Apr May Working
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primer > PCR Measurements
PCR Measurements PCR Measurements 1,E-01 1,E-02 1,E-03 1,E-04 1,E-05 1,E-06 1,E-07 1,E-08 1,E-09 10-5 10-4 10-3 0,01 0,1 1 10 100 Drift limiting region Jitter limiting region PCR Measurements Primer New measurements in ETR 2901 Synchronizing the Components of a Video Signal Abstract Delivering TV pictures from studio to home entails sending various types of One of the problems for any type of synchronization procedure is the jitter data: brightness, sound, information about the picture geometry, color, etc. on the incoming signal that is the source for the synchronization process. and the synchronization data. Television signals are subject to this general problem, and since the In analog TV systems, there is a complex mixture of horizontal, vertical, analog and digital forms of the TV signal differ, the problems due to jitter interlace and color subcarrier reference synchronization signals. All this manifest themselves in different ways. synchronization information is mixed together with the corresponding With the arrival of MPEG compression and the possibility of having several blanking information, the active picture content, tele-text information, test different TV programs sharing the same Transport Stream (TS), a mechanism signals, etc. to produce the programs seen on a TV set. was developed to synchronize receivers to the selected program. This The digital format used in studios, generally based on the standard ITU-R procedure consists of sending numerical samples of the original clock BT.601 and ITU-R BT.656, does not need a color subcarrier reference frequency. -
A Century of WWV
Volume 124, Article No. 124025 (2019) https://doi.org/10.6028/jres.124.025 Journal of Research of the National Institute of Standards and Technology A Century of WWV Glenn K. Nelson National Institute of Standards and Technology, Radio Station WWV, Fort Collins, CO 80524, USA [email protected] WWV was established as a radio station on October 1, 1919, with the issuance of the call letters by the U.S. Department of Commerce. This paper will observe the upcoming 100th anniversary of that event by exploring the events leading to the founding of WWV, the various early experiments and broadcasts, its official debut as a service of the National Bureau of Standards, and its role in frequency and time dissemination over the past century. Key words: broadcasting; frequency; radio; standards; time. Accepted: September 6, 2019 Published: September 24, 2019 https://doi.org/10.6028/jres.124.025 1. Introduction WWV is the high-frequency radio broadcast service that disseminates time and frequency information from the National Institute of Standards and Technology (NIST), part of the U.S. Department of Commerce. WWV has been performing this service since the early 1920s, and, in 2019, it is celebrating the 100th anniversary of the issuance of its call sign. 2. Radio Pioneers Other radio transmissions predate WWV by decades. Guglielmo Marconi and others were conducting radio research in the late 1890s, and in 1901, Marconi claimed to have received a message sent across the Atlantic Ocean, the letter “S” in telegraphic code [1]. Radio was called “wireless telegraphy” in those days and was, if not commonplace, viewed as an emerging technology. -
R&D Report 1966-30
RESEARCH DEPARTMENT . Visibility of sound /chrominance pattern with the PAL system: dependence upon offset of intercarrier frequency and upon sound modulation RESEARCH REPORT No. G -102 UDC 621.391.837.41:621.397.132 1966/30 THE BRITISH BROADCASTING CORPORATION ENGINEERING DIVISION RESEARCH DEPARTMENT VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION Research Report No. 0-102 UDe 621.391.837.41: 1966/30 621.397.132 R.V. Harvey, B.Sc., A."1.I.E.E. for Head of Research Department This Report is the property of the British Broadcasting Corporation and may not be reproduced in any form without the written permission of the Corporation. TblB R~porl u~e8 SI units 1n ftctor daone with B .. 8. dO(lUII.8nt PD I'HJ86. Research Report No. 0-102 VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION Section Title Page SUMMARY .... 1 1. INTRODUCTION. 1 2. THE CHOICE OF A COLOUR SUBCARRIER FREQUENCY 1 3. THE CHOICE OF A SOUND CARRIER FREQUENCY. 2 4. ASSESSMENT OF PATTERN VISIBILITY WITH SOUND CARRIER OFFSET. 2 4.1. Experimental Procedure . 2 4.2. Dis~ussion of Experimental Results. 2 5. DETER\1INA TION OF THE OPTPvIU\1 INTER-CARRIER FREQUENCY AND ITS TOLERANCE ............................. 5 . 6. CONCLUSIONS . ....................... , ...... 5 7. REFERENCES. ............................... 5 June 1966 Research Report No. 0-102 UDe 621.391.837.41: 1966/30 621.397.132 VISIBILITY OF SOUND/CHROMINANCE PATTERN WITH THE PAL SYSTEM: DEPENDENCE UPON OFFSET OF INTERCARRIER FREQUENCY AND UPON SOUND MODULATION SUMMARY In order to minimize the visibility of the sound/chrominance beat pattern in compatible reception of PAL colour transmissions, an optimum sound/ vision intercarrier frequency may be specified, together with a frequency tolerance. -
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE and DIRECTORY of HF SERVICES
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE AND DIRECTORY OF HF SERVICES A Table of Contents INTRODUCTION KHF 950/990 COMMUNICATIONS TRANSCEIVER . .I SECTION I CHARACTERISTICS OF HF SSB WITH ALE . .1-1 ACRONYMS AND DEFINITIONS . .1-1 REFERENCES . .1-1 HF SSB COMMUNICATIONS . .1-1 FREQUENCY . .1-2 SKYWAVE PROPAGATION . .1-3 WHY SINGLE SIDEBAND IS IMPORTANT . .1-9 AMPLITUDE MODULATION (AM) . .1-9 SINGLE SIDEBAND OPERATION . .1-10 SINGLE SIDEBAND (SSB) . .1-10 SUPPRESSED CARRIER VS. REDUCED CARRIER . .1-10 SIMPLEX & SEMI-DUPLEX OPERATION . .1-11 AUTOMATIC LINK ESTABLISHMENT (ALE) . .1-11 FUNCTIONS OF HF RADIO AUTOMATION . .1-11 ALE ASSURES BEST COMM LINK AUTOMATICALLY . .1-12 SECTION II KHF 950/990 SYSTEM DESCRIPTION. .2-1 KCU 1051 CONTROL DISPLAY UNIT . .2-1 KFS 594 CONTROL DISPLAY UNIT . .2-3 KCU 951 CONTROL DISPLAY UNIT . .2-5 KHF 950 REMOTE UNITS . .2-6 KAC 952 POWER AMPLIFIER/ANT COUPLER .2-6 KTR 953 RECEIVER/EXITER . .2-7 ADDITIONAL KHF 950 INSTALLATION OPTIONS .2-8 SINGLE KHF 950 SYSTEM CONFIGURATION .2-9 KHF 990 REMOTE UNITS . .2-10 KAC 992 PROBE/ANTENNA COUPLER . .2-10 KTR 993 RECEIVER/EXITER . .2-11 SINGLE KHF 990 SYSTEM CONFIGURATION . .2-12 Rev. 0 Dec/96 KHF 950/990 Pilots Guide Toc-1 Table of Contents SECTION III OPERATING THE KHF 950/990 . .3-1 KHF 950/990 GENERAL OPERATING INFORMATION . .3-1 PREFLIGHT INSPECTION . .3-1 ANTENNA TUNING . .3-2 FAULT INDICATION . .3-2 TUNING FAULTS . .3-3 KHF 950/990 CONTROLS-GENERAL . .3-3 KCU 1051 CONTROL DISPLAY UNIT OPERATION . -
On the Influence of Carrier Frequency Offset and Sampling Frequency Offset in MIMO-OFDM Systems for Future Digital TV
On the Influence of Carrier Frequency Offset and Sampling Frequency Offset in MIMO-OFDM Systems for Future Digital TV Youssef Nasser member IEEE, Jean-François Hélard Senior member IEEE, Matthieu Crussière Institute of Electronics and Telecommunications of Rennes, UMR CNRS 6164, Rennes, France 20 Avenue des Buttes des Coesmes, 35043 Rennes cedex, France Email : [email protected] Abstract- This paper investigates the impact of carrier This work is carried out within the framework of the frequency offset (CFO) and sampling frequency offset European project ‘Broadcast for the 21st Century’ (B21C) (SFO) on the performance of different MIMO-OFDM which constitutes a contribution task force to the schemes with high spectral efficiency for next consideration engaged by the DVB forum. The main generation of terrestrial digital TV. We analyze contribution of this work is twofold. First, a generalized particularly orthogonal Alamouti scheme, and non- framework is proposed for modelling the effect of CFO orthogonal (NO) schemes like VBLAST, linear and SFO on MIMO-OFDM systems. Therefore, we dispersion (LD) code and Golden code. This analysis analyze the robustness of different MIMO-OFDM gives a global view on the best suitable MIMO-OFDM schemes to CFO and SFO using a sub-optimal iterative scheme with respect to CFO and SFO. We show that receiver. for high spectral efficiency, Alamouti is more sensitive to CFO and SFO. Moreover, we show that all studied II. SYSTEM MODEL MIMO-OFDM schemes are sensitive to CFO when it We consider in this paper the downlink communication with is greater than 1% of inter-carrier spacing. -
Time Signal Stations 1By Michael A
122 Time Signal Stations 1By Michael A. Lombardi I occasionally talk to people who can’t believe that some radio stations exist solely to transmit accurate time. While they wouldn’t poke fun at the Weather Channel or even a radio station that plays nothing but Garth Brooks records (imagine that), people often make jokes about time signal stations. They’ll ask “Doesn’t the programming get a little boring?” or “How does the announcer stay awake?” There have even been parodies of time signal stations. A recent Internet spoof of WWV contained zingers like “we’ll be back with the time on WWV in just a minute, but first, here’s another minute”. An episode of the animated Power Puff Girls joined in the fun with a skit featuring a TV announcer named Sonny Dial who does promos for upcoming time announcements -- “Welcome to the Time Channel where we give you up-to- the-minute time, twenty-four hours a day. Up next, the current time!” Of course, after the laughter dies down, we all realize the importance of keeping accurate time. We live in the era of Internet FAQs [frequently asked questions], but the most frequently asked question in the real world is still “What time is it?” You might be surprised to learn that time signal stations have been answering this question for more than 100 years, making the transmission of time one of radio’s first applications, and still one of the most important. Today, you can buy inexpensive radio controlled clocks that never need to be set, and some of us wear them on our wrists. -
STANDARD FREQUENCIES and TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec
Rec. ITU-R TF.768-2 1 SYSTEMS FOR DISSEMINATION AND COMPARISON RECOMMENDATION ITU-R TF.768-2 STANDARD FREQUENCIES AND TIME SIGNALS (Question ITU-R 106/7) (1992-1994-1995) Rec. ITU-R TF.768-2 The ITU Radiocommunication Assembly, considering a) the continuing need in all parts of the world for readily available standard frequency and time reference signals that are internationally coordinated; b) the advantages offered by radio broadcasts of standard time and frequency signals in terms of wide coverage, ease and reliability of reception, achievable level of accuracy as received, and the wide availability of relatively inexpensive receiving equipment; c) that Article 33 of the Radio Regulations (RR) is considering the coordination of the establishment and operation of services of standard-frequency and time-signal dissemination on a worldwide basis; d) that a number of stations are now regularly emitting standard frequencies and time signals in the bands allocated by this Conference and that additional stations provide similar services using other frequency bands; e) that these services operate in accordance with Recommendation ITU-R TF.460 which establishes the internationally coordinated UTC time system; f) that other broadcasts exist which, although designed primarily for other functions such as navigation or communications, emit highly stabilized carrier frequencies and/or precise time signals that can be very useful in time and frequency applications, recommends 1 that, for applications requiring stable and accurate time and frequency reference signals that are traceable to the internationally coordinated UTC system, serious consideration be given to the use of one or more of the broadcast services listed and described in Annex 1; 2 that administrations responsible for the various broadcast services included in Annex 2 make every effort to update the information given whenever changes occur. -
Time and Frequency Users' Manual
,>'.)*• r>rJfl HKra mitt* >\ « i If I * I IT I . Ip I * .aference nbs Publi- cations / % ^m \ NBS TECHNICAL NOTE 695 U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Time and Frequency Users' Manual 100 .U5753 No. 695 1977 NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, a technical (3) basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics -
Digital Pre-Distortion of Carrier Frequency Offset for Reliable Wi-Fi Enabled Iots
future internet Article Digital Pre-Distortion of Carrier Frequency Offset for Reliable Wi-Fi Enabled IoTs Il-Gu Lee Department of Convergence Security Engineering, Sungshin University, Seoul 02844, Korea; [email protected] or [email protected]; Tel.: +82-2-920-7145 Received: 15 July 2017; Accepted: 7 August 2017; Published: 9 August 2017 Abstract: The Internet of Things (IoTs) will change the requirements for wireless connectivity significantly, mainly with regard to service coverage, data rate, and energy efficiency. Therefore, to improve robustness and reliability, WiFi-enabled IoT devices have been developed to use narrowband communication. However, narrowband transmission in WiFi such as IEEE 802.11ah causes relatively higher frequency error due to the reduced subcarrier space, which is larger than legacy wireless local area networks (WLANs) in 2.4/5 GHz frequencies. In a direct conversion receiver, this error degrades the signal quality due to the presence of direct current (DC) offset cancellation circuits. In this paper, a digital carrier frequency offset (CFO) predistortion scheme is proposed for a reliable communication link in dense networks. Evaluation results demonstrate that the proposed scheme can improve received signal quality in terms of packet error rate and error vector magnitude. Keywords: digital predistortion; carrier frequency offset; DC canceller; WLAN; narrowband Internet of Things 1. Introduction Wireless local area network (WLAN) technologies are an essential feature of everyday life for the Internet of Things (IoT); the Internet of Everything (IoE) using wireless fidelity (Wi-Fi) is also beginning to emerge [1–4]. For IoT applications such as sensors and smart grid networks, WLAN technologies have been evolving to support a wide radio range and high energy efficiency by taking advantage of narrowband wireless transmission techniques for IEEE 802.11af/ah in the sub-1 GHz frequency [3–9]. -
Radiorama N.58.Pdf
Panorama radiofonico internazionale n. 58 Dal 1982 dalla parte del Radioascolto Rivista telematica edita in proprio dall'AIR Associazione Italiana Radioascolto c.p. 1338 - 10100 Torino AD www.air-radio.it lll’angolo delle QSL storiche … radiorama PANORAMA RADIOFONICO INTERNAZIONALE organo ufficiale dell’A.I.R. Associazione Italiana Radioascolto recapito editoriale: radiorama - C. P. 1338 - 10100 TORINO AD e-mail: [email protected] AIR - radiorama - Responsabile Organo Ufficiale: Giancarlo VENTURI - Responsabile impaginazione radiorama: Bruno PECOLATTO - Responsabile Blog AIR-radiorama: i singoli Autori - Responsabile sito web: Emanuele PELICIOLI ------------------------------------------------- Il presente numero di radiorama e' pubblicato in rete in proprio dall'AIR Associazione Italiana Radioascolto, tramite il server Aruba con sede in località Palazzetto, 4 - 52011 Bibbiena Stazione (AR). Non costituisce testata giornalistica, non ha carattere periodico ed è aggiornato secondo la disponibilità e la reperibilità dei materiali. Pertanto, non può essere considerato in alcun modo un prodotto editoriale ai sensi della L. n. 62 del 7.03.2001. La responsabilità di quanto pubblicato è esclusivamente dei singoli Autori. L'AIR-Associazione Italiana Radioascolto, costituita con atto notarile nel 1982, ha attuale sede legale presso il Presidente p.t. avv. Giancarlo Venturi, viale M.F. Nobiliore, 43 - 00175 Roma SR1 EUROPAWELLE SAAR 1421kHz, GERMANIA (anni ‘80) RUBRICHE : Pirate News - Eventi Collabora con noi, invia i tuoi articoli come da protocollo. Il Mondo in Cuffia - Scala parlante e-mail: [email protected] Grazie e buona lettura !!!! Vita associativa - Attività Locale Segreteria, Casella Postale 1338 10100 Torino A.D. radiorama on web - numero 58 e-mail: [email protected] ------------------------ [email protected] Rassegna stampa – Giampiero Bernardini SOMMARIO e-mail: [email protected] ------------------------ In copertina : "Musica a richiesta - Radio Trst", opera di Vilma Coti (cortesia Rubrica FM – Giampiero Bernardini Dorigo Valdi). -
Nbs Technical Note 674 National Bureau of Standards
NBS TECHNICAL NOTE 674 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress March 3, ,1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics - Electricity - Mechanics - Heat - Optical Physics - Center for Radiation Research: Nuclear Sciences; Applied Radiation - Laboratory Astrophysics * - Cryogenics ' - Electromagnetics - Time and Frequency *. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. -
Robust Sampling Frequency Offset Estimation for OFDM Over Frequency Selective Fading Channels
applied sciences Article Robust Sampling Frequency Offset Estimation for OFDM over Frequency Selective Fading Channels Yong-An Jung and Young-Hwan You * Department of Computer Engineering, Sejong University, Gwangjin-gu, Gunja-dong 98, Seoul 05006, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3408-3737 Received: 28 November 2017; Accepted: 22 January 2018; Published: 29 January 2018 Abstract: Digital radio mondiale (DRM) is a terrestrial radio broadcasting standard to replace existing analogue AM and FM broadcasting, which is based on an orthogonal frequency division multiplexing (OFDM) technique. This paper focuses on the issue of estimating a sampling frequency offset (SFO) in OFDM-based broadcasting systems under frequency selective fading channels. In order to design a robust SFO estimation scheme and to benchmark its performance, the performance of the various conventional SFO estimation schemes is discussed and some improvements on the conventional estimation algorithms are highlighted. The simulation results show that such a design enhances the robustness of the proposed scheme against frequency selective fading. Keywords: digital radio mondiale; orthogonal frequency division multiplexing; sampling frequency offset; frequency selective fading 1. Introduction Orthogonal frequency division multiplexing (OFDM) has been widely used due to its high data rate and robustness regarding multipath fading distortions. OFDM has proven to be very effective in broadcast systems, such as digital multimedia broadcasting (DMB), digital radio mondiale (DRM), and terrestrial digital video broadcasting (DVB-T) [1–3]. Recently, a new second generation terrestrial digital video broadcasting (DVB-T2) standard has been defined to provide high definition television (HDTV) and high rate services [4].