitational constant. -
Disk Heating, Galactoseismology, and the Formation of Stellar Halos
galaxies Article Disk Heating, Galactoseismology, and the Formation of Stellar Halos Kathryn V. Johnston 1,*,†, Adrian M. Price-Whelan 2,†, Maria Bergemann 3, Chervin Laporte 1, Ting S. Li 4, Allyson A. Sheffield 5, Steven R. Majewski 6, Rachael S. Beaton 7, Branimir Sesar 3 and Sanjib Sharma 8 1 Department of Astronomy, Columbia University, 550 W 120th st., New York, NY 10027, USA; cfl[email protected] 2 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA; [email protected] 3 Max Planck Institute for Astronomy, Heidelberg 69117, Germany; [email protected] (M.B.); [email protected] (B.S.) 4 Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA; [email protected] 5 Department of Natural Sciences, LaGuardia Community College, City University of New York, 31-10 Thomson Ave., Long Island City, NY 11101, USA; asheffi[email protected] 6 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA; [email protected] 7 The Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA; [email protected] 8 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia; [email protected] * Correspondence: [email protected]; Tel.: +1-212-854-3884 † These authors contributed equally to this work. Academic Editors: Duncan A. Forbes and Ericson D. Lopez Received: 1 July 2017; Accepted: 14 August 2017; Published: 26 August 2017 Abstract: Deep photometric surveys of the Milky Way have revealed diffuse structures encircling our Galaxy far beyond the “classical” limits of the stellar disk. -
Print This Press Release
PRESS RELEASE Released on March 16th, 2006 Deriving the shape of the Galactic stellar disc Based on the article “Outer structure of the Galactic warp and flare: explaining the Canis Major over- density”, by Momany et al. To be published in Astronomy & Astrophysics. This press release is issued as a collaboration with the Italian Institute for Astrophysics (INAF) and Astronomy & Astrophysics. While analysing the complex structure of the Milky Way, an international team of astronomers from Italy and the United Kingdom has recently derived the shape of the Galactic outer stellar disc, and provided the strongest evidence that, besides being warped, it is at least 70% more extended than previously thought. Their findings will be reported in an upcoming issue of Astronomy & Astrophysics, and is a new step in understanding the large-scale structure of our Galaxy. Using the 2MASS all-sky near infrared catalogue, Yazan Momany and his collaborators reconstructed the outer structure of the Galactic stellar disc, in particular, its warp. Their work will soon be published in Astronomy & Astrophysics. Observationally, the warp is a bending of the Galactic plane upwards in the first and second Galactic longitude quadrants (0<l<180 degrees) and downwards in the third and fourth quadrants (180<l<360 degrees). Although the origin of the warp remains unknown, this feature is seen to be a ubiquitous property of all spiral galaxies. As we are located inside the Galactic disc, it is difficult to unveil specific details of its shape. To appreciate a warped stellar disc one should, therefore, look at other galaxies. Figure 1 shows a good example of what a warped galaxy looks like.