Lethal Lung Hypoplasia and Vascular Defects in Mice with Conditional Foxf1 Overexpression Avinash V
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3. -
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
OSTF1 (AT9G4): Sc-517418
SAN TA C RUZ BI OTEC HNOL OG Y, INC . OSTF1 (AT9G4): sc-517418 BACKGROUND PRODUCT OSTF1 (osteoclast-stimulating factor 1) is a 214 amino acid cytoplasmic pro - Each vial contains 100 µg IgG 2a kappa light chain in 1.0 ml of PBS with tein that contains 3 ANK repeats and one SH3 domain. The SH3 domain < 0.1% sodium azide and 0.1% gelatin. mediates interaction of OSTF1 with SMN. In addition to SMN, OSTF1 inter - acts with Src and FAS-L. In osteoclasts, OSTF1 is thought to induce bone APPLICATIONS resorption most likely through a signaling cascade that results in the secre - OSTF1 (AT9G4) is recommended for detection of OSTF1 of mouse, rat and tion of factors that enhance osteoclast formation and activity. The gene that human origin by Western Blotting (starting dilution 1:200, dilution range encdoes OSTF1 consists of almost 59,000 bases and maps to human chro mo - 1:100-1:1000), immunoprecipitation [1-2 µg per 100-500 µg of total protein some 9q21.13. Housing over 900 genes, chromosome 9 comprises nearly 4% (1 ml of cell lysate)], immunofluorescence (starting dilution 1:50, dilution of the human genome. Hereditary hemorrhagic telangiectasia, which is char - range 1:50-1:500), flow cytometry (1 µg per 1 x 10 6 cells) and solid phase acterized by harmful vascular defects, and familial dysautonomia, are both ELISA (starting dilution 1:30, dilution range 1:30-1:3000). associated with chromosome 9. Notably, chromosome 9 encompasses the largest interferon family gene cluster. Suitable for use as control antibody for OSTF1 siRNA (h): sc-92800, OSTF1 siRNA (m): sc-151336, OSTF1 shRNA Plasmid (h): sc-92800-SH, OSTF1 REFERENCES shRNA Plasmid (m): sc-151336-SH, OSTF1 shRNA (h) Lentiviral Particles: sc-92800-V and OSTF1 shRNA (m) Lentiviral Particles: sc-151336-V. -
Robo4 Is a Vascular-Specific Receptor That Inhibits
Available online at www.sciencedirect.com R Developmental Biology 261 (2003) 251–267 www.elsevier.com/locate/ydbio Robo4 is a vascular-specific receptor that inhibits endothelial migration Kye Won Park,a,b Clayton M. Morrison,a Lise K. Sorensen,a Christopher A. Jones,a,b Yi Rao,c Chi-Bin Chien,d Jane Y. Wu,e Lisa D. Urness,f and Dean Y. Lia,b,f,* a Program in Human Molecular Biology and Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA b Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA c Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA d Department of Anatomy and Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA e Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA f Division of Cardiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA Received for publication 4 December 2002, revised 17 April 2003, accepted 23 April 2003 Abstract Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. -
The Landscape of Human Mutually Exclusive Splicing
bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Mouse Robo4 Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Robo4 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Robo4 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Robo4 gene (NCBI Reference Sequence: NM_028783 ; Ensembl: ENSMUSG00000032125 ) is located on Mouse chromosome 9. 18 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 18 (Transcript: ENSMUST00000102895). Exon 8~10 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Robo4 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-356D13 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a reporter/null allele display enhanced VEGF-induced endothelial migration, tube formation and vascular permeability, and show increased pathologic angiogenesis and vascular leak in models of oxygen-induced retinopathy and choroidal neovascularization. Exon 8 starts from about 38.85% of the coding region. The knockout of Exon 8~10 will result in frameshift of the gene. The size of intron 7 for 5'-loxP site insertion: 689 bp, and the size of intron 10 for 3'-loxP site insertion: 1706 bp. The size of effective cKO region: ~1159 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 4 5 6 7 8 9 10 11 12 18 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Robo4 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades. -
WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Defining Endothelial Cell Functional Heterogeneity and Plasticity Using Single-Cell RNA-Sequencing
Defining endothelial cell functional heterogeneity and plasticity using single-cell RNA-sequencing The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kalluri, Aditya Sreemadhav. 2019. Defining endothelial cell functional heterogeneity and plasticity using single-cell RNA- sequencing. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42013060 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Title Pag e Defining endothelial cell functional heterogeneity and plasticity using single-cell RNA-sequencing A dissertation presented by Aditya Sreemadhav Kalluri to The Committee on Higher Degrees in Biophysics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biophysics Harvard University Cambridge, Massachusetts June 2019 i © 2019 – Aditya Sreemadhav Kalluri All rights reserved. Cop yrig ht ii Dissertation Advisor: Professor Elazer R. Edelman Aditya Sreemadhav Kalluri Defining endothelial cell functional heterogeneity and plasticity using single-cell RNA-sequencing Abstract The state of the endothelium defines vascular health – ensuring homeostasis when intact and driving pathology when dysfunctional. The endothelial cells (ECs) which comprise the endothelium are necessarily highly responsive and reflect their local mechanical, biological, and cellular context, making a concrete definition of endothelial state elusive. Heterogeneity is the hallmark of ECs and has long been studied in the context of structural and functional differences between organs and vascular beds. -
Supporting Information Supporting Information Corrected July 15 , 2014 Yi Et Al
Supporting Information Supporting Information Corrected July 15 , 2014 Yi et al. 10.1073/pnas.1404943111 SI Materials and Methods which no charge state could be determined were excluded MS/ Tumorsphere Growth Assay. Single-cell tumorsphere growth assays MS selection). Three independent experiments were performed. of human mammary epithelial (HMLER) (CD44high/CD24low)SA and HMLER (CD44high/CD24low)FA population cells were per- Phosphorylation Site Localization. The probability of correct phos- formed with ultra-low attachment surface six-well plates (Corn- phorylation site localization for each phosphorylation site was ing) and the mammary epithelial cell basal medium (MEBM) measured using an Ascore algorithm (1). This algorithm con- medium (Lonza) was supplemented with B27 (Invitrogen), 20 ng/mL siders all phosphoforms of a peptide and uses the presence or EGF, and 20 ng/mL basic FGF (BD Biosciences), and 4 μg/mL absence of experimental fragment ions unique to each to create an ambiguity score (Ascore). Parameters included a window size of heparin (Sigma). Single cells were cultured for 8 d and images were ± taken with a Nikon camera. 100 m/z units and a fragment ion tolerance of 0.6 m/z units. Sites with an Ascore of ≥13 (P ≤ 0.05) were considered to be ≥ ≤ Soft Agar Colony Growth Assay. Single-cell soft agar colony for- confidently localized, and those with an Ascore of 19 (P 0.01) mation and growth assays were performed to identify the tumor- were considered to be localized with near certainty. More than ≥ igenesis capacity of HMLER (CD44high/CD24low)SA and HMLER a 2.5-fold ratio ( 60.02%) was considered as a significant (CD44high/CD24low)FA population cells in vitro. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0069301 A1 Li Et Al
US 2010 OO69301A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0069301 A1 Li et al. (43) Pub. Date: Mar. 18, 2010 (54) COMPOSITIONS AND METHODS FOR Related U.S. Application Data TREATING PATHOLOGICANGIOGENESIS (60) Provisional application No. 60/869,526, filed on Dec. AND VASCULAR PERMEABILITY 11, 2006. Publication Classification (75) Inventors: Dean Li, Salt Lake City, UT (US); Christopher Jones, Salt Lake City, (51) Int. Cl. A638/16 (2006.01) UT (US); Nyall London, Bountiful, C07K 7/08 (2006.01) UT (US) C07K 7/06 (2006.01) C07K I4/00 (2006.01) Correspondence Address: A638/08 (2006.01) STOEL RIVES LLP - SLC A638/10 (2006.01) 201 SOUTH MAIN STREET, SUITE 1100, ONE A6IP35/00 (2006.01) UTAH CENTER (52) U.S. Cl. ........... 514/12:530/328; 530/327: 530/326; SALT LAKE CITY, UT 84111 (US) 530/325; 530/324; 514/15: 514/14: 514/13 (57) ABSTRACT (73) Assignee: UNIVERSITY OF UTAH Compounds, compositions and methods for inhibiting vascu RESEARCH FOUNDATION, Salt lar permeability and pathologic angiogenesis are described herein. Methods for producing and screening compounds and Lake City, UT (US) compositions capable of inhibiting vascular permeability and pathologic angiogenesis are also described herein. Pharma (21) Appl. No.: 12/518,730 ceutical compositions are included in the compositions described herein. The compositions described herein are use ful in, for example, methods of inhibiting vascular permeabil (22) PCT Filed: Dec. 11, 2007 ity and pathologic angiogenesis, including methods of inhib iting vascular permeability and pathologic angiogenesis (86). PCT No.: PCT/US07/25354 induced by specific angiogenic, permeability and inflamma tory factors, such as, for example VEGF, bFGF and thrombin. -
WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).