bioRxiv preprint doi: https://doi.org/10.1101/373092; this version posted July 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: G protein-coupled estrogen receptor is not required for sex determination or ovary function in zebrafish Authors: Camerron M. Crowder1,$, Shannon N. Romano1,* and Daniel A. Gorelick2,# Affiliations: 1Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham Alabama, USA 2Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA *present address: Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA $present address: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham Alabama, USA #corresponding author:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/373092; this version posted July 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT Estrogens regulate vertebrate development and function through binding to nuclear estrogen receptors alpha and beta (ERa, ERb) and the G protein-coupled estrogen receptor (GPER). Studies in mutant animal models demonstrated that ERa and ERb are required for normal ovary development and function.