United States Patent (10) Patent No.: US 9.474,763 B2 Mograbi Et Al

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (10) Patent No.: US 9.474,763 B2 Mograbi Et Al USOO9474763B2 (12) United States Patent (10) Patent No.: US 9.474,763 B2 Mograbi et al. (45) Date of Patent: Oct. 25, 2016 (54) COMPOSITIONS AND METHODS FOR 5: E: 3. Elects et al. AMELORATION AND PREVENTION OF 6.863,906 B2 3/2005 Henderson et al. DRUG-INDUCED TOXCITY 7,238,373 B2 7/2007 Meyrowitz 7,563,779 B2 7/2009 Henderson et al. (71) Applicants: Hadasit Medical Research Services E. R: 5399 Enberg et al. and Deyelopment Ltd., Jerusalem (IL). 2001/0000472J. I w A1* 4/2001 HendersonaWW ............. A61K 36,28 Josef Mograbi, Tel Aviv (IL) 424,725 2007/0021376 A1 1/2007 Giampapa (72) Inventors: Josef Mograbi, Tel Aviv (IL); Yaron 2011/O124718 A1* 5, 2011 McCain ................. A61K 36,28 Ilan, Jerusalem (IL) 514,452 2012/0022161 A1 1, 2012 Pavliv (73) Assignee: Hadasit Medical Research Services and Development Ltd., Jerusalem (IL) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this W. 29: A. 1939, patent is extended or adjusted under 35 WO 2011044230 A2 4, 2011 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/551,724 Lee, D., et al. “Molecular Structure and Stereochemistry of Silybin (22) Filed: Nov. 24, 2014 A. Silybin B, Isosilybin A, and Isosilybin B, Isolated from Silybum marianum (Milk Thistle).” J. Nat. Prod. (2003), vol. 66, pp. 1171 (65) Prior Publication Data 1174).* WebMD. "Acetaminophen Liver Damage Directory.' (C) Nov. 19, US 2015/OO8O348 A1 Mar. 19, 2015 2011. Available from: to Wii OSA-mannen acetaminophen-liver-damage-directory >. RxList.com. “Percocet.” (C) Jan. 14, 2012. Available from: <http:// Related U.S. Application Data web.archive.org/web/20120114190338/http://www.rxlist.com/ percocet-drug warnings-precautions.htm>. (63) Continuation of application No. McNeil-PPC. “Tylenol R. Sinus Congestion & Pain Caplets (Day PCT/IL2013/050446, filed on May 23, 2013. time).” (C) 2011. Available from: < http://www.tylenol.com/prod ucts/tylenol-sinus-congestion-pain-caplets-daytime D. (60) Provisional application No. 61/654,971, filed on Jun. McNeil-PPC. “Tylenol.R Cough and Sore Throat.” (C) 2010. Avail 4, 2012, provisional application No. 61/651,005, filed able from: < http://dailymed.nlm.nih.gov/dailymed/archives/ on May 24, 2012. fdalDrugInfo.cfm?archiveid=43326 >.* Drugs.com. "Acetaminophen/Diphenhydramine Dosage.' (c) Feb. (51) Int. Cl. 2012. Available from: < http://web.archive.org/web/ A 6LX 3L/357 (2006.01) 20120215211820/http://www.drugs.com/dosage/acetaminophen CO7D 309/36 (2006.01) diphenhydramine.html> - Drugs.com. "Acetaminophen and guaifenesin.” (C) Feb. 2009. Avail A6 IK3I/66 (2006.01) able from: < http://web.archive.org/web/20090201110251/http:// A6 IK 45/06 (2006.01) www.drugs.com/mtmfacetaminophen-and-guaifenesin.html D. A6 IK3I/It (2006.01) (Continued) A6 IK3I/I67 (2006.01) A6 IK3I/98 (2006.01) A6 IK3I/685 (2006.01) Primary Examiner — Andrew D. Kosar A6 IK3I/7056 (2006.01) Assistant Examiner — John S Kenyon A 6LX 3L/7076 (2006.01) (74) Attorney, Agent, or Firm — Vorys, Sater, Seymour A 6LX 3L/97 (2006.01) and Pease LLP (52) U.S. Cl. CPC ............. A61K3I/661 (2013.01); A61K 31/10 (57) ABSTRACT (2013.01); A61K 31/167 (2013.01); A61 K Pharmaceutical compositions including combinations of 31/197 (2013.01); A61K 31/198 (2013.01); protective agents selected from isosilybin B, methylsulfo A6 IK3I/357 (2013.01); A61 K3I/685 nylmethane (MSM), phosphatidylcholine, cysteine (Cys), (2013.01); A61 K3I/7056 (2013.01); A61 K seleno-cysteine (Se-Cys), ribose-cysteine (RibCys), N-ace 31/7076 (2013.01); A61K 45/06 (2013.01) tylcysteine (NAC), N-acetylcysteine-amide (AD4), methio (58) Field of Classification Search nine (Met) and S-adenosylmethionine (SAM) for reducing CPC ........................... A61 K 31/357; CO7D 309/36 and/or preventing drug-induced toxicity, Such as acetamino See application file for complete search history. phen-induced toxicity. The compositions may be formulated with or without acetaminophen, and accordingly may be (56) References Cited used as safe formulations of acetaminophen with reduced risk of causing liver damage, or as an antidote for the U.S. PATENT DOCUMENTS treatment of acetaminophen overdose. Methods for treating 4,868,114. A 9/1989 Nagasawa et al. acetaminophen intoxication. 6,495,170 B1 12/2002 Smit et al. 6,555,141 B1 4/2003 Corson et al. 8 Claims, 5 Drawing Sheets US 9,474,763 B2 Page 2 (56) References Cited Nourjah et al., (2006) Estimates of acetaminophen (Paracetomal)- associated overdoses in the United States. Pharmacoepidemiol Drug Saf 15(6): 398-405. OTHER PUBLICATIONS O'Riordan et al., (2011) Acute kidney injury in patients admitted to a liver intensive therapy unit with paracetamol-induced Bessems and Vermeulen (2001) Paracetamol (acetaminophen)-in hepatotoxicity. Nephrol Dial Transplant 26(11): 3501-8. duced toxicity: molecular and biochemical mechanisms, analogues Ostapowicz et al., (2002) Results of a prospective study of acute and protective approaches. Crit Rev Toxicol 31(1): 55-138. liver failure at 17 tertiary care centers in the United States. Ann Blakely and McDonald (1995) Acute renal failure due to acetamino Intern Med 137(12): 947-54. phen ingestion: a case report and review of the literature. JAm Soc Polyaket al., (2010) Identification of hepatoprotective Nephrol 6(1): 48-53. flavonolignans from silymarin. Proc Natl AcadSci U S A 107(13): Bower et al., (2007) Population-based surveillance for acute liver 5995-9. failure. Am J Gastroenterol 102(11): 2459-63. Rakela et al., (1985) Fulminant hepatitis: Mayo Clinic experience Bray et al., (1992) S-adenosylmethionine protects against acet with 34 cases. Mayo Clin Proc 60(5): 289-92. aminophen hepatotoxicity in two mouse models. Hepatology 15(2): Slitt et al., (2005) Effect of ribose cysteine pretreatment on hepatic 297-301 and renal acetaminophen metabolite formation and glutathione Chassaing et al., (1999) Determination of reduced and oxidized depletion. Basic Clin Pharmacol Toxicol 96(6): 487-94. homocysteine and related thiols in plasma by thiol-specific pre Stern et al., (2005) Contribution of acetaminophen-cysteine to column derivatization and capillary electrophoresis with laser acetaminophen nephrotoxicity II. Possible involvement of the induced fluorescence detection. J Chromatogr B Biomed Sci Appl gamma-glutamyl cycle. Toxicol Appl Pharmacol 202(2): 160-71. 735(2): 219-27. Stern et al., (2005) Contribution of acetaminophen-cysteine to Chun et al., (2009) Acetaminophen hepatotoxicity and acute liver acetaminophen nephrotoxicity in CD-1 mice: I. Enhancement of failure. J Clin Gastroenterol 43(4): 342-9. acetaminophen nephrotoxicity by acetaminophen-cysteine. Toxicol Darbar et al., (2011) Antihepatoprotective potential of Livina, a Appl Pharmacol 202(2): 151-9. polyherbal preparation on parcetamol induced hepatotoxicity: a FDA, "Acetaminophen Overdose and Liver Injury Background comparison with Silymarin. Asian Journal of Pharmaceutical and and Options for Reducing Injury'; dated May 22, 2009. Retrieved Clinical Research 4(1): 72-77. from the internet on Mar. 14, 2012. Dvorák et al., (2003) Primary cultures of human hepatocytes as a Legalon SIL Mushroom Poisoning Clinical Study. URL: https:// tool in cytotoxicity studies: cell protection against model toxins by sites.google.com/site/legalonsil?; retrieved on Dec. 28, 2011. flavonolignans obtained from Silybum marianum. Toxicol Lett Wiley Blackwell. “Milk thistle herb protects cancer patients from 137(3): 201-12. chemotherapy-associated liver toxicity.” ScienceDaily. Kaufman et al., (2002) Recent patterns of medication use in the ScienceDaily, Dec. 27, 2009. www.sciencedaily.com/releases/2009/ ambulatory adult population of the United States: the Slone survey. 12/091215172325.htm. JAMA 287(3): 337-44. Jaeschke et al., (2003) The role of oxidant stress and reactive Khashab et al., (2007) Epidemiology of acute liver failure. Curr nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett Gastroenterol Rep 9(1): 66-73. 144(3): 279-288. Lai et al., (2006) 2005 Annual Report of the American Association Nakhostin-Roohi et al., (2011) Effect of chronic supplementation of Poison Control Centers' national poisoning and exposure data with methylsulfonylmethane on oxidative stress following acute base. Clin Toxicol (Phila) 44(6-7): 803-932. exercise in untrained healthy men. J Pharm Pharmacol 63(10): Larson et al., (2005) Acetaminophen-induced acute liver failure: 1290-1294. results of a United States multicenter, prospective study. Hepatology Woodhead et al., “An analysis of N-acetylcysteine treatment for 42(6): 1364-72. acetaminophen overdose using a systems model of drug-induced Lee (2003) Acute liver failure in the United States. Semin Liver Dis liver injury”, J Pharmacol Exp Ther, vol. 342, No. 2, pp. 529-540, 23(3): 217-26. (2012). Murray et al., (2008) Drug-related hepatotoxicity and acute liver failure. J Pediatr Gastroenterol Nutr 47(4): 395-405. * cited by examiner U.S. Patent Oct. 25, 2016 Sheet 1 of 5 US 9,474,763 B2 4 mg APAP 4 mg APAP+ 4 mg APAP+ 4 mg APAP+ 3.5 mg NAC 3.5 mg NAC+ 3.5 mg NAC+ 0.4 mg IB 0.1 mg IB FIGURE 1 4 mg APAP 4 mg APAP+ 4 mg APAP+ 4 mg APAP+ 3 mg NAC 3 mg NAC+ 3 mg NAC+ 0.7 mg PC 0.7 mg PC after 1.5 h after 3 h FIGURE 2 U.S. Patent Oct. 25, 2016 Sheet 2 of 5 US 9,474,763 B2 4 mg APAP 4 mg APAP+ 4 mg APAP+ 3.5 mg NAC 3.5 mg NAC, 3h later: 0.9 mg of PC FIGURE 3 4 mg APAP 4 mg APAP+ 4 mg APAP+ 3.5 mg NAC 3.5 mg NAC, 1.5 mg MSM FIGURE 4 U.S. Patent Oct. 25, 2016 Sheet 3 of 5 US 9.474,763 B2 400 - 350 - 300 - 250 - 200 - 150 - 100 - 50 - Average SD APAP 259.98 56.39 APAP + MSM 255.30 108.78 APAP +B 229.27 119.85 APAP + MSM - B 253.39 62.78 FIGURES U.S.
Recommended publications
  • Single Laboratory Validation of a Quantitative Core Shell-Based LC
    Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Silymarin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.) Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, Clothilde Ferroud, Joël Doussot, Jean Vanier, Christophe Hano To cite this version: Samantha Drouet, Bilal Haider Abbasi, Annie Falguieres, Waqar Ahmad, S. Sumaira, et al.. Single Laboratory Validation of a Quantitative Core Shell-Based LC Separation for the Evaluation of Sily- marin Variability and Associated Antioxidant Activity of Pakistani Ecotypes of Milk Thistle (Silybum Marianum L.). Molecules, MDPI, 2018, 23 (4), pp.904. 10.3390/molecules23040904. hal-02538464 HAL Id: hal-02538464 https://hal.archives-ouvertes.fr/hal-02538464 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License molecules Article Single Laboratory Validation of a Quantitative Core Shell-Based
    [Show full text]
  • Silychristin Derivatives Conjugated with Coniferylalcohols from Silymarin and Their Pancreatic Α-Amylase Inhibitory Title Activity
    Silychristin derivatives conjugated with coniferylalcohols from silymarin and their pancreatic α-amylase inhibitory Title activity Author(s) Kato, Eisuke; Kushibiki, Natsuka; Satoh, Hiroshi; Kawabata, Jun Natural Product Research, 34(6), 759-765 Citation https://doi.org/10.1080/14786419.2018.1499639 Issue Date 2020-03-18 Doc URL http://hdl.handle.net/2115/80605 This is an Accepted Manuscript of an article published by Taylor & Francis in Natural Product Research on Rights Mar.18.2020, available online: http://www.tandfonline.com/10.1080/14786419.2018.1499639. Type article (author version) File Information EK_NatProdRes_milk_thistle_w_supplement.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP *Post-print manuscript This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in “Natural Product Research” published by Taylor & Francis after peer review. To access the final edited and published work see https://doi.org/10.1080/14786419.2018.1499639 Graphical abstract 1 RESEARCH ARTICLE Silychristin derivatives conjugated with coniferylalcohols from silymarin and their pancreatic α-amylase inhibitory activity Eisuke Katoa*, Natsuka Kushibikib, Hiroshi Satohc and Jun Kawabataa aDivision of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan bDivision of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan cNissei Bio Co. Ltd., Eniwa, Hokkaido, 061-1374, Japan *Corresponding author. Eisuke Kato, 1Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; Tel/Fax: +81 11 706 2496; e-mail: [email protected] 2 Abstract Silymarin is a mixture of flavonolignans extracted from the fruit of Silybum marianum (milk thistle).
    [Show full text]
  • Addis Ababa University College of Health Sciences
    ADDIS ABABA UNIVERSITY COLLEGE OF HEALTH SCIENCES SCHOOL OF MEDICINE DEPARTMENT OF BIOCHEMISTRY Hepatoprotective Effect of Silymarin on Fructose Induced Nonalcoholic Fatty Liver Disease in Male Albino Wistar Rats. By: Tewodros Mengesha (BSc.) A Thesis Submitted To School of Graduate Studies, College of Health Sciences, Addis Ababa University In Partial Fulfillment of The Requirement For The Degree of Master of Sciences In Medical Biochemistry. June, 2016 Addis Ababa, Ethiopia Hepatoprotective Effect of Silymarin on Fructose Induced Nonalcoholic Fatty Liver Disease in Male Albino Wistar Rats. Advisors 1. N. Gnana Sekeheram, PhD Department of Biochemistry, School of Medicine Addis Ababa University, Addis Ababa, Ethiopia. 2. Mahilet Arayasilasie, MD, Pathologist Head, Department of Pathology, School of Medicine Addis Ababa University, Addis Ababa, Ethiopia. Addis Ababa University School of Graduate Studies This is to clarify that thesis prepared by Tewodros Mengesha entitled “Hepatoprotective Effect of Silymarin on Fructose Induced Nonalcoholic Fatty Liver Disease in Male Albino Wistar Rats” is submitted in partial fulfillment of the Requirement for the Degree of Master of Sciences in Medical Biochemistry complies with the regulations of the university and meets the accepted standards with respect to the originality and quality. Signed by the examining committee: Examiner Signature Date Advisor Signature Date Advisor Signature Date Advisor Signature Date Chair of Department or Graduate Program Coordinator Abstract Background: Nonalcoholic fatty liver disease is one of the most common causes of chronic liver disease in the Western world, and it‟s likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. There is also growing evidence in both animal models and human studies suggesting that high dietary intake of fructose is an important nutritional factor in the development of metabolic syndrome and its associated complications of NAFLD.
    [Show full text]
  • Bioconversion of Callus-Produced Precursors to Silymarin Derivatives in Silybum Marianum Leaves for the Production of Bioactive Compounds
    International Journal of Molecular Sciences Article Bioconversion of Callus-Produced Precursors to Silymarin Derivatives in Silybum marianum Leaves for the Production of Bioactive Compounds Dina Gad 1,2,* , Hamed El-Shora 3, Daniele Fraternale 4 , Elisa Maricchiolo 4, Andrea Pompa 4,* and Karl-Josef Dietz 2 1 Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin EL-Koum 32511, Egypt 2 Biochemistry and Physiology of Plants, Faculty of Biology W5, Bielefeld University, 33501 Bielefeld, Germany; [email protected] 3 Botany Department, Faculty of Science, Mansoura University, Mansoura 35511, Egypt; [email protected] 4 Department of Biomolecular Sciences, University of Urbino “Carlo Bo” Via Donato Bramante, 28, 61029 Urbino, Italy; [email protected] (D.F.); [email protected] (E.M.) * Correspondence: [email protected]fia.edu.eg (D.G.); [email protected] (A.P.) Abstract: The present study aimed to investigate the enzymatic potential of Silybum marianum leaves to bioconvert phenolic acids produced in S. marianum callus into silymarin derivatives as chemopreventive agent. Here we demonstrate that despite the fact that leaves of S. marianum did not accumulate silymarin themselves, expanding leaves had the full capacity to convert di- caffeoylquinic acid to silymarin complex. This was proven by HPLC separations coupled with Citation: Gad, D.; El-Shora, H.; electrospray ionization mass spectrometry (ESI-MS) analysis. Soaking the leaf discs with S. marianum Fraternale, D.; Maricchiolo, E.; callus extract for different times revealed that silymarin derivatives had been formed at high yield Pompa, A.; Dietz, K.-J. Bioconversion after 16 h. Bioconverted products displayed the same retention time and the same mass spectra (MS of Callus-Produced Precursors to or MS/MS) as standard silymarin.
    [Show full text]
  • Skin Aging Handbook
    SKIN AGING HANDBOOK An Integrated Approach to Biochemistry and Product Development Edited by Nava Dayan Norwich, NY, USA Copyright © 2008 by William Andrew Inc. No part of this book may be reproduced or utilized in any form or by any means, electronic or me- chanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the Publisher. ISBN: 978-0-8155-1584-5 Library of Congress Cataloging-in-Publication Data Skin aging handbook : an integrated approach to biochemistry and product development / edited by Nava Dayan. p. ; cm. -- (Personal care and cosmetic technology) Includes bibliographical references and index. ISBN 978-0-8155-1584-5 (alk. paper) 1. Skin--Aging. 2. Cosmetics. 3. Dermatologic agents. 4. Cosmetic industry. 5. Dermatologic agents industry. I. Dayan, Nava. II. Series. [DNLM: 1. Skin Physiology--drug effects. 2. Aging--drug effects. 3. Chemistry, Pharmaceutical. 4. Cosmetics--economics. 5. Cosmetics--pharmacology. 6. Cosmetics--therapeutic use. WR 102 S62715 2008] QP88.5.S553 2008 612.7’9--dc22 2008009757 Printed in the United States of America This book is printed on acid-free paper. 10 9 8 7 6 5 4 3 2 1 Published by: William Andrew Inc. 13 Eaton Avenue Norwich, NY 13815 1-800-932-7045 www.williamandrew.com Cover Design by Russell Richardson ENVIRONMENTALLY FRIENDLY This book has been printed digitally because this process does not use any plates, ink, chemicals, or press solutions that are harmful to the environment. The paper used in this book has a 30% recycled content. NOTICE To the best of our knowledge the information in this publication is accurate; however the Publisher does not assume any responsibility or liability for the accuracy or completeness of, or consequences arising from, such information.
    [Show full text]
  • Silybin, a Major Bioactive Component of Milk Thistle (Silybum Marianum L
    molecules Review Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism Michal Bijak Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; [email protected]; Tel./Fax: +48-42-635-4336 Received: 10 October 2017; Accepted: 8 November 2017; Published: 10 November 2017 Abstract: Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin’s structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin’s many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism. Keywords: silybin; silymarin; chemistry; bioavailability 1.
    [Show full text]
  • Mechanistic Study of the Biomimetic Synthesis of Flavonolignan Diastereoisomers in Milk Thistle
    Mechanistic Study of the Biomimetic Synthesis of Flavonolignan Diastereoisomers in Milk Thistle By: Hanan S. Althagafy, Maria Elena Meza-Aviña, Nicholas H. Oberlies, Mitchell P. Croatt Althagafy, H.S.; Meza-Aviña, M.E.; Oberlies, N.H.; Croatt, M.P. Mechanistic Study of the Biomimetic Synthesis of Flavonolignan Diastereoisomers in Milk Thistle. The Journal of Organic Chemistry, 2013, 78, 7594-7600. This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in The Journal of Organic Chemistry, copyright © American Chemical Society after peer review. To access the final edited and published work, see http://dx.doi.org/10.1021/jo4011377. Abstract: The mechanism for the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle is proposed to proceed by single-electron oxidation of coniferyl alcohol, subsequent reaction with one of the oxygen atoms of taxifolin’s catechol moiety, and finally, further oxidation to form four of the major components of silymarin: silybin A, silybin B, isosilybin A, and isosilybin B. This mechanism is significantly different from a previously proposed process that involves the coupling of two independently formed radicals. Graphical Abstract: Keywords: Organic chemistry | Milk thistle | flavonolignan diastereoisomers | silymarin | silybin Article: Introduction Milk thistle [Silybum marianum (L.) Gaertn. (Asteraceae)] has been used as a medicinal herb since antiquity. As outlined in several reviews, modern pharmacological studies typically focus on the hepatoprotective properties(1-3) (as milk thistle is the top herbal supplement for hepatitis C patients(2)), the prostate cancer chemopreventive properties(4-6) (where promising results have been observed, especially for isosilybin B(7-10)), or both.
    [Show full text]
  • Antifungal Activity Against Botryosphaeriaceae Fungi of the Hydro-Methanolic Extract of Silybum Marianum Capitula Conjugated with Stevioside
    plants Article Antifungal Activity against Botryosphaeriaceae Fungi of the Hydro-Methanolic Extract of Silybum marianum Capitula Conjugated with Stevioside Natalia Langa-Lomba 1,2, Laura Buzón-Durán 3, Eva Sánchez-Hernández 3 , Pablo Martín-Ramos 1,* , José Casanova-Gascón 1 , Jesús Martín-Gil 3 and Vicente González-García 2 1 Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), EPS, Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain; [email protected] (N.L.-L.); [email protected] (J.C.-G.) 2 Plant Protection Unit, Agrifood Research and Technology Centre of Aragón, Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain; [email protected] 3 Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain; [email protected] (L.B.-D.); [email protected] (E.S.-H.); [email protected] (J.M.-G.) * Correspondence: [email protected] Abstract: Silybum marianum (L.) Gaertn, viz. milk thistle, has been the focus of research efforts in the past few years, albeit almost exclusively restricted to the medicinal properties of its fruits (achenes). Citation: Langa-Lomba, N.; Buzón- Given that other milk thistle plant organs and tissues have been scarcely investigated for the pres- Durán, L.; Sánchez-Hernández, E.; ence of bioactive compounds, in this study, we present a phytochemical analysis of the extracts of Martín-Ramos, P.; Casanova-Gascón, S. marianum capitula during the flowering phenological stage (stage 67). Gas chromatography–mass J.; Martín-Gil, J.; González-García, V. spectroscopy results evidenced the presence of high contents of coniferyl alcohol (47.4%), and sec- Antifungal Activity against ondarily of ferulic acid ester, opening a new valorization strategy of this plant based on the former Botryosphaeriaceae Fungi of the Hydro-Methanolic Extract of high-added-value component.
    [Show full text]
  • Regioselective Alcoholysis of Silychristin Acetates Catalyzed by Lipases ‡
    Int. J. Mol. Sci. 2015, 16, 11983-11995; doi:10.3390/ijms160611983 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Regioselective Alcoholysis of Silychristin Acetates Catalyzed ‡ by Lipases Eva Vavříková 1,†, Paolo Gavezzotti 2,†, Kateřina Purchartová 1, Kateřina Fuksová 1, David Biedermann 1, Marek Kuzma 1, Sergio Riva 2,* and Vladimír Křen 1,* 1 Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; E-Mails: [email protected] (E.V.); [email protected] (K.P.); [email protected] (K.F.); [email protected] (D.B.); [email protected] (M.K.) 2 Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco 9, I 20131 Milano, Italy; E-Mail: [email protected] † These authors contributed equally to this work. ‡ This paper is dedicated to the memory of the late Prof. Bruno Danieli, Professor of Organic Chemistry, Università degli Studi di Milano, 20122 Milano, Italy. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (V.K.); [email protected] (S.R.); Tel.: +420-296-442-510 (V.K.). Academic Editor: Ritva Tikkanen Received: 27 April 2015 / Accepted: 19 May 2015 / Published: 26 May 2015 Abstract: A panel of lipases was screened for the selective acetylation and alcoholysis of silychristin and silychristin peracetate, respectively. Acetylation at primary alcoholic group (C-22) of silychristin was accomplished by lipase PS (Pseudomonas cepacia) immobilized on diatomite using vinyl acetate as an acetyl donor, whereas selective deacetylation of 22-O-acetyl silychristin was accomplished by Novozym 435 in methyl tert-butyl ether/ n-butanol.
    [Show full text]
  • Silymarin and Cancer: a Dual Strategy in Both in Chemoprevention and Chemosensitivity
    molecules Review Silymarin and Cancer: A Dual Strategy in Both in Chemoprevention and Chemosensitivity Dominique Delmas 1,2,3,*, Jianbo Xiao 4 , Anne Vejux 1,5 and Virginie Aires 1,2 1 Université de Bourgogne Franche-Comté, F-21000 Dijon, France; [email protected] (A.V.); [email protected] (V.A.) 2 INSERM Research Center U1231—Cancer and Adaptive Immune Response Team, Dijon, Bioactive Molecules and Health research group, F-21000 Dijon, France 3 Centre anticancéreux Georges François Leclerc Center, F-21000 Dijon, France 4 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; [email protected] 5 Laboratoire Bio-PeroxIL“Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism”—EA 7270, UFR Sciences Vie Terre Environnement (SVTE), 6 Bd Gabriel, F-21000 Dijon, France * Correspondence: [email protected]; Tel.: +33-380-39-32-26 Academic Editor: Saverio Bettuzzi Received: 11 March 2020; Accepted: 21 April 2020; Published: 25 April 2020 Abstract: Silymarin extracted from milk thistle consisting of flavonolignan silybin has shown chemopreventive and chemosensitizing activity against various cancers. The present review summarizes the current knowledge on the potential targets of silymarin against various cancers. Silymarin may play on the system of xenobiotics, metabolizing enzymes (phase I and phase II) to protect normal cells against various toxic molecules or to protect against deleterious effects of chemotherapeutic agents on normal cells. Furthermore,
    [Show full text]
  • Chemistry of Silybin
    Natural Product Reports Chemistry of silybin Journal: Natural Product Reports Manuscript ID: NP-REV-11-2013-070122.R1 Article Type: Review Article Date Submitted by the Author: 30-Apr-2014 Complete List of Authors: Biedermann, David; Inst. of Microbiology, Vavříková, Eva; Inst. of Microbiology, Cvak, Ladislav; Teva Pharmaceuticals, R&D Kren, Vladimir; Inst. of Microbiology, Page 1 of 24 Natural Product Reports Journal Name RSC Publishing ARTICLE Chemistry of silybin a a b a,* Cite this: DOI: 10.1039/x0xx00000x D. Biedermann, E. Vavříková, L. Cvak and V. Křen Silybin, a secondary metabolite isolated from the seeds of the blessed milk thistle ( Silybum marianum ) was discovered as the first member of a new family of natural compounds called flavonolignans in 1959. Received 00th 2013, Accepted 00th 2013 Over the years it has received the research attention of many organic chemists. This research has resulted in a number of semisynthetic derivatives prepared in an effort to modulate and better target DOI: 10.1039/x0xx00000x the biological activities of silybin or to improve its physical properties, such as solubility. A fundamental www.rsc.org/ breakthrough in silybin chemistry was the determination of the absolute configurations of silybin A and silybin B, and the development of the methods for their separation. This review covers articles dealing with silybin chemistry and also summarizes all the derivatives prepared. Covering: 1959-2013. 1 Introduction 5.10 Chemoenzymatic glycosidations 1.1 Flavonoids and flavonolignans 5.11 Other chemoenzymatic
    [Show full text]
  • A Quest for Staunch Effects of Flavonoids
    Arabian Journal of Chemistry (2012) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com REVIEW A quest for staunch effects of flavonoids: Utopian protection against hepatic ailments Anju Dhiman a,*, Arun Nanda a, Sayeed Ahmad b a Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India b Bioactive Natural Product Laboratory, Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India Received 2 September 2011; accepted 15 May 2012 KEYWORDS Abstract The role of flavonoids as the major red, blue and purple pigments in plants has gained Antioxidant; these secondary products a great deal of attention over the years. Flavonoids are polyphenols Flavonoids; and occur as aglycones, glycosides and methylated derivatives. Flavonoids are the main compo- Hepatoprotection; nents of a healthy diet containing fruits and vegetables and are concentrated especially in tea, apples Phenolic compounds and onions. Till date, more than 6000 flavonoids have been discovered, out of which 500 are found in free state. They are abundant in polygonaceae, rutaceae, leguminosae, umbelliferae and compos- itae. Flavonoids are powerful antioxidants. In addition to their role in nutrition, flavonoids possess many types of pharmacological activities, including anti-inflammatory, antioxidative, hepatoprotec- tive, vasorelaxant, antiviral and anticarcinogenic effects. The present review is focused on flavo- noids derived from natural products that have shown a wise way to get a true and potentially rich source of drug candidates against liver ailments. The present review initially highlights the cur- rent status of flavonoids and their pharmaceutical significance, role of flavonoids in hepatoprotec- tion, therapeutic options available in herbal medicines and in later section, summarizes flavonoids as lead molecules, which have shown significant hepatoprotective activities.
    [Show full text]