2003-116.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tim Peake Early Life Timothy Nigel ‘Tim’ Peake Was Born in Chichester, West Sussex, on 7Th April 1972 and Grew up in a Nearby Village
Tim Peake Early Life Timothy Nigel ‘Tim’ Peake was born in Chichester, West Sussex, on 7th April 1972 and grew up in a nearby village. Tim and his older sister, Fiona, enjoyed a stable upbringing and ordinary family life. Their mother, Angela, worked as a midwife and their father, Nigel, who was a journalist, had always been interested in aircraft. He took Tim to air shows from an early age. This is where Tim’s fascination with flying began. He started at the Chichester High School for Boys in 1983, leaving in 1990 to attend the Royal Military Academy Sandhurst. Military Career Despite having been interested in stars and the universe as a child, as a career choice Tim followed his passion for flying and trained to be a pilot, resulting in an eighteen-year military career flying all types of helicopters and aircraft. Tim later trained to be an instructor before flying Apache helicopters in Texas with the US army. On his return to the UK, the Apache was being introduced into the British army so Tim helped develop the training programme. Tim left the army in 2009 after completing over 3,000 flying hours to become a test pilot. Training Success In 2008, when the European Space Agency (ESA) announced it was accepting applications for new astronauts, Tim saw the advert online and decided it was too good an opportunity to miss. His application joined 8,000 others! In 2009, following various exams, Tim received a phone call from the ESA offering him a place to train to be an astronaut with the European Astronaut Corps. -
Vladimir Pletser Gravity, Weight and Their Absence
SPRINGER BRIEFS IN PHYSICS Vladimir Pletser Gravity, Weight and Their Absence 123 SpringerBriefs in Physics Editorial Board B. Ananthanarayan, Centre for High Energy Physics, Indian Institute of Science, Bangalore, India Egor Babaev, Amherst, MA, USA Malcolm Bremer, Bristol, UK Xavier Calmet, Department of Physics and Astronomy, University of Sussex, Brighton, UK Francesca Di Lodovico, London, UK Pablo D. Esquinazi, Institute for Experimental Physics II, University of Leipzig, Leipzig, Germany Maarten Hoogerland, Auckland, New Zealand Eric Le Ru, School of Chemical and Physical Sciences, Victoria University of Wellington, Kelburn, Wellington, New Zealand Hans-Joachim Lewerenz, Pasadena, CA, USA James Overduin, Towson, MD, USA Vesselin Petkov, Montreal, QC, Canada Charles H.-T. Wang, Department of Physics, The University of Aberdeen, Aberdeen, UK Andrew Whitaker, Belfast, UK Stefan Theisen, Max-Planck-Institut für Gravitationsphys, Potsdam, Germany More information about this series at http://www.springer.com/series/8902 Vladimir Pletser Gravity, Weight and Their Absence 123 Vladimir Pletser Technology and Engineering Centre for Space Utilization Chinese Academy of Sciences Beijing China ISSN 2191-5423 ISSN 2191-5431 (electronic) SpringerBriefs in Physics ISBN 978-981-10-8695-3 ISBN 978-981-10-8696-0 (eBook) https://doi.org/10.1007/978-981-10-8696-0 Library of Congress Control Number: 2018934907 © The Author(s) 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. -
Navigation Challenges During Exomars Trace Gas Orbiter Aerobraking Campaign
NON-PEER REVIEW Please select category below: Normal Paper Student Paper Young Engineer Paper Navigation Challenges during ExoMars Trace Gas Orbiter Aerobraking Campaign Gabriele Bellei 1, Francesco Castellini 2, Frank Budnik 3 and Robert Guilanyà Jané 4 1 DEIMOS Space located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 2 Telespazio VEGA located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 3 ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany 4 GMV INSYEN located at ESA/ESOC, Robert-Bosch-Str. 5, Darmstadt, 64293, Germany Abstract The ExoMars Trace Gas Orbiter satellite spent one year in aerobraking operations at Mars, lowering its orbit period from one sol to about two hours. This delicate phase challenged the operations team and in particular the navigation system due to the highly unpredictable Mars atmosphere, which imposed almost continuous monitoring, navigation and re-planning activities. An aerobraking navigation concept was, for the first time at ESA, designed, implemented and validated on-ground and in-flight, based on radiometric tracking data and complemented by information extracted from spacecraft telemetry. The aerobraking operations were successfully completed, on time and without major difficulties, thanks to the simplicity and robustness of the selected approach. This paper describes the navigation concept, presents a recollection of the main in-flight results and gives a retrospective of the main lessons learnt during this activity. Keywords: ExoMars, Trace Gas Orbiter, aerobraking, navigation, orbit determination, Mars atmosphere, accelerometer Introduction The ExoMars program is a cooperation between the European Space Agency (ESA) and Roscosmos for the robotic exploration of the red planet. -
2Nd EUROPEAN SPACE GENERATION WORKSHOP REPORT
2nd EUROPEAN SPACE GENERATION WORKSHOP REPORT 1 EXECUTIVE SUMMARY Paris—one of the world’s most inspirational cities—offered a memorable stage for the 2nd European Space Generation Workshop (E-SGW) and a truly global platform for high-level discussions and exchanges. The city of light still is a must-see destination that everyone should visit at least once in their lives. The 2nd E-SGW was held on Friday and Saturday 24th and 25th March 2017. The ideal place to debate about space activities and opportunities, selected by the local organising team, is the European Space Agency (ESA) headquarters. In fact, ESA is used to organising wide-reaching events, for example workshops, conferences, councils, and has the adequate facilities to receive such a workshop. And what is a better place than the heart of European space policy to welcome the future space leaders? With the success of the SGAC annual conferences focusing on global deliberations, the need to develop a regional workshop with the primary aim of discussing regional space initiatives and activities has become increasingly important. SGAC therefore launched its regional workshop series, the Space Generation Workshops (SGW). The main goals of the E-SGW are: 1. To strengthen the regional network of the students and young professionals in the European region; 2. To examine and consider key questions in Europe that the regional space community is facing and to provide inputs from the next generation of space professionals; and 3. To allow tomorrow's space sector leaders in the European region to have the opportunity to interact with today's space leaders in the region through cooperation with ESA. -
ESTRACK Facilities Manual (EFM) Issue 1 Revision 1 - 19/09/2008 S DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2Page Ii of Ii
fDOCUMENT document title/ titre du document ESA TRACKING STATIONS (ESTRACK) FACILITIES MANUAL (EFM) prepared by/préparé par Peter Müller reference/réference DOPS-ESTR-OPS-MAN-1001-OPS-ONN issue/édition 1 revision/révision 1 date of issue/date d’édition 19/09/2008 status/état Approved/Applicable Document type/type de document SSM Distribution/distribution see next page a ESOC DOPS-ESTR-OPS-MAN-1001- OPS-ONN EFM Issue 1 Rev 1 European Space Operations Centre - Robert-Bosch-Strasse 5, 64293 Darmstadt - Germany Final 2008-09-19.doc Tel. (49) 615190-0 - Fax (49) 615190 495 www.esa.int ESTRACK Facilities Manual (EFM) issue 1 revision 1 - 19/09/2008 s DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2page ii of ii Distribution/distribution D/EOP D/EUI D/HME D/LAU D/SCI EOP-B EUI-A HME-A LAU-P SCI-A EOP-C EUI-AC HME-AA LAU-PA SCI-AI EOP-E EUI-AH HME-AT LAU-PV SCI-AM EOP-S EUI-C HME-AM LAU-PQ SCI-AP EOP-SC EUI-N HME-AP LAU-PT SCI-AT EOP-SE EUI-NA HME-AS LAU-E SCI-C EOP-SM EUI-NC HME-G LAU-EK SCI-CA EOP-SF EUI-NE HME-GA LAU-ER SCI-CC EOP-SA EUI-NG HME-GP LAU-EY SCI-CI EOP-P EUI-P HME-GO LAU-S SCI-CM EOP-PM EUI-S HME-GS LAU-SF SCI-CS EOP-PI EUI-SI HME-H LAU-SN SCI-M EOP-PE EUI-T HME-HS LAU-SP SCI-MM EOP-PA EUI-TA HME-HF LAU-CO SCI-MR EOP-PC EUI-TC HME-HT SCI-S EOP-PG EUI-TL HME-HP SCI-SA EOP-PL EUI-TM HME-HM SCI-SM EOP-PR EUI-TP HME-M SCI-SD EOP-PS EUI-TS HME-MA SCI-SO EOP-PT EUI-TT HME-MP SCI-P EOP-PW EUI-W HME-ME SCI-PB EOP-PY HME-MC SCI-PD EOP-G HME-MF SCI-PE EOP-GC HME-MS SCI-PJ EOP-GM HME-MH SCI-PL EOP-GS HME-E SCI-PN EOP-GF HME-I SCI-PP EOP-GU HME-CO SCI-PR -
European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview. -
The International Astronautical Federation (IAF)
www.iac2008.co.uk Call for papers & registration of Interest Contents Welcome by the President of the British Interplanetary Society .......................................... 02 Message from the President of the IAF .................................................................................. 03 Message from the Chairman of the Local Organising Committee ........................................ 03 Message from the IPC Co-Chairs ............................................................................................ 04 The International Astronautical Federation (IAF).................................................................... 05 IAF Member Organisations ...................................................................................................... 06 The International Academy of Astronautics (IAA).................................................................... 09 The International Institute of Space Law (IISL) ...................................................................... 09 The Technical Programme - Summary of IAC sessions ........................................................ 10 The Technical Programme - by Category................................................................................ 14 Instructions for submitting an abstract .................................................................................. 34 How to submit an abstract ...................................................................................................... 35 Welcome to the IAF web site user restricted area................................................................. -
Cleaning the Dishes 29 November 2019
Cleaning the dishes 29 November 2019 activities. "This was the first time such an operation was conducted on an ESA deep space antenna, and despite its complexity, all involved teams managed to conduct the activity smoothly returning the antenna to service within just a week." Scheduled maintenance of high-tech equipment also took place while the antenna power was off, as well as a series of frequency and timing enhancements, an upgrade of data routers and the installation of a new safety rail. Credit: ESA / Suzy Jackson On 6 November, during the antenna maintenance, the New Norcia site was visited by Hon. Kim Beazley AC, formerly Deputy Prime Minister and current Governor of Western Australia. Large antennas are our only current way of communicating through space across vast What are we looking at? distances, and every now and then they need to be spruced up to ensure we can keep in touch with The New Norcia station in Western Australia is one our deep-space exploration spacecraft. of three deep-space dishes in ESA's ESTRACK network. Early this November, ESA's Deep Space Antenna in New Norcia, Australia, was subject to major New Norcia currently supports several flying maintenance, with a wide range of updates spacecraft such as BepiColombo, Cluster, Gaia, implemented to keep it in pristine order. Mars Express and XMM. It will also support many of ESA's future missions including JUICE, Solar To communicate with ESA's fleet of spacecraft, the Orbiter and Euclid. position of the antenna needs to be controlled with high accuracy. The huge 35-metre diameter You can now find out which spacecraft these construction relies on gearboxes to alter its antennas are talking to at any moment, as well as position, offering sweeping views of every inch of other dishes in the network, with ESTRACK now. -
MSM CD Contents
number 2, march 2000 on station The Newsletter of the Directorate of Manned Spaceflight and Microgravity in this issue A Year of Milestones foreword A Year of Milestones Jörg Feustel-Büechl Jörg Feustel-Büechl ESA Director of Manned Spaceflight and Microgravity ESA Director of Manned Spaceflight and Microgravity We can be certain that this is a crucial columbus year for the International Space Station, Columbus: the First Milestone 4 both in respect of the programme’s global partnership and of the many events of recent & relevant considerable importance for our European News 6 part of the programme. Globally, we are now looking forward to era the launch of Russia’s ‘Zvezda’ Service Europe’s Robotic Arm 10 Module which was originally expected to Richard H. Bentall appear last year but, owing to Proton launcher problems, was postponed. Now the Space Station Partners have agreed on a launch microgravity window of 8-14 July from the Baikonur Cosmodrome. It marks an Biolab 12 important milestone in Space Station history because it will open up Pierfilippo Manieri opportunities for the first experiments aboard the Station and provide the first permanent manned capability. Continuous zvezda occupation will be achieved in the following missions before the end New Star in Orbit 14 of this year with a crew of three astronauts, taking the Station into its Christian Feichtinger operational phase even though there are many more missions to come before assembly is completed. foton-12 results These two major events will allow us to begin the New Stone, Survival & Yeast Millennium with real progress in our global partnership! experiments 17 Of course, ESA can be proud of its major contribution to this Zvezda module: the Data Management System (DMS-R) will control simulation Russia’s station elements, and provide guidance and navigation for Preparing for Space 20 the whole orbital complex. -
Download the SSP16 Program Handbook
International Space University Space Studies Program 2016 Program Handbook Design and edit: Zhuoyan Lu with contributions from SSP Team, Local Organizing Committee, Chairs, and Faculty Image courtesy: ISU and Technion (unless otherwise specified) Poster/Cover design: Mr. Omri Tal Information reflects planning as of 9 July, 2016 Changes may occur depending upon availability of personnel and resources SSP16 website: ssp16.isunet.edu ISU website: www.isunet.edu 1 ISU SSP16 is supported at different levels by the following organizations: Major Sponsors European Astronaut Centre (EAC) Adelis Foundation Gilat Satellite Networks Ltd. Axiom Space LLC Haifa University Haifa Municipality ImageSat International (ISI) Israel Aerospace Industries Ltd. Israel Oceanographic and Limnologic Research Institute Lockheed Martin Corporation Japanese Aerospace Exploration Agency (JAXA) The Aerospace Corporation Korean Airforce Kyushu Institute of Technology LOC Precision Rocketry Program Supported by Magellan Aerospace Corporation The Boeing Company ManSat LLC Centre National d’Etudes Spatiales (CNES) Massachusetts Institute of Technology (MIT) China Space Foundation (CSF) Mission Control Space Services Inc. China Aerospace Science & Technology Corporation (CASC) Moon Express European Space Agency (ESA) MOONA - A Space for Change Ilan Ramon Foundation NanoRacks LLC Indian Space Research Organisation (ISRO) Norwegian University of Science and Technology Israel Space Agency (ISA) Odyssey Space Research National Aeronautics and Space Administration (NASA) ORBIT Communication Systems Ltd. UK Space Agency (UKSA) Orbital ATK Planet Labs Host Institution Provectus Robotics Solutions Israel Institute of Technology - Technion Royal Canadian Air Force Asher Space Research Institute Royal Military College of Canada Secure World Foundation (SWF) Sponsor Singularity University SES Deutsches Zentrum fur Luft und Raumfahrt (DLR) SNECMA El Al Israel Airlines Ltd. -
Reliability of a New Test Battery for Fitness Assessment of the European
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Petersen et al. Extrem Physiol Med (2015) 4:12 DOI 10.1186/s13728-015-0032-y RESEARCH Open Access Reliability of a new test battery for fitness assessment of the European Astronaut corps Nora Petersen1,2,5*, Lutz Thieschäfer3, Lori Ploutz‑Snyder4, Volker Damann2 and Joachim Mester5 Abstract Background: To optimise health for space missions, European astronauts follow specific conditioning programs before, during and after their flights. To evaluate the effectiveness of these programs, the European Space Agency conducts an Astronaut Fitness Assessment (AFA), but the test–retest reliability of elements within it remains unex‑ amined. The reliability study described here presents a scientific basis for implementing the AFA, but also highlights challenges faced by operational teams supporting humans in such unique environments, especially with respect to health and fitness monitoring of crew members travelling not only into space, but also across the world. The AFA tests assessed parameters known to be affected by prolonged exposure to microgravity: aerobic capacity (VO2max), mus‑ cular strength (one repetition max, 1 RM) and power (vertical jumps), core stability, flexibility and balance. Intraclass correlation coefficients (ICC3.1), standard error of measurement and coefficient of variation were used to assess relative and absolute test–retest reliability. Results: Squat and bench 1 RM (ICC3.1 0.94–0.99), hip flexion (ICC3.1 0.99) and left and right handgrip strength (ICC 0.95 and 0.97), showed the highest= test–retest reliability, followed= by VO (ICC 0.91), core strength 3.1 = 2max 3.1 = (ICC3.1 0.78–0.89), hip extension (ICC3.1 0.63), the countermeasure (ICC3.1 0.76) and squat (ICC3.1 0.63) jumps,= and single right- and left-leg jump= height (ICC 0.51 and 0.14). -
Human Crew-Related Aspects for Astrobiology Research
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at VU International Journal of Astrobiology http://journals.cambridge.org/IJA Additional services for International Journal of Astrobiology: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here Human crewrelated aspects for astrobiology research Cora S. Thiel, Vladimir Pletser and Bernard Foing International Journal of Astrobiology / Volume 10 / Special Issue 03 / July 2011, pp 255 267 DOI: 10.1017/S1473550411000152, Published online: 18 May 2011 Link to this article: http://journals.cambridge.org/abstract_S1473550411000152 How to cite this article: Cora S. Thiel, Vladimir Pletser and Bernard Foing (2011). Human crewrelated aspects for astrobiology research. International Journal of Astrobiology, 10, pp 255267 doi:10.1017/S1473550411000152 Request Permissions : Click here Downloaded from http://journals.cambridge.org/IJA, IP address: 130.37.129.78 on 26 Oct 2012 International Journal of Astrobiology 10 (3): 255–267 (2011) 255 doi:10.1017/S1473550411000152 © Cambridge University Press 2011 Human crew-related aspects for astrobiology research Cora S. Thiel1, Vladimir Pletser2 and Bernard Foing3 1Institute of Medical Physics and Biophysics, CeNTech, University of Muenster, Heisenbergstrasse 11, D-48149 Muenster, Germany e-mail: [email protected] 2Human Space Flight Directorate, European Space Agency, ESTEC, P.O. Box 299, NL-2200 AG, Noordwijk, The Netherlands 3Science and Robotic Exploration Directorate and International Lunar Exploration Working Group (ILEWG), European Space Agency, ESTEC, P.O. Box 299, NL-2200 AG, Noordwijk, The Netherlands Abstract: Several space agencies and exploration stakeholders have a strong interest in obtaining information on technical and human aspects to prepare for future extra-terrestrial planetary exploration.