Language Run-Time Systems: an Overview
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Defeating Memory Corruption Attacks Via Pointer Taintedness Detection
Defeating Memory Corruption Attacks via Pointer Taintedness Detection Shuo Chen †, Jun Xu ‡, Nithin Nakka †, Zbigniew Kalbarczyk †, Ravishankar K. Iyer † † Center for Reliable and High-Performance Computing, ‡ Department of Computer Science University of Illinois at Urbana-Champaign, North Carolina State University 1308 W. Main Street, Urbana, IL 61801 Raleigh, NC 27695 {shuochen, nakka, kalbar, iyer}@crhc.uiuc.edu [email protected] Abstract formal methods have been adopted to prevent Most malicious attacks compromise system security programmers from writing insecure software. But despite through memory corruption exploits. Recently proposed substantial research and investment, the state of the art is techniques attempt to defeat these attacks by protecting far from perfect, and as a result, security vulnerabilities are program control data. We have constructed a new class of constantly being discovered in the field. The most direct attacks that can compromise network applications without counter-measure against vulnerabilities in the field is tampering with any control data. These non-control data security patching. Patching, however, is reactive in nature attacks represent a new challenge to system security. In and can only be applied to known vulnerabilities. The long this paper, we propose an architectural technique to latency between bug discovery and patching allows defeat both control data and non-control data attacks attackers to compromise many unpatched systems. An based on the notion of pointer taintedness . A pointer is alternative to patching is runtime vulnerability masking said to be tainted if user input can be used as the pointer that can stop ongoing attacks. Compiler and library value. A security attack is detected whenever a tainted interception techniques have been proposed to mask value is dereferenced during program execution. -
Representing and Reasoning About Dynamic Code
Representing and reasoning about dynamic code Item Type Proceedings Authors Bartels, Jesse; Stephens, Jon; Debray, Saumya Citation Bartels, J., Stephens, J., & Debray, S. (2020, September). Representing and Reasoning about Dynamic Code. In 2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 312-323). IEEE. DOI 10.1145/3324884.3416542 Publisher ACM Journal Proceedings - 2020 35th IEEE/ACM International Conference on Automated Software Engineering, ASE 2020 Rights © 2020 Association for Computing Machinery. Download date 23/09/2021 23:26:56 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final accepted manuscript Link to Item http://hdl.handle.net/10150/652285 Representing and Reasoning about Dynamic Code Jesse Bartels Jon Stephens Saumya Debray Department of Computer Science Department of Computer Science Department of Computer Science The University Of Arizona University Of Texas The University Of Arizona Tucson, AZ 85721, USA Austin, TX 78712, USA Tucson, AZ 85721, USA [email protected] [email protected] [email protected] ABSTRACT and trace dependencies back, into and through the JIT compiler’s Dynamic code, i.e., code that is created or modified at runtime, is code, to understand the data and control flows that influenced the ubiquitous in today’s world. The behavior of dynamic code can JIT compiler’s actions and caused the generation of the problem- depend on the logic of the dynamic code generator in subtle and non- atic code. E.g., for the CVE-2017-5121 bug mentioned above, we obvious ways, e.g., JIT compiler bugs can lead to exploitable vul- might want to perform automated analyses to identify which anal- nerabilities in the resulting JIT-compiled code. -
Executable Code Is Not the Proper Subject of Copyright Law a Retrospective Criticism of Technical and Legal Naivete in the Apple V
Executable Code is Not the Proper Subject of Copyright Law A retrospective criticism of technical and legal naivete in the Apple V. Franklin case Matthew M. Swann, Clark S. Turner, Ph.D., Department of Computer Science Cal Poly State University November 18, 2004 Abstract: Copyright was created by government for a purpose. Its purpose was to be an incentive to produce and disseminate new and useful knowledge to society. Source code is written to express its underlying ideas and is clearly included as a copyrightable artifact. However, since Apple v. Franklin, copyright has been extended to protect an opaque software executable that does not express its underlying ideas. Common commercial practice involves keeping the source code secret, hiding any innovative ideas expressed there, while copyrighting the executable, where the underlying ideas are not exposed. By examining copyright’s historical heritage we can determine whether software copyright for an opaque artifact upholds the bargain between authors and society as intended by our Founding Fathers. This paper first describes the origins of copyright, the nature of software, and the unique problems involved. It then determines whether current copyright protection for the opaque executable realizes the economic model underpinning copyright law. Having found the current legal interpretation insufficient to protect software without compromising its principles, we suggest new legislation which would respect the philosophy on which copyright in this nation was founded. Table of Contents INTRODUCTION................................................................................................. 1 THE ORIGIN OF COPYRIGHT ........................................................................... 1 The Idea is Born 1 A New Beginning 2 The Social Bargain 3 Copyright and the Constitution 4 THE BASICS OF SOFTWARE .......................................................................... -
The LLVM Instruction Set and Compilation Strategy
The LLVM Instruction Set and Compilation Strategy Chris Lattner Vikram Adve University of Illinois at Urbana-Champaign lattner,vadve ¡ @cs.uiuc.edu Abstract This document introduces the LLVM compiler infrastructure and instruction set, a simple approach that enables sophisticated code transformations at link time, runtime, and in the field. It is a pragmatic approach to compilation, interfering with programmers and tools as little as possible, while still retaining extensive high-level information from source-level compilers for later stages of an application’s lifetime. We describe the LLVM instruction set, the design of the LLVM system, and some of its key components. 1 Introduction Modern programming languages and software practices aim to support more reliable, flexible, and powerful software applications, increase programmer productivity, and provide higher level semantic information to the compiler. Un- fortunately, traditional approaches to compilation either fail to extract sufficient performance from the program (by not using interprocedural analysis or profile information) or interfere with the build process substantially (by requiring build scripts to be modified for either profiling or interprocedural optimization). Furthermore, they do not support optimization either at runtime or after an application has been installed at an end-user’s site, when the most relevant information about actual usage patterns would be available. The LLVM Compilation Strategy is designed to enable effective multi-stage optimization (at compile-time, link-time, runtime, and offline) and more effective profile-driven optimization, and to do so without changes to the traditional build process or programmer intervention. LLVM (Low Level Virtual Machine) is a compilation strategy that uses a low-level virtual instruction set with rich type information as a common code representation for all phases of compilation. -
An Execution Model for Serverless Functions at the Edge
An Execution Model for Serverless Functions at the Edge Adam Hall Umakishore Ramachandran Georgia Institute of Technology Georgia Institute of Technology Atlanta, Georgia Atlanta, Georgia ach@gatech:edu rama@gatech:edu ABSTRACT 1 INTRODUCTION Serverless computing platforms allow developers to host single- Enabling next generation technologies such as self-driving cars or purpose applications that automatically scale with demand. In con- smart cities via edge computing requires us to reconsider the way trast to traditional long-running applications on dedicated, virtu- we characterize and deploy the services supporting those technolo- alized, or container-based platforms, serverless applications are gies. Edge/fog environments consist of many micro data centers intended to be instantiated when called, execute a single function, spread throughout the edge of the network. This is in stark contrast and shut down when finished. State-of-the-art serverless platforms to the cloud, where we assume the notion of unlimited resources achieve these goals by creating a new container instance to host available in a few centralized data centers. These micro data center a function when it is called and destroying the container when it environments must support large numbers of Internet of Things completes. This design allows for cost and resource savings when (IoT) devices on limited hardware resources, processing the mas- hosting simple applications, such as those supporting IoT devices sive amounts of data those devices generate while providing quick at the edge of the network. However, the use of containers intro- decisions to inform their actions [44]. One solution to supporting duces some overhead which may be unsuitable for applications emerging technologies at the edge lies in serverless computing. -
A Status Update of BEAMJIT, the Just-In-Time Compiling Abstract Machine
A Status Update of BEAMJIT, the Just-in-Time Compiling Abstract Machine Frej Drejhammar and Lars Rasmusson <ffrej,[email protected]> 140609 Who am I? Senior researcher at the Swedish Institute of Computer Science (SICS) working on programming tools and distributed systems. Acknowledgments Project funded by Ericsson AB. Joint work with Lars Rasmusson <[email protected]>. What this talk is About An introduction to how BEAMJIT works and a detailed look at some subtle details of its implementation. Outline Background BEAMJIT from 10000m BEAMJIT-aware Optimization Compiler-supported Profiling Future Work Questions Just-In-Time (JIT) Compilation Decide at runtime to compile \hot" parts to native code. Fairly common implementation technique. McCarthy's Lisp (1969) Python (Psyco, PyPy) Smalltalk (Cog) Java (HotSpot) JavaScript (SquirrelFish Extreme, SpiderMonkey, J¨agerMonkey, IonMonkey, V8) Motivation A JIT compiler increases flexibility. Tracing does not require switching to full emulation. Cross-module optimization. Compiled BEAM modules are platform independent: No need for cross compilation. Binaries not strongly coupled to a particular build of the emulator. Integrates naturally with code upgrade. Project Goals Do as little manual work as possible. Preserve the semantics of plain BEAM. Automatically stay in sync with the plain BEAM, i.e. if bugs are fixed in the interpreter the JIT should not have to be modified manually. Have a native code generator which is state-of-the-art. Eventually be better than HiPE (steady-state). Plan Use automated tools to transform and extend the BEAM. Use an off-the-shelf optimizer and code generator. Implement a tracing JIT compiler. BEAM: Specification & Implementation BEAM is the name of the Erlang VM. -
Toward IFVM Virtual Machine: a Model Driven IFML Interpretation
Toward IFVM Virtual Machine: A Model Driven IFML Interpretation Sara Gotti and Samir Mbarki MISC Laboratory, Faculty of Sciences, Ibn Tofail University, BP 133, Kenitra, Morocco Keywords: Interaction Flow Modelling Language IFML, Model Execution, Unified Modeling Language (UML), IFML Execution, Model Driven Architecture MDA, Bytecode, Virtual Machine, Model Interpretation, Model Compilation, Platform Independent Model PIM, User Interfaces, Front End. Abstract: UML is the first international modeling language standardized since 1997. It aims at providing a standard way to visualize the design of a system, but it can't model the complex design of user interfaces and interactions. However, according to MDA approach, it is necessary to apply the concept of abstract models to user interfaces too. IFML is the OMG adopted (in March 2013) standard Interaction Flow Modeling Language designed for abstractly expressing the content, user interaction and control behaviour of the software applications front-end. IFML is a platform independent language, it has been designed with an executable semantic and it can be mapped easily into executable applications for various platforms and devices. In this article we present an approach to execute the IFML. We introduce a IFVM virtual machine which translate the IFML models into bytecode that will be interpreted by the java virtual machine. 1 INTRODUCTION a fundamental standard fUML (OMG, 2011), which is a subset of UML that contains the most relevant The software development has been affected by the part of class diagrams for modeling the data apparition of the MDA (OMG, 2015) approach. The structure and activity diagrams to specify system trend of the 21st century (BRAMBILLA et al., behavior; it contains all UML elements that are 2014) which has allowed developers to build their helpful for the execution of the models. -
Architectural Support for Scripting Languages
Architectural Support for Scripting Languages By Dibakar Gope A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical and Computer Engineering) at the UNIVERSITY OF WISCONSIN–MADISON 2017 Date of final oral examination: 6/7/2017 The dissertation is approved by the following members of the Final Oral Committee: Mikko H. Lipasti, Professor, Electrical and Computer Engineering Gurindar S. Sohi, Professor, Computer Sciences Parameswaran Ramanathan, Professor, Electrical and Computer Engineering Jing Li, Assistant Professor, Electrical and Computer Engineering Aws Albarghouthi, Assistant Professor, Computer Sciences © Copyright by Dibakar Gope 2017 All Rights Reserved i This thesis is dedicated to my parents, Monoranjan Gope and Sati Gope. ii acknowledgments First and foremost, I would like to thank my parents, Sri Monoranjan Gope, and Smt. Sati Gope for their unwavering support and encouragement throughout my doctoral studies which I believe to be the single most important contribution towards achieving my goal of receiving a Ph.D. Second, I would like to express my deepest gratitude to my advisor Prof. Mikko Lipasti for his mentorship and continuous support throughout the course of my graduate studies. I am extremely grateful to him for guiding me with such dedication and consideration and never failing to pay attention to any details of my work. His insights, encouragement, and overall optimism have been instrumental in organizing my otherwise vague ideas into some meaningful contributions in this thesis. This thesis would never have been accomplished without his technical and editorial advice. I find myself fortunate to have met and had the opportunity to work with such an all-around nice person in addition to being a great professor. -
A Brief History of Just-In-Time Compilation
A Brief History of Just-In-Time JOHN AYCOCK University of Calgary Software systems have been using “just-in-time” compilation (JIT) techniques since the 1960s. Broadly, JIT compilation includes any translation performed dynamically, after a program has started execution. We examine the motivation behind JIT compilation and constraints imposed on JIT compilation systems, and present a classification scheme for such systems. This classification emerges as we survey forty years of JIT work, from 1960–2000. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors; K.2 [History of Computing]: Software General Terms: Languages, Performance Additional Key Words and Phrases: Just-in-time compilation, dynamic compilation 1. INTRODUCTION into a form that is executable on a target platform. Those who cannot remember the past are con- What is translated? The scope and na- demned to repeat it. ture of programming languages that re- George Santayana, 1863–1952 [Bartlett 1992] quire translation into executable form covers a wide spectrum. Traditional pro- This oft-quoted line is all too applicable gramming languages like Ada, C, and in computer science. Ideas are generated, Java are included, as well as little lan- explored, set aside—only to be reinvented guages [Bentley 1988] such as regular years later. Such is the case with what expressions. is now called “just-in-time” (JIT) or dy- Traditionally, there are two approaches namic compilation, which refers to trans- to translation: compilation and interpreta- lation that occurs after a program begins tion. Compilation translates one language execution. into another—C to assembly language, for Strictly speaking, JIT compilation sys- example—with the implication that the tems (“JIT systems” for short) are com- translated form will be more amenable pletely unnecessary. -
A Parallel Program Execution Model Supporting Modular Software Construction
A Parallel Program Execution Model Supporting Modular Software Construction Jack B. Dennis Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. [email protected] Abstract as a guide for computer system design—follows from basic requirements for supporting modular software construction. A watershed is near in the architecture of computer sys- The fundamental theme of this paper is: tems. There is overwhelming demand for systems that sup- port a universal format for computer programs and software The architecture of computer systems should components so users may benefit from their use on a wide reflect the requirements of the structure of pro- variety of computing platforms. At present this demand is grams. The programming interface provided being met by commodity microprocessors together with stan- should address software engineering issues, in dard operating system interfaces. However, current systems particular, the ability to practice the modular do not offer a standard API (application program interface) construction of software. for parallel programming, and the popular interfaces for parallel computing violate essential principles of modular The positions taken in this presentation are contrary to or component-based software construction. Moreover, mi- much conventional wisdom, so I have included a ques- croprocessor architecture is reaching the limit of what can tion/answer dialog at appropriate places to highlight points be done usefully within the framework of superscalar and of debate. We start with a discussion of the nature and VLIW processor models. The next step is to put several purpose of a program execution model. Our Parallelism processors (or the equivalent) on a single chip. -
Using JIT Compilation and Configurable Runtime Systems for Efficient Deployment of Java Programs on Ubiquitous Devices
Using JIT Compilation and Configurable Runtime Systems for Efficient Deployment of Java Programs on Ubiquitous Devices Radu Teodorescu and Raju Pandey Parallel and Distributed Computing Laboratory Computer Science Department University of California, Davis {teodores,pandey}@cs.ucdavis.edu Abstract. As the proliferation of ubiquitous devices moves computation away from the conventional desktop computer boundaries, distributed systems design is being exposed to new challenges. A distributed system supporting a ubiquitous computing application must deal with a wider spectrum of hardware architectures featuring structural and functional differences, and resources limitations. Due to its architecture independent infrastructure and object-oriented programming model, the Java programming environment can support flexible solutions for addressing the diversity among these devices. Unfortunately, Java solutions are often associated with high costs in terms of resource consumption, which limits the range of devices that can benefit from this approach. In this paper, we present an architecture that deals with the cost and complexity of running Java programs by partitioning the process of Java program execution between system nodes and remote devices. The system nodes prepare a Java application for execution on a remote device by generating device-specific native code and application-specific runtime system on the fly. The resulting infrastructure provides the flexibility of a high-level programming model and the architecture independence specific to Java. At the same time the amount of resources consumed by an application on the targeted device are comparable to that of a native implementation. 1 Introduction As a result of the proliferation of computation into the physical world, ubiquitous computing [1] has become an important research topic. -
Sok: Make JIT-Spray Great Again
SoK: Make JIT-Spray Great Again Robert Gawlik and Thorsten Holz Ruhr-Universitat¨ Bochum Abstract Attacks against client-side programs such as browsers were at first tackled with a non-executable stack to pre- Since the end of the 20th century, it has become clear that vent execution of data on the stack and also with a non- web browsers will play a crucial role in accessing Internet executable heap to stop heap sprays of data being later resources such as the World Wide Web. They evolved executed as code. This defense became widely known into complex software suites that are able to process a as W ⊕ X (Writable xor eXecutable) or Data Execution multitude of data formats. Just-In-Time (JIT) compilation Prevention (DEP) to make any data region non-executable was incorporated to speed up the execution of script code, in 2003 [45, 54]. To counter DEP, attackers started to per- but is also used besides web browsers for performance form code reuse such as Return-Oriented Programming reasons. Attackers happily welcomed JIT in their own (ROP) and many variants [10, 11, 32, 68]. In general, if an way, and until today, JIT compilers are an important target adversary knows the location of static code in the address of various attacks. This includes for example JIT-Spray, space of the vulnerable target, she can prepare a fake stack JIT-based code-reuse attacks and JIT-specific flaws to cir- with addresses of these gadgets. As soon as control of cumvent mitigation techniques in order to simplify the the instruction pointer is gained, these gadgets execute exploitation of memory-corruption vulnerabilities.