Benzylidene Cyclopentanone Derivatives As Inhibitors of Rat Liver Glutathione S-Transferase Activities

Total Page:16

File Type:pdf, Size:1020Kb

Benzylidene Cyclopentanone Derivatives As Inhibitors of Rat Liver Glutathione S-Transferase Activities Indo. J. Chem., 2005, 5 (1), 71 - 75 71 BENZYLIDENE CYCLOPENTANONE DERIVATIVES AS INHIBITORS OF RAT LIVER GLUTATHIONE S-TRANSFERASE ACTIVITIES Sudibyo Martono Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia Received 11 November 2004; Accepted 3 January 2005 ABSTRACT The effect of the curcumin analogues, 2,6-bis-(4-hydroxy-3-methoxy benzylidene) cyclopentanone (B1) and two of its derivatives on µ class glutathione S-transferases (GSTs) from phenobarbital-induced and uninduced rat liver cytosol has been studied to elucidate their anti-inflammatory activity. GST activity was monitored spectrophotometrically using 1,2-dichloro-4-nitrobenzene. B1 was the most potent inhibitor of GSTs, both in uninduced and in phenobarbital-induced rat liver cytosol. These inhibitory properties might be explained as part of the anti-inflammatory activity of benzylidene cyclopentanone derivatives (B1 and B12). Keywords: curcumin; benzylidene cyclopentanone; inhibitory potency; glutathione S-transferases mesoporous INTRODUCTION soluble. This results in the protection of cellular macromolecules from xenobiotics [7]. Another Non-steroid anti-inflammatory drugs (NSAIDs) activity of GSTs is the conversion of leukotriene A4 are active through inhibition of glutathione S- to leukotriene C4 [8]. Leukotrienes are oxidation transferases (GSTs). Curcumin is an established products of arachidonic acid metabolism via the NSAID [1], but there is potential for improved lipoxygenase pathway [9]. products with higher potency and stability based on Inhibition of GSTs affects a large number of synthetic analogues. Curcumin [bis-(4-hydroxy-3- endogenous processes. For example, the anti- methoxy phenyl)-1,6-diene-3,5-dione] (Figure 1) is inflammatory drug sulfasalazine inhibits formation of a yellow dye derived from the rhizome of Curcuma leukotriene C4, by inhibiting both leukotriene C longa L [2] and is relatively unstable in phosphate synthase and several GST isoenzymes [10]. Another buffer at pH 7.4 [3]. However, the stability of anti-inflammatory drug, indomethacin, is a moderate curcumin can be improved by lowering the pH or by inhibitor of α, µ, and π GSTs [11; 12]. Curcumin adding glutathione, N-acetyl L-cysteine, ascorbic strongly inhibits leukotriene B4 formation in rat acid, rat liver microsomes or rat liver cytosol [4]. peritoneal polymorphonuclear neutrophils [13] due to Photosensitivity of curcumin has been reported by inhibition of lipoxygenase and cyclooxygenase Tonnesen et al. [5], and Dahl et al. [6]. activity [14] and also inhibition of α, µ, and π GST Glutathione S-transferases are a family of activity [4; 15; 16] as measured with 1-chloro-2,4- multifunctional isoenzymes that catalyze the dinitrobenzene (CDNB). During inflammation, GSTs conjugation of glutathione (GSH) with electrophilic are also involved in the formation of inflammation compounds, thereby neutralizing their electrophilic mediators such as prostaglandin [17] and sites and rendering the products more water- leukotriene [8]. O OH HO OH OCH H3CO 3 Fig 1 Curcumin [bis-(4-hydroxy-3-methoxy phenyl)-1,6-diene-3,5-dione] Sudibyo Martono 72 Indo. J. Chem., 2005, 5 (1), 71 - 75 R1 O R1 HO OH R2 R2 R1 = -H, R2 = -OCH3 : 2,5-bis-(4-hydroxy-3-methoxy benzylidene) cyclo-pentanone = B1 R1 = -CH3, R2 = -CH3 : 2,5-bis-(4-hydroxy-3,5-dimethyl benzylidene) cyclo-pentanone = B11 R1 = -C2H5, R2 = -C2H5 : 2,5-bis-(4-hydroxy-3,5-diethyl benzylidene) cyclo-pentanone = B12 Fig 2 Structures analogues of curcumin In a preliminary study, analogues of curcumin, use. Protein concentrations were determined using such as 2,5-bis-(4-hydroxy-3-methoxy benzylidene) a bovine serum albumin standard [21]. cyclopentanone were about 6 times more potent GST activity was measured spectrophoto- than curcumin in inhibiting rat liver cytosolic GSTs. metrically using DCNB [22]. The reaction mixtures In these experiments, 1,2-dichloro-4-nitrobenzene contained 17.5 µL of liver cytosol from either rats (DCNB) was used as a specific substrate for µ class pretreated with phenobarbital, or from untreated GSTs. Benzylidene cyclopentanone (Figure 2) is a rats, along with 10.0 µL of 50 mM ethanolic DCNB, known anti-inflammatory compound [18] and so we and 75 µL of 50 mM GSH. The mixtures was made synthesized 2,5-bis-(4-hydroxy-3-methoxy up to 750 µL using 0.1 M potassium phosphate benzylidene) cyclopentanone and its derivatives by buffer pH 7.5. In inhibition studies, 7.5 µL samples changing the acetyl acetone group in the centre of of inhibitors in ethanol were preincubated for 4 min the curcumin molecule with a cyclopentanone group before GSH and DCNB were added. In the kinetic [19]. This paper presents the results of inhibition studies, the following concentration of DCNB in the studies of the compounds on GST activity. final incubation mixtures were used: 1; 0.67; 0.50; . 0.40; 0.33; and 0.285 mM. All of the EXPERIMENTAL SECTION concentrations of inhibitor studied were kept lower than 50 µM in the final incubation mixture due to Materials their low water solubility. All treatments were 1,2-Dichloro-4-nitrobenzene (CDNB) was replicated 4 times. obtained from Aldrich Chemie (Beerse, Belgium), reduced glutathione (GSH), and bovine serum Analysis albumin were purchased from Sigma Chemical Co. IC50 values (concentration of inhibitor (St Louis, MO). All solvents and buffer components resulting in a 50 % reduction of GST-activity) were used were obtained from E. Merck (Darmstadt, obtained from regression analysis of concentration Germany). Curcumin was synthesized according to of inhibitor vs % of inhibition at fixed concentrations Pabon [20]. 2,5-bis-(4-hydroxy-3-methoxy of DCNB (0.67 mM) or GSH (5 mM). The values of benzylidene) cyclopentanone (B1), 2,5-bis-(4- Vmax, Km, Ki and the type of inhibition were hydroxy-3,5-dimethyl benzylidene) cyclopentanone determined according to [23] and [24]. (B11) and 2,5-bis-(4-hydroxy-3,5-diethyl benzylidene) cyclopentanone (B12) (Figure 2) were kindly given by RESULTS AND DISCUSSION Dr. Sardjiman, from the Faculty of Pharmacy, Gadjah Mada University, Yogyakarta, Indonesia. Inhibitory effects were strongly correlated with Stock solutions of curcumin and its analogues were concentration of curcumin and the analogues B1 prepared at 10 mM in dimethylsulfoxide (DMSO). and B12 (p > 0.001; r > 0.94) for GSTs from both These were diluted in ethanol before use to give the uninduced (GST-N) and phenobarbital-induced appropriate working concentrations. (GST-PB) rat liver cytosol. For B11, there was no strong correlation between concentration and Inhibition Studies inhibitory effect. However, there was some Male Wistar rats (210-230 g) from the inhibitory activity of B11 on both GSTs from laboratory of Pharmacology and Toxicology, Faculty uninduced and phenobarbital-induced rat liver. At of Pharmacy, Gadjah Mada University, Yogyakarta, an inhibitor concentration of 10 µM, the relative Indonesia, were used to obtain GSTs following inhibitory effects were 53.6% (for curcumin), 79.9% treatment with or without phenobarbital. GSTs were (for B1), 25.6% (for B11), and 26.9% (for B12) isolated from uninduced and phenobarbital-induced relative to controls. rat liver cytosol [4] and then stored at – 80 oC until The IC50 values of curcumin, B1 and B12 were 9.6, 2.7 and 43.5 µM (for uninduced GST), while Sudibyo Martono Indo. J. Chem., 2005, 5 (1), 71 - 75 73 corresponding IC50 values for phenobarbital-induced leucotriene from arachidonic acid [8]. Modulation of rat liver were 12.2, 2.5 and 54.7 µM respectively. GST-activity can be used for controlling such These results showed that compound B1 was the compounds [27]. The use of a GST inhibitor, most potent inhibitor of GST activity. together with a cytostatic drug, is a strategy for In the presence of curcumin and B1, all Vmax increasing therapeutic efficiency of the latter, as values decreased compared to controls, while Km some tumors show increasing GSH concentration values increased (Tables I and II). For compound and GST activity [28]. A role of GST in the B12, the Vmax values also decreased in the presence resistance to alkylating agents has also been of inhibitor, but the Km value decreased only slightly shown by the use of GST inhibitors. Inhibition of upon the addition of a low concentration of B12. The GST would thus be potentially beneficial in the Km value increased when a higher concentration of treatment of tumors [29]. Tew et al. [30] used B12 (Table III) was added. ethacrynic acid and piriprost as GST inhibitors to Inhibition of GSTs by curcumin and analogues enhance the cytotoxic action of alkylating agents in B1 and B12 have been shown here for the first time. drug resistance and sensitive cell lines. Further, Other plant phenols [25] and polyphenols [26] have ethacrinic acid treatment of patients with advanced been shown to be inhibitors of GSTs and they share cancer inhibited cellular GST-activity and increased a phenolic structure with the three compounds the plasma levels of the alkylating agent thiotepa showing inhibitory activity here. From a therapeutic [31]. Another inhibitor of GST, indomethacin, also point of view, inhibition of GST activity is important acts as an anti-inflammatory drug and potentiates as these enzymes are involved in drug resistance the cytotoxicity of chlorambucil in CHO cells and in the biosynthesis of prostaglandin and resistance to nitrogen mustards [11]. Table 1 Vmax, Km values in DCNB-GSH conjugation catalyzed by GST-N and GST-PB in the presence of curcumin
Recommended publications
  • Reduced 15-Lipoxygenase 2 and Lipoxin A4/Leukotriene B4 Ratio in Children with Cystic Fibrosis
    ORIGINAL ARTICLE CYSTIC FIBROSIS Reduced 15-lipoxygenase 2 and lipoxin A4/leukotriene B4 ratio in children with cystic fibrosis Fiona C. Ringholz1, Paul J. Buchanan1, Donna T. Clarke1, Roisin G. Millar1, Michael McDermott2, Barry Linnane1,3,4, Brian J. Harvey5, Paul McNally1,2 and Valerie Urbach1,6 Affiliations: 1National Children’s Research Centre, Crumlin, Dublin, Ireland. 2Our Lady’s Children’s Hospital, Crumlin, Dublin, Ireland. 3Midwestern Regional Hospital, Limerick, Ireland. 4Centre for Interventions in Infection, Inflammation and Immunity (4i), Graduate Entry Medical School, University of Limerick, Limerick, Ireland. 5Molecular Medicine Laboratories, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland. 6Institut National de la Sante´ et de la Recherche Me´dicale, U845, Faculte´ de Me´decine Paris Descartes, Paris, France. Correspondence: Valerie Urbach, National Children’s Research Centre, Crumlin, Dublin 12, Ireland. E-mail: [email protected] ABSTRACT Airway disease in cystic fibrosis (CF) is characterised by impaired mucociliary clearance, persistent bacterial infection and neutrophilic inflammation. Lipoxin A4 (LXA4) initiates the active resolution of inflammation and promotes airway surface hydration in CF models. 15-Lipoxygenase (LO) plays a central role in the ‘‘class switch’’ of eicosanoid mediator biosynthesis from leukotrienes to lipoxins, initiating the active resolution of inflammation. We hypothesised that defective eicosanoid mediator class switching contributes to the failure to resolve inflammation in CF lung disease. Using bronchoalveolar lavage (BAL) samples from 46 children with CF and 19 paediatric controls we demonstrate that the ratio of LXA4 to leukotriene B4 (LTB4) is depressed in CF BAL (p,0.01), even in the absence of infection (p,0.001).
    [Show full text]
  • Strict Regio-Specificity of Human Epithelial 15-Lipoxygenase-2
    Strict Regio-specificity of Human Epithelial 15-Lipoxygenase-2 Delineates its Transcellular Synthesis Potential Abigail R. Green, Shannon Barbour, Thomas Horn, Jose Carlos, Jevgenij A. Raskatov, Theodore R. Holman* Department Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz CA 95064, USA *Corresponding author: Tel: 831-459-5884. Email: [email protected] FUNDING: This work was supported by the NIH NS081180 and GM56062. Abbreviations: LOX, lipoxygenase; h15-LOX-2, human epithelial 15-lipoxygenase-2; h15-LOX-1, human reticulocyte 15-lipoxygenase-1; sLO-1, soybean lipoxygenase-1; 5-LOX, leukocyte 5-lipoxygenase; 12-LOX, human platelet 12-lipoxygenase; GP, glutathione peroxidase; AA, arachidonic acid; HETE, hydoxy-eicosatetraenoic acid; HPETE, hydroperoxy-eicosatetraenoic acid; diHETEs, dihydroxy-eicosatetraenoic acids; 5-HETE, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5-HPETE, 5-hydro peroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 12-HPETE, 12-hydroperoxy-5Z,8Z,10E, 14Z-eicosatetraenoic acid; 15-HPETE, 15-hydroperoxy-5Z,8Z,10Z,13E- eicosatetraenoic acid; 5,15-HETE, 5S,15S-dihydroxy-6E,8Z,10Z,13E-eicosatetraenoic acid; 5,15-diHPETE, 5,15-dihydroperoxy-6E,8Z,10Z,13E-eicosatetraenoic acid; 5,6- diHETE, 5S,6R-dihydroxy-7E,9E,11Z,14Z-eicosatetraenoic acid; LTA4, 5S-trans-5,6- oxido-7E,9E,11Z,14Z-eicosatetraenoic acid; LTB4, 5S,12R-dihydroxy-6Z,8E,10E,14Z- eicosatetraenoic acid; LipoxinA4 (LxA4), 5S,6R,15S-trihydroxy-7E,9E,11Z,13E- eicosatetraenoic acid; LipoxinB4 (LxB4), 5S,14R,15S-trihydroxy-6E,8Z,10E,12E- eicosatetraenoic acid. Abstract Lipoxins are an important class of lipid mediators that induce the resolution of inflammation, and arise from transcellular exchange of arachidonic acid (AA)- derived lipoxygenase products.
    [Show full text]
  • Maresin 1 Biosynthesis During Platelet–Neutrophil Interactions Is Organ-Protective
    Maresin 1 biosynthesis during platelet–neutrophil interactions is organ-protective Raja-Elie E. Abdulnoura,1, Jesmond Dallib,1, Jennifer K. Colbya, Nandini Krishnamoorthya, Jack Y. Timmonsa, Sook Hwa Tana, Romain A. Colasb, Nicos A. Petasisc, Charles N. Serhanb, and Bruce D. Levya,b,2 aPulmonary and Critical Care Medicine and bCenter for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115; and cDepartment of Chemistry, University of Southern California, Los Angeles, CA 90089 Edited by Derek William Gilroy, University College London, London, United Kingdom, and accepted by the Editorial Board October 10, 2014 (received for review April 17, 2014) Unregulated acute inflammation can lead to collateral tissue injury 12-lipoxygenase that may be capable of generating the 13S,14S- in vital organs, such as the lung during the acute respiratory distress epoxy-maresin intermediate and participating in MaR1 production syndrome. In response to tissue injury, circulating platelet–neutro- at sites of vascular inflammation. Here, we provide evidence for phil aggregates form to augment neutrophil tissue entry. These a MaR1 biosynthetic route during platelet–neutrophil interactions early cellular events in acute inflammation are pivotal to timely that is operative in vivo in a murine model of ARDS to restrain resolution by mechanisms that remain to be elucidated. Here, we inflammation and restore homeostasis of the injured lung. identified a previously undescribed biosynthetic route during hu- man platelet–neutrophil interactions for the proresolving mediator Results maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z- To determine if platelets can participate in vascular MaR1 bio- hexaenoic acid).
    [Show full text]
  • Role of Epigallocatechin, Resveratrol and Curcumin As Anti-Inflammatory and Anti-Tumoral Agents
    Open Access International Journal of Nutritional Sciences Review Article Role of Epigallocatechin, Resveratrol and Curcumin as Anti-Inflammatory and Anti-Tumoral Agents Giordano F, Mauro L, Naimo GD and Panno ML* Department of Pharmacy, Health and Nutritional Abstract Sciences, University of Calabria, Italy Inflammatory microenvironment plays a critical role in tumorigenesis *Corresponding author: Panno ML, Department of process as well as in chemoresistance. In response to tissue injury, inflammatory Pharmacy, Health and Nutritional Sciences, University of cytokines help to start and maintain carcinogenesis over time. Epidemiological Calabria, Cubo 4C, Via ponte P. Bucci, 87040 Arcavacata investigations have shown that the consumption of polyphenol-rich food reduces di Rende, Cosenza, Italy the oxidative cellular damage and in such way, it can exert protective effects against degenerative diseases and cancers. In addition, these compounds Received: March 01, 2018; Accepted: April 09, 2018; reduce proliferation, trigger apoptosis, modulate signal transduction and have Published: April 20, 2018 anti-inflammatory action. In this review we have focused the study on three polyphenolic compound-derivatives (EGCG, RES, CUR), going to show the molecular mechanism through which they antagonize the cancer – associated inflammation and the stem-cell chemoresistance. Keywords: Polyphenols; Chemoresistance; Inflammation; Citokines Introduction ancient times. Today, they represent a valid alternative, especially in some conditions, since many products, due to technological The assumption that the “right nutrition” keeps a healthy life is innovation, are meticulously studied and tested in their biological quite known and mostly reiterated in traditional medicine. In recent effects at the cellular and molecular level. This has made their use years, natural compounds are getting increasing interest suggesting more targeted and successful.
    [Show full text]
  • The Effects of Curcumin, Mangiferin, Resveratrol and Other Natural Plant
    The effects of curcumin, mangiferin, resveratrol and other natural plant products on aminopeptidase B activity Sandrine Cadel, Cécile Darmon, Alexandre Désert, Mouna Mahbouli, Christophe Piesse, Thanos Ghélis, René Lafont, Thierry Foulon To cite this version: Sandrine Cadel, Cécile Darmon, Alexandre Désert, Mouna Mahbouli, Christophe Piesse, et al.. The effects of curcumin, mangiferin, resveratrol and other natural plant products on aminopeptidase B activity. Biochemical and Biophysical Research Communications, Elsevier, 2019, 512 (4), pp.832-837. 10.1016/j.bbrc.2019.02.143. hal-02189376 HAL Id: hal-02189376 https://hal.sorbonne-universite.fr/hal-02189376 Submitted on 19 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The effects of curcumin, mangiferin, resveratrol and other natural plant products on aminopeptidase B activity * Sandrine Cadel a, ,Cecile Darmon a, Alexandre Desert a, Mouna Mahbouli a, Christophe Piesse b, Thanos Ghelis a,Rene Lafont a, Thierry Foulon a a Sorbonne Universite, Institut de Biologie Paris Seine (IBPS), Equipe Biogenese des Signaux Peptidiques (BIOSIPE), 75005, Paris, France b Sorbonne Universite, CNRS, Institut de Biologie Paris Seine (IBPS), Plate-forme Ingenierie des Proteines et Synthese Peptidique, 75005, Paris, France abstract þ Aminopeptidase B (Ap-B) is a Zn2 -aminopeptidase of the M1 family which is implicated, in conjunction with the nardilysin endoprotease, in the generation of miniglucagon, a peptide involved in the main- tenance of glucose homeostasis.
    [Show full text]
  • Inflammation, Cancer and Oxidative Lipoxygenase Activity Are Intimately Linked
    Cancers 2014, 6, 1500-1521; doi:10.3390/cancers6031500 OPEN ACCESS cancers ISSN 2072-6694 www.mdpi.com/journal/cancers Review Inflammation, Cancer and Oxidative Lipoxygenase Activity are Intimately Linked Rosalina Wisastra and Frank J. Dekker * Pharmaceutical Gene Modulation, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-5-3638030; Fax: +31-5-3637953. Received: 16 April 2014; in revised form: 27 June 2014 / Accepted: 2 July 2014 / Published: 17 July 2014 Abstract: Cancer and inflammation are intimately linked due to specific oxidative processes in the tumor microenvironment. Lipoxygenases are a versatile class of oxidative enzymes involved in arachidonic acid metabolism. An increasing number of arachidonic acid metabolites is being discovered and apart from their classically recognized pro-inflammatory effects, anti-inflammatory effects are also being described in recent years. Interestingly, these lipid mediators are involved in activation of pro-inflammatory signal transduction pathways such as the nuclear factor κB (NF-κB) pathway, which illustrates the intimate link between lipid signaling and transcription factor activation. The identification of the role of arachidonic acid metabolites in several inflammatory diseases led to a significant drug discovery effort around arachidonic acid metabolizing enzymes. However, to date success in this area has been limited. This might be attributed to the lack of selectivity of the developed inhibitors and to a lack of detailed understanding of the functional roles of arachidonic acid metabolites in inflammatory responses and cancer.
    [Show full text]
  • Emerging Role of Cysteinyl Leukotrienes in Cancer
    Emerging role of cysteinyl leukotrienes in cancer Lou Saier1 and Olivier Peyruchaud2 1INSERM U1033 2INSERM September 11, 2020 Abstract Cysteinyl leukotrienes (CysLTs) are inflammatory lipid mediators that play a central role in the pathophysiology of several inflammatory diseases. Recently, there has been an increased interest in determining how these lipid mediators orchestrate tumor development and metastasis through promoting a pro-tumoral microenvironment. Upregulation of CysLTs receptors and CysLTs production is found in a number of cancers and has been associated with increased tumorigenesis. Understanding the molecular mechanisms underlying the role of CysLTs and their receptors in cancer progression will help investigate the potential of targeting CysLTs signaling for anti-cancer therapy. This review gives an overview of the biological effects of CysLTs and their receptors, along with current knowledge of their regulation and expression. It also provides a recent update on the molecular mechanisms that have been postulated to explain their role in tumorigenesis and on the potential of anti-CysLTs in the treatment of cancer. KEYWORDS Cysteinyl leukotrienes, inflammation, cancer, metastasis INTRODUCTION Cysteinyl leukotrienes (CysLTs) are one of the major constituents of the eicosanoid family of bioactive in- flammatory lipid-mediators. They are rapidly generated at the site of inflammation in response to immuno- logical and nonimmunological stimuli following the release of arachidonic acid through the 5-lipoxygenase (5-LOX) pathway (Figure 1A). The term CysLTs includes leukotriene C4(LTC4), leukotriene D4(LTD4), and leukotriene E4(LTE4); they are structurally different from leukotriene A4 (LTA4) and leukotriene B4 (LTB4), which are commonly known as leukotrienes (LTs). Leukotrienes exhibit diverse biological effects such as contraction of bronchial smooth muscle, stimulation of vascular permeability, and attraction and activation of leukocytes (Hammarstr¨om,1983).
    [Show full text]
  • Leukotriene Biosynthetic Enzymes As Therapeutic Targets
    Leukotriene biosynthetic enzymes as therapeutic targets Jesper Z. Haeggström J Clin Invest. 2018;128(7):2680-2690. https://doi.org/10.1172/JCI97945. Review Series Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract — in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin. In activated immune cells, these enzymes assemble at the endoplasmic and perinuclear membrane, constituting a biosynthetic complex. This Review describes recent advances in our understanding of the components of the leukotriene-synthesizing enzyme machinery, emerging opportunities for pharmacological intervention, and the development of new medicines exploiting both antiinflammatory and pro-resolving mechanisms. Find the latest version: https://jci.me/97945/pdf REVIEW SERIES: LIPID MEDIATORS OF DISEASE The Journal of Clinical Investigation Series Editor: Charles N. Serhan Leukotriene biosynthetic enzymes as therapeutic targets Jesper Z. Haeggström Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, Stockholm, Sweden. Leukotrienes are powerful immune-regulating lipid mediators with established pathogenic roles in inflammatory allergic diseases of the respiratory tract — in particular, asthma and hay fever. More recent work indicates that these lipids also contribute to low-grade inflammation, a hallmark of cardiovascular, neurodegenerative, and metabolic diseases as well as cancer. Biosynthesis of leukotrienes involves oxidative metabolism of arachidonic acid and proceeds via a set of soluble and membrane enzymes that are primarily expressed by cells of myeloid origin.
    [Show full text]
  • For Extracellular Leukotriene A4 (Leukotrienes/Arachidonic Acid/Lipoxygenase/Neutrophils/Cellular Interactions) CLEMENS A
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 6632-6636, October 1985 Immunology Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4 (leukotrienes/arachidonic acid/lipoxygenase/neutrophils/cellular interactions) CLEMENS A. DAHINDEN*, ROBERT M. CLANCYt, MURIEL GROSSt, JACQUES M. CHILLERf, AND TONY E. HUGLIt§ *Institute of Clinical Immunology, Insel, University Hospital, 3000 Bern, Switzerland; tScripps Clinic and Research Foundation, 10666 North Torrey Pines Road IMM18, La Jolla, CA 92037; and tLilly Research Laboratories, 3252 Holiday Court, La Jolla, CA 92037 Communicated by Hans J. Muller-Eberhard, May 2, 1985 ABSTRACT The glutathione-containing leukotriene C4 tetraenoic acid (DiHETE) stereoisomers in aqueous solution (LTC4) is a major mediator of smooth muscle contraction and (9) under neutral or acidic pH conditions (Fig. 1). is released by mast cells when antigen interacts with cell-bound Largely because of its chemical instability, LTA4 has been IgE. Antigen-stimulated mast cells undergo phospholipase considered primarily as an intracellUlar leukotriene precur- activation. We report a pathway of LTC4 production by mast sor. Its presence was demonstrated in neutrophils after cell cells that does not require phospholipase activation but depends activation, but no attempt was made to determine if LTA4 is on the interaction of activated neutrophils with unstimulated released into the extracellular medium (9). Not all of the mast cells, using as an intermediate extracellular leukotriene LTA4 formed is converted to LTB4 by leukocytes, since in all A4 (LTA4). The epoxide LTA4 is released by neutrophils and, cases when LTB4 is detected in cell extracts one also together with leukotriene B4 and 5-hydroxyicosatetraenoic observes the biologically inactive 5,12-DiHETE stereoiso- acid, constitutes the major lipoxygenase metabolites found in mers (1-3), which are derived from hydrolyzed LTA4.
    [Show full text]
  • Inhibition of 5-Lipoxygenase Product Synthesis by Natural Compounds Of
    Inhibition of 5-Lipoxygenase Product Synthesis by Oliver Werz Natural Compounds of Plant Origin Review Abstract Abbreviations AA: arachidonic acid The biosynthesis of leukotrienes (LTs) is initiated by the transfor- CLP: coactosine-like potein mation of free arachidonic acid to LTA4 by 5-lipoxygenase (5-LO). COX: cyclooxygenase Subsequent enzymatic conversion of LTA4 yields LTB4 and the cy- GPCR: G protein-coupled receptor steinyl-LTs C4,D4 and E4. LTs have prominent functions in patho- GPX: glutathione peroxidase physiology and are connected to numerous disorders including GSH: glutathione bronchial asthma, allergic rhinitis, inflammatory bowel and skin FLAP: 5-lipoxygenase-activating protein diseases, rheumatoid arthritis, cancer, osteoporosis and cardiovas- H(P)ETE: hydro(pero)xyeicosatetraenoic acid cular diseases. Pharmacological and genetic interruption of the 5- iNOS: inducible nitric oxide synthase LO pathway or blockade of LT receptors, serving as means for inter- LO: lipoxygenase vention with LTs, may be of therapeutic value for certain related LOOH: lipid hydroperoxide disorders. Natural or plant-derived substances were among the LT: leukotriene first 5-LO inhibitors identified in the early 1980 s. To date, a huge MAPEG: membrane-associated proteins in eicosanoid and number of diverse plant-derived compounds have been reported glutathione metabolism to interfere with 5-LO product synthesis. However, many investi- MAPK: mitogen-activated protein kinase 1331 gations have addressed the efficacy of a given compound solely in NDGA:
    [Show full text]
  • The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5Xfad Mice
    International Journal of Molecular Sciences Article The Leukotriene Receptor Antagonist Montelukast Attenuates Neuroinflammation and Affects Cognition in Transgenic 5xFAD Mice Johanna Michael 1,2, Julia Zirknitzer 1,2, Michael Stefan Unger 1,2, Rodolphe Poupardin 2, Tanja Rieß 1,2, Nadine Paiement 3, Horst Zerbe 3, Birgit Hutter-Paier 4, Herbert Reitsamer 5 and Ludwig Aigner 1,2,6,* 1 Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] (J.M.); [email protected] (J.Z.); [email protected] (M.S.U.); [email protected] (T.R.) 2 Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] 3 IntelgenX Corp., Saint-Laurent, QC H4S 1Y2, Canada; [email protected] (N.P.); [email protected] (H.Z.) 4 QPS Neuropharmacology, 8074 Grambach/Graz, Austria; [email protected] 5 Research Program for Experimental Ophthalmology, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; [email protected] 6 Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria * Correspondence: [email protected]; Tel.: +43-(0)6-6224-2080-800; Fax: +43-(0)6-62-2420-80809 Citation: Michael, J.; Zirknitzer, J.; Abstract: Alzheimer’s disease (AD) is the most common form of dementia. In particular, neuroin- Unger, M.S.; Poupardin, R.; Rieß, T.; Paiement, N.; Zerbe, H.; Hutter-Paier, flammation, mediated by microglia cells but also through CD8+ T-cells, actively contributes to disease B.; Reitsamer, H.; Aigner, L.
    [Show full text]
  • Genome-Wide Association Study of Leukotriene Modifier Response In
    OPEN The Pharmacogenomics Journal (2016) 16, 151–157 © 2016 Macmillan Publishers Limited All rights reserved 1470-269X/16 www.nature.com/tpj ORIGINAL ARTICLE Genome-wide association study of leukotriene modifier response in asthma A Dahlin1, A Litonjua1,2, CG Irvin3, SP Peters4, JJ Lima5, M Kubo6, M Tamari6 and KG Tantisira1,2 Heterogeneous therapeutic responses to leukotriene modifiers (LTMs) are likely due to variation in patient genetics. Although prior candidate gene studies implicated multiple pharmacogenetic loci, to date, no genome-wide association study (GWAS) of LTM response was reported. In this study, DNA and phenotypic information from two placebo-controlled trials (total N = 526) of zileuton response were interrogated. Using a gene–environment (G × E) GWAS model, we evaluated 12-week change in forced expiratory volume in 1 second (ΔFEV1) following LTM treatment. The top 50 single-nucleotide polymorphism associations were replicated in an independent zileuton treatment cohort, and two additional cohorts of montelukast response. In a combined analysis (discovery +replication), rs12436663 in MRPP3 achieved genome-wide significance (P = 6.28 × 10 − 08); homozygous rs12436663 carriers showed a significant reduction in mean ΔFEV1 following zileuton treatment. In addition, rs517020 in GLT1D1 was associated with worsening responses to both montelukast and zileuton (combined P = 1.25 × 10 − 07). These findings implicate previously unreported loci in determining therapeutic responsiveness to LTMs. The Pharmacogenomics Journal (2016) 16, 151–157; doi:10.1038/tpj.2015.34; published online 2 June 2015 INTRODUCTION improved response to LTMs; in addition, regulatory variants in The leukotriene pathway is an important therapeutic target for CYSLT2 (but not CYSLT1) that were significantly associated with asthma therapy.
    [Show full text]