Cracow Epiphany Conference, 5-8 January 2010
Total Page:16
File Type:pdf, Size:1020Kb
Selected topics in theoretical neutrino physics Cracow Epiphany Conference, 5-8 January 2010 Marek Zrałek, University of Silesia Outline Introduction Neutrinos in the Standard Model (SM) Experimental facts νπθν∞ Neutrinos in the SM with small ν mass Neutrinos beyond the SM Conclusions and perspectives 1) INTRODUCTION – What is behind us? Neurinos always give a new and unexpected informations about elementary interactions In 1930, Pauli, remedy for the energy crisis observed in the beta decay, In 1934, Fermi, neutrinos were used to construct the first theory of week interaction – Fermi theory for beta decay, Majorana in 1937, particles which are the same as their antiparticles can exist – Majorana particles, Lee & Yang (1956), Wu (1957) - P and C symmetries are broken in Nature, 3 Gargamelle (1973), neutral currents exist – first indication about Z boson, (Years 60-70), neutrinos are parts of the leptons doublets – Glashow, Weinberg and Salam - the unified model of electromagnetic and week interaction was created – the Model Standard, In 1987 neutrinos from the supernova SN87A were observed – the theory of supernova explosion was confirmed, In In LEP, 1989, in Z decay - first observation that only three generations of quarks and leptons exist in Nature, 4 1956 3 7 8 8 2 9 2 1960 9 1 4 Between 1998 and 2003 – solar neutrino 2 6 3 20 4 18 problem was resolved – first independent proof 5 12 6 9 that Bethe model of energy creation in stars – 7 9 8 29 9 70 hydrogen nucleosynthesis - is correct 1970 91 1 81 2 92 3 132 4 196 5 245 6 311 7 298 Superkamiokande, in 1998, first real 8 367 9 311 1980 432 confirmation that atmospheric neutrinos 1 412 2 318 3 227 oscillate – neutrinos are massive particles – 4 375 5 344 6 541 the Standard Model has to be extended 7 598 8 498 9 449 1990 481 1 536 2 693 3 540 4 540 5 563 6 591 7 642 How to extend 8 876 9 1006 JJaak 2000 1195 1 1155 2 1119 the Standard Model???? 3 1168 4 1001 5 1031 6 10945 7 829 8 613 Neutrinos in the Standard Model ♳ Neutrinos are massless ♴ There are three neutrino flavours ♵ Left – handed interactions In the SM 1) There is no RH neutrinos 2) There is only one Higgs doublet of SU(2)L, 3) Theory is renormalizable, 4) Non-perturbative effects do not introduce mν As a consequence: F.Reines & C. Cowan (1956) - ν νe, e There are three M. Schwartz, L. Lederman, J. flavour neutrinos: νµ , Steinberger (1962) – νµ ντ DONAT Collaboration in Fermilab (2000) - ν . Distinguished by µ three flavour numbers Le,Lµ ,Lτ From Z0 decay- LEP- there are only three flavour neutrinos Neutrino interaction in the Standard Model e µ + LCC = ∑ ναγ (1− γ 5 )lαWµ + h.c. 2 2 sinθW α =e,µ,τ e µ LCC = ∑ ναγ (1− γ 5 )να Zµ 4sinθW cosθW α =e,µ,τ As a consequence: 1. There is no lepton mixing, 2. There is no CP violation in the lepton sector, 3. In electromagnetic structure - only charge radius r 2 , 4. Neutrinos are stable. What we know from experiments?? ♳ Neutrino masses, ♴ Neutrino mixing, ♵ What must to be measured? C. Amsler et al. 1) We know masses of charged leptons Particle Data Group, 2009 me = 0.510998910 ± 0.000000013 MeV, Δme = 0.013 eV, mµ = 105.6583668 ± 0.0000038 MeV, Δmµ = 3.8 eV, mτ = 1776.84 ± 0.17 MeV Δmτ = 170000.0 eV 2) Neutrino masses we know indirectly m1 = 0.0 From tritium 2 2 +0.00008 beta decay Uei mi ≤ 2 eV m2 = 0.00871−0.00012 eV m3 = 0.0501± 0.0013eV 2 +0.14 −5 2 From Δm21 = (7.59−0.21 ) ×10 eV oscillation experiments 2 −3 2 Δm32 = (2.43 ± 0.13) ×10 eV −iδ ⎛ c c c s s e ⎞⎛ iφ1 ⎞ ⎜ 13 12 13 12 13 ⎟ e 0 0 iδ iδ U ⎜ iφ2 ⎟ = ⎜ −s12c23 − c12s13s23e c12c23 − s12s13s23e c13s23 ⎟ 0 e 0 ⎜ ⎟⎜ ⎟ ⎜ iδ iδ ⎟⎜ ⎟ ⎝ s12s23 − c12s13c23e −c12s23 − s12s13c23e c13c23 ⎠⎝ 0 0 1 ⎠ From oscillation experiments: 2 Small neutrino sin (2θ12 ) = 0.87 ± 0.03 masses and two 2 large mixing sin (2θ23 ) > 0.92 angles contrast sharply with the 2 sin (2θ13 ) < 0.19 quark masses and their mixing δ, φ1, φ2 = ??? angles Good motivation in the search for the origin of quarks and lepton flavour – a resurgence of interest in this subject D. A. Eby, P. H. Frampton and S. Matsuzaki, arXiv:0907.3425 [hep-ph]; F. Bazzocchi and I. de Medeiros Varzielas, arXiv:0902.3250 [hep- ph]; A. Blum and C. Hagedorn, Nucl. Phys. B 821 (2009) 327 [arXiv:0902.4885 [hep-ph]]; G. Altarelli and D. Meloni, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620 [hep-ph]]; G. Altarelli, F. Feruglio and L. Merlo, JHEP 0905 (2009) 020 [arXiv:0903.1940 [hep-ph]]; L. Merlo, arXiv:0907.1781 [hep-ph]; S. Goswami, S. Khan and W. Rodejohann, arXiv:0905.2739 [hep-ph];M. Mitra and S. Choubey, Phys. Rev. D 78 (2008) 115014 [arXiv:0806.3254 [hep-ph]]; L. L. Everett and A. J. Stuart, arXiv:0812.1057 [hep-ph]; K. S. Babu and Y. Meng, arXiv:0907.4231 [hep-ph]; P. H. Frampton, S. T. Petcov and W. Rodejohann, Nucl. Phys. B 687 (2004) 31 [arXiv:hep-ph/ 0401206]; F. Plentinger and W. Rodejohann, Phys. Lett. B 625 (2005) 264 [arXiv:hep-ph/0507143]; R. N. Mohapatra and W. Rodejohann, Phys. Rev. D 72 (2005) 053001 [arXiv:hep-ph/0507312]; K. A. Hochmuth, S. T. Petcov and W. Rodejohann, arXiv:0706.2975 [hepph]; T. Ohlsson and G. Seidl, Nucl. Phys. B 643 (2002) 247 [arXiv:hep-ph/0206087]; E.Ma and G. Rajasekaran, Phys. Rev. D 64 (2001) 113012 [arXiv:hep-ph/0106291]; E.Ma, arXiv:0709.0507 [hep-ph]; E. Ma, arXiv:hep-ph/0701016; E. Ma, Mod. Phys. Lett. A 22 (2007) 101 [arXiv:hep-ph/0610342]; E. Ma, Mod. Phys. Lett. A 21 (2006) 2931 [arXiv:hep-ph/0607190]; E. Ma, Mod. Phys. Lett. A 21 (2006) 1917 [arXiv:hep-ph/0607056]; E. Ma, H. Sawanaka and M. Tanimoto, Phys. Lett. B 641 (2006) 301 [arXiv:hep-ph/0606103]; E. Ma, Phys. Rev. D 73 (2006) 057304; B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638 (2006) 345 [arXiv:hep-ph/0603059]; E. Ma, Mod. Phys. Lett. A 20 (2005) 2601 [arXiv:hep-ph/0508099]; E. Ma, Phys. Rev. D 72 (2005) 037301 [arXiv:hep-ph/0505209]; S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724 (2005) 423 [arXiv:hep-ph/0504181]; E.Ma, Phys. Rev. D 70 (2004) 031901 [arXiv:hep-ph/0404199]; F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Nucl. Phys. B 775 (2007) 120 [arXiv:hep-ph/0702194]. C. Luhn, S. Nasri and P. Ramond, Phys. Lett. B 652 (2007) 27 [arXiv:0706.2341 [hep-ph]]; F. Plentinger and G. Seidl, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889 [hep-ph]]; C. Csaki, C. Delaunay, C. Grojean and Y. Grossman, arXiv:0806.0356 [hep-ph]; M.-C. Chen and K. T. Mahanthappa, Phys. Lett. B 652 (2007) 34 [arXiv:0705.0714 [hep-ph]]; M.-C. Chen and K. T. Mahanthappa, arXiv:0710.2118 [hep-ph];M.-C. Chen and K. T.Mahanthappa, arXiv:0812.4981 [hep-ph]; R. N.Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639 (2006) 318 [arXiv:hep-ph/0605020]; R. N. Mohapatra and H. B. Yu, Phys. Lett. B 644 (2007) 346 [arXiv:hep-ph/ 0610023]; X. G. He, Nucl. Phys. Proc. Suppl. 168 (2007) 350 [arXiv:hep-ph/0612080]; A. Aranda, arXiv:0707.3661 [hep-ph]; A. H. Chan, H. Fritzsch and Z. z. Xing, arXiv:0704.3153 [hep-ph]; Z. z. Xing, Phys. Lett. B 618 (2005) 141 [arXiv:hep-ph/0503200]; Z. z. Xing, H. Zhang and S. Zhou, Phys. Lett. B 641 (2006) 189 [arXiv:hep-ph/0607091]; S. K. Kang, Z. z. Xing and S. Zhou, Phys. Rev. D 73 (2006) 013001 [arXiv:hep-ph/0511157]; S. Luo and Z. z. Xing, Phys. Lett. B 632 (2006) 341 [arXiv:hep-ph/0509065]; M. Hirsch, E. Ma, J. C. Romao, J. W. F. Valle and A. Villanova del Moral, Phys. Rev. D 75 (2007) 053006 [arXiv:hep-ph/0606082]; N. N. Singh, M. Rajkhowa and A. Borah, arXiv:hep-ph/0603189; X. G. He and A. Zee, Phys. Lett. B 645 (2007) 427 [arXiv:hep-ph/0607163]; N. Haba, A. Watanabe and K. Yoshioka, Phys. Rev. Lett. 97 (2006) 041601 [arXiv:hep-ph/0603116]; Z. z. Xing, Phys. Lett. B 533 (2002) 85 [arXiv:hep-ph/ 0204049]; Y. Lin, Nucl. Phys. B 813 (2009) 91 [arXiv:0804.2867[hep-ph]]; L. Yin, arXiv:0903.0831 [hep-ph]. We do not know!! A)The neutrino mass scheme: ✰ Mass hierarchy ✰ Inverse mass hierarchy ✰ Degenerate B) Neutrino nature - Dirac or Majorana C) Are the CP symmetry violated or no, phases ✰ Dirac - δ, ✰ Majorana - α1, α2 D) Is mixing angle θ13 different from zero Neutrinos in the New Standard Model (νSM) ♳ Neutrino mass terms, ♴ Mössbauer neutrinos, ♵ GSI anomaly. Since 1998 we know that neutrinos are massive -- what kind of mass term we have to add to the SM? D Dirac mass? mi (νiRνiL + νiLνiR ) M c c L m (ν ν + ν ν ) or Majorana Li iR iL iL iR D mass?? m ( ) M c c i νiRνiL + νiLνiR MmLi (νc iRνiL + νiLν ciR ) R mRi (ν iLνiR + νiRν iL ) So in the frame of the new Standard Model For three (νSM) neutrinos: W obecnie prowadzonych eksperymentach In the present experiments:m E m E i i Practical Dirac – Majorana Confusion Theorem Differences in all observables for the Dirac and Majorana neutrinos smoothly vanish for mν → 0 Durinng last two years two important properties of „neutrino oscillation” were discused: • Mössbauer Neutrinos, • Anomaly observed in the GSI W.M.Visscher, 1959 MÖSSBAUER NEUTRINOS W.P.