Print This Press Release
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Revised View of the Canis Major Stellar Overdensity with Decam And
MNRAS 501, 1690–1700 (2021) doi:10.1093/mnras/staa2655 Advance Access publication 2020 October 14 A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars Downloaded from https://academic.oup.com/mnras/article/501/2/1690/5923573 by Consejo Superior de Investigaciones Cientificas (CSIC) user on 15 March 2021 Julio A. Carballo-Bello ,1‹ David Mart´ınez-Delgado,2 Jesus´ M. Corral-Santana ,3 Emilio J. Alfaro,2 Camila Navarrete,3,4 A. Katherina Vivas 5 and Marcio´ Catelan 4,6 1Instituto de Alta Investigacion,´ Universidad de Tarapaca,´ Casilla 7D, Arica, Chile 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, E-18080 Granada, Spain 3European Southern Observatory, Alonso de Cordova´ 3107, Casilla 19001, Santiago, Chile 4Millennium Institute of Astrophysics, Santiago, Chile 5Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile 6Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 782-0436 Macul, Santiago, Chile Accepted 2020 August 27. Received 2020 July 16; in original form 2020 February 24 ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230◦ <<255◦. -
The Milky Way's Disk of Classical Satellite Galaxies in Light of Gaia
MNRAS 000,1{20 (2019) Preprint 14 November 2019 Compiled using MNRAS LATEX style file v3.0 The Milky Way's Disk of Classical Satellite Galaxies in Light of Gaia DR2 Marcel S. Pawlowski,1? and Pavel Kroupa2;3 1Leibniz-Institut fur¨ Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany 2Helmholtz-Institut fur¨ Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D- 53115 Bonn, Germany 3Charles University in Prague, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic Accepted 2019 November 7. Received 2019 November 7; in original form 2019 August 26 ABSTRACT We study the correlation of orbital poles of the 11 classical satellite galaxies of the Milky Way, comparing results from previous proper motions with the independent data by Gaia DR2. Previous results on the degree of correlation and its significance are confirmed by the new data. A majority of the satellites co-orbit along the Vast Polar Structure, the plane (or disk) of satellite galaxies defined by their positions. The orbital planes of eight satellites align to < 20◦ with a common direction, seven even orbit in the same sense. Most also share similar specific angular momenta, though their wide distribution on the sky does not support a recent group infall or satellites- of-satellites origin. The orbital pole concentration has continuously increased as more precise proper motions were measured, as expected if the underlying distribution shows true correlation that is washed out by observational uncertainties. The orbital poles of the up to seven most correlated satellites are in fact almost as concentrated as expected for the best-possible orbital alignment achievable given the satellite posi- tions. -
VI. Star-Forming Companions of Nearby Field Galaxies
A&A 486, 131–142 (2008) Astronomy DOI: 10.1051/0004-6361:20079297 & c ESO 2008 Astrophysics The Hα Galaxy Survey VI. Star-forming companions of nearby field galaxies P. A. James1, J. O’Neill2, and N. S. Shane1,3 1 Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD, UK e-mail: [email protected] 2 Wirral Grammar School for Girls, Heath Road, Bebington, Wirral CH63 3AF, UK 3 Planetary Science Group, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey RH5 6NT, UK Received 20 December 2007 / Accepted 5 May 2008 ABSTRACT Aims. We searched for star-forming satellite galaxies that are close enough to their parent galaxies to be considered analogues of the Magellanic Clouds. Methods. Our search technique relied on the detection of the satellites in continuum-subtracted narrow-band Hα imaging of the central galaxies, which removes most of the background and foreground line-of-sight companions, thus giving a high probability that we are detecting true satellites. The search was performed for 119 central galaxies at distances between 20 and 40 Mpc, although spatial incompleteness means that we have effectively searched 53 full satellite-containing volumes. Results. We find only 9 “probable” star-forming satellites, around 9 different central galaxies, and 2 more “possible” satellites. After incompleteness correction, this is equivalent to 0.17/0.21 satellites per central galaxy. This frequency is unchanged whether we consider all central galaxy types or just those of Hubble types S0a–Sc, i.e. only the more luminous and massive spiral types. -
Spatial and Kinematic Structure of Monoceros Star-Forming Region
MNRAS 476, 3160–3168 (2018) doi:10.1093/mnras/sty447 Advance Access publication 2018 February 22 Spatial and kinematic structure of Monoceros star-forming region M. T. Costado1‹ and E. J. Alfaro2 1Departamento de Didactica,´ Universidad de Cadiz,´ E-11519 Puerto Real, Cadiz,´ Spain. Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3160/4898067 by Universidad de Granada - Biblioteca user on 13 April 2020 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, Apdo 3004, E-18080 Granada, Spain Accepted 2018 February 9. Received 2018 February 8; in original form 2017 December 14 ABSTRACT The principal aim of this work is to study the velocity field in the Monoceros star-forming region using the radial velocity data available in the literature, as well as astrometric data from the Gaia first release. This region is a large star-forming complex formed by two associations named Monoceros OB1 and OB2. We have collected radial velocity data for more than 400 stars in the area of 8 × 12 deg2 and distance for more than 200 objects. We apply a clustering analysis in the subspace of the phase space formed by angular coordinates and radial velocity or distance data using the Spectrum of Kinematic Grouping methodology. We found four and three spatial groupings in radial velocity and distance variables, respectively, corresponding to the Local arm, the central clusters forming the associations and the Perseus arm, respectively. Key words: techniques: radial velocities – astronomical data bases: miscellaneous – parallaxes – stars: formation – stars: kinematics and dynamics – open clusters and associations: general. Hoogerwerf & De Bruijne 1999;Lee&Chen2005; Lombardi, 1 INTRODUCTION Alves & Lada 2011). -
Structure of the Outer Galactic Disc with Gaia DR2 Ž
A&A 637, A96 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937289 & c ESO 2020 Astrophysics Structure of the outer Galactic disc with Gaia DR2 Ž. Chrobáková1,2, R. Nagy3, and M. López-Corredoira1,2 1 Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain 3 Faculty of Mathematics, Physics, and Informatics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia Received 9 December 2019 / Accepted 31 March 2020 ABSTRACT Context. The structure of outer disc of our Galaxy is still not well described, and many features need to be better understood. The second Gaia data release (DR2) provides data in unprecedented quality that can be analysed to shed some light on the outermost parts of the Milky Way. Aims. We calculate the stellar density using star counts obtained from Gaia DR2 up to a Galactocentric distance R = 20 kpc with a deconvolution technique for the parallax errors. Then we analyse the density in order to study the structure of the outer Galactic disc, mainly the warp. Methods. In order to carry out the deconvolution, we used the Lucy inversion technique for recovering the corrected star counts. We also used the Gaia luminosity function of stars with MG < 10 to extract the stellar density from the star counts. Results. The stellar density maps can be fitted by an exponential disc in the radial direction hr = 2:07 ± 0:07 kpc, with a weak dependence on the azimuth, extended up to 20 kpc without any cut-off. -
Arxiv:1802.01493V7 [Astro-Ph.GA] 10 Feb 2021 Ceeainbtti Oe Eoe Rbeai Tselrsae.I Scales
Variable Modified Newtonian Mechanics II: Baryonic Tully Fisher Relation C. C. Wong Department of Electrical and Electronic Engineering, University of Hong Kong. H.K. (Dated: February 11, 2021) Recently we find a single-metric solution for a point mass residing in an expanding universe [1], which apart from the Newtonian acceleration, gives rise to an additional MOND-like acceleration in which the MOND acceleration a0 is replaced by the cosmological acceleration. We study a Milky Way size protogalactic cloud in this acceleration, in which the growth of angular momentum can lead to an end of the overdensity growth. Within realistic redshifts, the overdensity stops growing at a value where the MOND-like acceleration dominates over Newton and the outer mass shell rotational velocity obeys the Baryonic Tully Fisher Relation (BTFR) with a smaller MOND acceleration. As the outer mass shell shrinks to a few scale length distances, the rotational velocity BTFR persists due to the conservation of angular momentum and the MOND acceleration grows to the phenomenological MOND acceleration value a0 at late time. PACS numbers: ?? INTRODUCTION A common response to the non-Newtonian rotational curve of a galaxy is that its ”Newtonian” dynamics requires cold dark matter (DM) particles. However, the small observed scatter of empirical Baryonic Tully-Fisher Relation (BTFR) of gas rich galaxies, see McGaugh [2]-Lelli [3], Milgrom [4] and Sanders [5], continues to motivate the hunt for a non-Newtonian connection between the rotational speeds and the baryon mass. On the modified DM theory front, Khoury [6] proposes a DM Bose-Einstein Condensate (BEC) phase where DM can interact more strongly with baryons. -
The Large Scale Universe As a Quasi Quantum White Hole
International Astronomy and Astrophysics Research Journal 3(1): 22-42, 2021; Article no.IAARJ.66092 The Large Scale Universe as a Quasi Quantum White Hole U. V. S. Seshavatharam1*, Eugene Terry Tatum2 and S. Lakshminarayana3 1Honorary Faculty, I-SERVE, Survey no-42, Hitech city, Hyderabad-84,Telangana, India. 2760 Campbell Ln. Ste 106 #161, Bowling Green, KY, USA. 3Department of Nuclear Physics, Andhra University, Visakhapatnam-03, AP, India. Authors’ contributions This work was carried out in collaboration among all authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol, and wrote the first draft of the manuscript. Authors ETT and SL managed the analyses of the study. All authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. David Garrison, University of Houston-Clear Lake, USA. (2) Professor. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Egypt. Reviewers: (1) Abhishek Kumar Singh, Magadh University, India. (2) Mohsen Lutephy, Azad Islamic university (IAU), Iran. (3) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia. (4) N.V.Krishna Prasad, GITAM University, India. (5) Maryam Roushan, University of Mazandaran, Iran. Complete Peer review History: http://www.sdiarticle4.com/review-history/66092 Received 17 January 2021 Original Research Article Accepted 23 March 2021 Published 01 April 2021 ABSTRACT We emphasize the point that, standard model of cosmology is basically a model of classical general relativity and it seems inevitable to have a revision with reference to quantum model of cosmology. Utmost important point to be noted is that, ‘Spin’ is a basic property of quantum mechanics and ‘rotation’ is a very common experience. -
An Extended Star Formation History in an Ultra-Compact Dwarf
MNRAS 451, 3615–3626 (2015) doi:10.1093/mnras/stv1221 An extended star formation history in an ultra-compact dwarf Mark A. Norris,1‹ Carlos G. Escudero,2,3,4 Favio R. Faifer,2,3,4 Sheila J. Kannappan,5 Juan Carlos Forte4,6 and Remco C. E. van den Bosch1 1Max Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 2Facultad de Cs. Astronomicas´ y Geof´ısicas, UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina 3Instituto de Astrof´ısica de La Plata (CCT La Plata – CONICET – UNLP), Paseo del Bosque S/N, 1900 La Plata, Argentina 4Consejo Nacional de Investigaciones Cient´ıficas y Tecnicas,´ Rivadavia 1917, C1033AAJ Ciudad Autonoma´ de Buenos Aires, Argentina 5Department of Physics and Astronomy UNC-Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255, USA 6Planetario Galileo Galilei, Secretar´ıa de Cultura, Ciudad Autonoma´ de Buenos Aires, Argentina Accepted 2015 May 29. Received 2015 May 28; in original form 2015 April 2 ABSTRACT Downloaded from There has been significant controversy over the mechanisms responsible for forming compact stellar systems like ultra-compact dwarfs (UCDs), with suggestions that UCDs are simply the high-mass extension of the globular cluster population, or alternatively, the liberated nuclei of galaxies tidally stripped by larger companions. Definitive examples of UCDs formed by either route have been difficult to find, with only a handful of persuasive examples of http://mnras.oxfordjournals.org/ stripped-nucleus-type UCDs being known. In this paper, we present very deep Gemini/GMOS spectroscopic observations of the suspected stripped-nucleus UCD NGC 4546-UCD1 taken in good seeing conditions (<0.7 arcsec). -
Dusty Star-Forming Galaxies and Supermassive Black Holes at High Redshifts: in Situ Coevolution
SISSA - International School for Advanced Studies Dusty Star-Forming Galaxies and Supermassive Black Holes at High Redshifts: In Situ Coevolution Thesis Submitted for the Degree of “Doctor Philosophiæ” Supervisors Candidate Prof. Andrea Lapi Claudia Mancuso Prof. Gianfranco De Zotti Prof. Luigi Danese October 2016 ii To my fiancè Federico, my sister Ilaria, my mother Ennia, Gaia and Luna, my Big family. "Quando canterai la tua canzone, la canterai con tutto il tuo volume, che sia per tre minuti o per la vita, avrá su il tuo nome." Luciano Ligabue Contents Declaration of Authorship xi Abstract xiii 1 Introduction 1 2 Star Formation in galaxies 9 2.1 Initial Mass Function (IMF) and Stellar Population Synthesis (SPS) . 10 2.1.1 SPS . 12 2.2 Dust in galaxies . 12 2.3 Spectral Energy Distribution (SED) . 15 2.4 SFR tracers . 19 2.4.1 Emission lines . 20 2.4.2 X-ray flux . 20 2.4.3 UV luminosity . 20 2.4.4 IR emission . 21 2.4.5 UV vs IR . 22 2.4.6 Radio emission . 23 3 Star Formation Rate Functions 25 3.1 Reconstructing the intrinsic SFR function . 25 3.1.1 Validating the SFR functions via indirect observables . 29 3.1.2 Validating the SFRF via the continuity equation . 32 3.2 Linking to the halo mass via the abundance matching . 35 4 Hunting dusty star-forming galaxies at high-z 43 4.1 Selecting dusty galaxies in the far-IR/(sub-)mm band . 43 iii iv CONTENTS 4.2 Dusty galaxies are not lost in the UV band . -
The Milky Way Galaxy Contents Summary
UNESCO EOLSS ENCYCLOPEDIA The Milky Way galaxy James Binney Physics Department Oxford University Key Words: Milky Way, galaxies Contents Summary • Introduction • Recognition of the size of the Milky Way • The Centre • The bulge-bar • History of the bulge Globular clusters • Satellites • The disc • Spiral structure Interstellar gas Moving groups, associations and star clusters The thick disc Local mass density The dark halo • Summary Our Galaxy is typical of the galaxies that dominate star formation in the present Universe. It is a barred spiral galaxy – a still-forming disc surrounds an old and barred spheroid. A massive black hole marks the centre of the Galaxy. The Sun sits far out in the disc and in visible light our view of the Galaxy is limited by interstellar dust. Consequently, the large-scale structure of the Galaxy must be inferred from observations made at infrared and radio wavelengths. The central bar and spiral structure in the stellar disc generate significant non-axisymmetric gravitational forces that make the gas disc and its embedded star formation strongly non-axisymmetric. Molecular hydrogen is more centrally concentrated than atomic hydrogen and much of it is contained in molecular clouds within which stars form. Probably all stars are formed in an association or cluster, and energy released by the more massive stars quickly disperses gas left over from their birth. This dispersal of residual gas usually leads to the dissolution of the association or cluster. The stellar disc can be decomposed to a thin disc, which comprises stars formed over most of the Galaxy’s lifetime, and a thick disc, which contains only stars formed in about the Galaxy’s first gigayear. -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Afterschool Universe Session 9 Slide Notes: Galaxies
This presentation supports the “Background” material in Session 9 of the Afterschool Universe program. This session is about galaxies. The picture shows the Whirlpool galaxy, a large, iconic, spiral galaxy. 1 Let us summarize the main concepts in this Session. We will discuss these in the rest of this presentation. 2 A galaxy is a huge collection of stars, gas and dust. A typical galaxy has about 100 billion stars (that’s 100,000,000,000 stars!), and light takes about 100,000 years to cross a galaxy (in other words, they are typically 100,000 light years ago). But some galaxies are much bigger and some are much smaller. 3 If you look at the sky from a DARK location, you can see a band of light stretching across the sky which is known as the Milky Way. This is our view of our Galaxy - more precisely, this is our view of the disk of our galaxy as seen from the INSIDE. 4 This picture shows another view of our galaxy taken in the infra-red part of the spectrum. The advantage of the infra-red is that it can penetrate the dust that pervades our galaxy’s disk and let us view the central parts of our galaxy. This picture also shows the full sky. The flat disk and central bulge of our galaxy can be seen in this picture. 5 We live in the suburbs of our galaxy. The Sun and its planetary system are about 25,000 light years from the center of the galaxy. This is about half way out to the edge of the disk.