Case Report and Novel Findings of DNA Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Case Report and Novel Findings of DNA Sequencing 683 Molecular Insights in Patient Care Metachronous Medulloblastoma in a Child With Successfully Treated Neuroblastoma: Case Report and Novel Findings of DNA Sequencing Agda Karina Eterovic, PhDa; Ossama M. Maher, MDb; Joya Chandra, PhDc; Ken Chen, PhDd; Jason Huse, MD, PhDe; and Wafik Zaky, MDc Abstract Metachronous neoplasms have rarely been reported in patients with neuroblastoma. This report presents the clinical case of a 23-month- old child who was diagnosed with an anaplastic medulloblastoma 5 months after completing treatment for stage IV neuroblastoma. The patient was treated with complete surgical resection and adjuvant chemoradiation followed by maintenance chemotherapy at an outside institution and came to our institution for further management. A pathologic diagnosis and review of both the suprarenal and posterior fossa masses were performed, as well as a genetic analysis of both cerebellar tumor tissue and blood using next-generation gene sequenc- ing. At our institution, the patient was submitted to induction chemotherapy followed by high-dose chemotherapy and autologous stem cell transplantation and remains free of disease 2 years after completion of treatment. Genetic analysis revealed multiple somatic copy number variations with most deleted genes located in 2q37, a region which harbors genes involved in epigenetic regulation and tumor sup- pression. A homozygous deletion was found in the TSC2 gene, which is a clinically actionable gene, and patients with activating deletions in TSC2 can potentially be eligible for basket clinical trials with mTOR inhibitors. Germline single nucleotide variants were also identified in multiple genes involved in cancer (ALK, FGFR3, FLT3/4, HNF1A, NCOR1, and NOTCH2/3), cancer predisposition (TP53, TSC1, and BRCA1/2), and genes involved in DNA repair (MSH6, PMS2, POLE, and ATM). Metachronous neoplasms are rare and challenging to treat, hence genetic analysis and referral are needed to exclude hereditary cause. DNA sequencing of the tumor and germline can help identify alterations that increase predisposition or can be used to guide treatment decisions on recurrence and when standard options fail. J Natl Compr Canc Netw 2018;16(6):683–691 doi: 10.6004/jnccn.2018.7009 Embryonal neoplasms of the central nervous system cers have mostly occurred many years after long-term (CNS) represent nearly one-third of brain tumors in surveillance.5–7 This report presents a case of medullo- children aged <3 years.1,2 Medulloblastoma with its dif- blastoma in a child 5 months after successful treatment ferent histologic variants belongs to this group, repre- of stage IV neuroblastoma, and discusses the findings in senting up to 20% of pediatric CNS tumors. Cerebellar the DNA sequencing results of both the resected poste- neuroblastoma is an extremely uncommon entity of this rior fossa tumor and the germline mutations. group with few published reports on primary cerebellar neuroblastoma.3,4 A number of second neoplasms have been reported in patients with neuroblastoma, including Methods CNS tumors (gliomas and meningioma), but no prior Approval was obtained from The University of Texas reports of medulloblastoma. These second primary can- MD Anderson Cancer Center Institutional Review aInstitute for Personalized Cancer Therapy, The University of Texas MD The authors have disclosed that they have no financial interests, Anderson Cancer Center, Houston, Texas; bNicklaus Children’s Hospital, arrangements, affiliations, or commercial interests with the manufacturers Pediatric Hematology and Oncology, Miami, Florida; and the Departments of any products discussed in this article or their competitors. c d e of Pediatrics, Bioinformatics and Computational Biology, and Pathology, Correspondence: Wafik Zaky, MD, Department of Pediatrics, The University The University of Texas MD Anderson Cancer Center, Houston, Texas. of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 87, Submitted May 27, 2017; accepted for publication January 24, 2018. Houston, TX 77030. Email: [email protected] © JNCCN—Journal of the National Comprehensive Cancer Network | Volume 16 Number 6 | June 2018 684 Molecular Insights in Patient Care Eterovic et al Board for this study (Clearing House protocol by Dr. Case Description Funda Meric-Bernstam), and informed consent was A 10-month-old girl presented with 2-month history obtained. Separate consent for the molecular studies of proptosis and progressive periorbital ecchymosis. and analysis was also obtained. Pathologic diagno- She was born full-term via vaginal delivery and has an insignificant past medical history, and her family sis and review of the suprarenal and posterior fossa history was negative for cancer. A CT scan revealed masses was performed by members of the Division of a right retro-orbital mass measuring 2.7 x 1.2 x 1.8 Pathology and Laboratory Medicine. Immunohisto- cm. A CT of the abdomen showed a calcified right chemical studies that are pertinent to neuroblastoma adrenal mass measuring 6.5 x 5.5 x 5.5 cm with liver and medulloblastoma tumors were used, including metastasis. Evaluation studies for staging including CD57 and neurofilaments. metaiodobenzylguanidine (MIBG) revealed disease at the anterior mediastinum, liver, bone marrow, DNA Sequencing and Analysis skull, and third lumber vertebra. Brain MRI revealed Genomic DNA was quantified by PicoGreen (Invit- disease in the right orbital fossa extending to the rogen, Ltd.) and quality was assessed using Genomic middle cranial fossa, with no intracranial or cer- DNA ScreenTape for the 2200 TapeStation (Agi- ebellar disease. The patient underwent fine-needle lent Technologies). Library preparation, targeted aspiration biopsy of the orbital mass, and neuroblas- capture, and data analysis were completed as previ- toma was diagnosed. A urine catecholamine test was ously described.8 For data analysis, the T200 target- performed initially and reported to be unremarkable; capture deep-sequencing data was aligned to human however, upon patient transfer to a tertiary facility reference assembly hg19 using the Burrows-Wheeler with a pediatric oncology floor, this test was repeated and found to be elevated (91 ng/mL vs a normal in- Alignment tool9 and duplicated reads were removed stitutional laboratory reference range of 15.7–17.0 using Picard.10 Single nucleotide variants and small ng/mL). Further staging evaluation was performed, insertions/deletions were detected using an in- including spine MRI and spinal tap, and found to be 11 house–developed analysis pipeline, which classified negative for disease. variants into 3 categories: somatic, germline, and Chemotherapy with vincristine, cyclophospha- loss of heterozygosity based on variant allele frequen- mide, cisplatin, and doxorubicin was initiated. Af- cies in the tumor and the matched normal tissues. ter the first 2 cycles of chemotherapy, the patient Copy number alterations were determined using a underwent disease evaluation. Laparotomy and previously published algorithm,12 which reports gain resection of the right adrenal mass and adjacent or loss status of each exon. To understand the poten- lymph nodes were performed, and pathology con- tial functional consequence of detected variants, we firmed the diagnosis of neuroblastoma with poor compared them with the SNP Database, Catalogue differentiation and extensive treatment-related of Somatic Mutations in Cancer,13 and The Cancer changes (necrosis and calcification) (Figure 1A). Genome Atlas database, and annotated them using No NMYC amplification or 1p or 17q deletion were seen, and her karyotype was unremarkable. The pa- VEP,14 ANNOVAR,15 CanDrA,16 and other pro- tient was classified as having intermediate-risk dis- grams. Translation consequence of the alteration, ease and resumed chemotherapy consisting of vin- such as nonsynonymous, missense, stop-gain, frame- cristine, cyclophosphamide, cisplatin, dacarbazine, shift, and others, follows Sequence Ontology (http:// ifosfamide, and doxorubicin, followed by 5 main- www.sequenceontology.org). All aberrations that are tenance cycles of 13-cis retinoic acid. Surveillance nonsynonymous were shown. The software used for MIBG during maintenance chemotherapy revealed predicting consequences and clinical implications no residual disease. has been previously described: PolyPhen (the higher Five months after completing treatment, the pa- the score, the more damaging the aberration),17 SIFT tient presented with repeated vomiting and new onset (the lower the score, the more deleterious the aber- of difficulty walking after experiencing head trauma. ration),18 and CanDrA16 to identify whether the mu- MRI of the brain showed a mass in the right cerebel- tation is the driver versus the passenger. lar hemisphere with hydrocephalus (Figure 1E). Com- © JNCCN—Journal of the National Comprehensive Cancer Network | Volume 16 Number 6 | June 2018 Molecular Insights in Patient Care 685 Medulloblastoma in Child With History of Neuroblastoma A B C D E F G H Figure 1. (A) Posttherapy calcification of adrenalectomy and rare viable neuroblastoma cells showing good therapeutic response to adjuvant che- motherapy (hematoxylin-eosin, original magnification x100). (B) Small round blue cell tumor with anaplastic medulloblastoma features in a section of the brain (hematoxylin-eosin, original magnification x400). Immunohistochemical study (C) positive for anti-CD57 and (D) negative for neurofila- ment (original magnification x100, for both). (E) Axial T1 MRI of the brain with contrast
Recommended publications
  • Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies
    International Journal of Molecular Sciences Review Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies Maria Peleli 1,2,3,*, Aristidis Moustakas 1 and Andreas Papapetropoulos 2,3 1 Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; [email protected] 2 Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; [email protected] 3 Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece * Correspondence: [email protected]; Tel.: +46-768-795-270 Received: 28 August 2020; Accepted: 3 October 2020; Published: 6 October 2020 Abstract: Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC–TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells).
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
    SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D.
    [Show full text]
  • Meningioma ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Meningioma ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Meningioma Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit advocacy organization dedicated solely to brain tumor research. For nearly 45 years, the ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Santosh Kesari, MD, PhD, FANA, FAAN chair of department of translational neuro- oncology and neurotherapeutics, and Marlon Saria, MSN, RN, AOCNS®, FAAN clinical nurse specialist, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA; and Albert Lai, MD, PhD, assistant clinical professor, Adult Brain Tumors, UCLA Neuro-Oncology Program, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2017 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Meningioma INTRODUCTION Although meningiomas are considered a type of primary brain tumor, they do not grow from brain tissue itself, but instead arise from the meninges, three thin layers of tissue covering the brain and spinal cord.
    [Show full text]
  • Medulloblastoma with Patient Ips Cell-Derived Neural Stem Cells
    Modeling SHH-driven medulloblastoma with patient iPS cell-derived neural stem cells Evelyn Susantoa, Ana Marin Navarroa, Leilei Zhoua, Anders Sundströmb, Niek van Breea, Marina Stantica, Mohsen Moslemc, Jignesh Tailord,e, Jonne Rietdijka, Veronica Zubillagaa, Jens-Martin Hübnerf,g, Holger Weishauptb, Johanna Wolfsbergera, Irina Alafuzoffb, Ann Nordgrenh,i, Thierry Magnaldoj, Peter Siesjök,l, John Inge Johnsenm, Marcel Koolf,g, Kristiina Tammimiesm, Anna Darabil, Fredrik J. Swartlingb, Anna Falkc,1, and Margareta Wilhelma,1 aDepartment of Microbiology, Tumor and Cell biology (MTC), Karolinska Institutet, 171 65 Stockholm, Sweden; bDepartment of Immunology, Genetics, and Pathology, Science For Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; cDepartment of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; dDevelopmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; eDivision of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; fHopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany; gDivision of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany; hDepartment of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; iDepartment of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; jInstitute for Research on Cancer and Aging, CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France; kDivision of Neurosurgery, Department of Clinical Sciences, Skane University Hospital, 221 85 Lund, Sweden; lGlioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden; and mDepartment of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden Edited by Matthew P.
    [Show full text]
  • Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities”
    “Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities” Arzu Onar-Thomas Member Biostatistics Department St. Jude Graduate School of Biomedical Sciences St. Jude Children's Research Hospital Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities DATA-DRIVEN PRECISION MEDICINE AND TRANSLATIONAL RESEARCH IN THE ERA OF BIG DATA – MAY 1, 2020 ARZU ONAR- THOMAS, PHD DEPARTMENT OF BIOSTATISTICS ST. JUDE CHILDREN’S RESEARCH HOSPITAL Disclosures Limited advisory role for Roche and Eli Lilly Grants and other support (e.g. investigational agent) for PBTC studies from: Novartis, Pfizer, Celgene, Apexigen, SecuraBio, Senhwa, Incyte, Novocure Childhood Cancer Research Landscape Report, American Cancer Society Special considerations forin pediatric precision cancersmedicine in pediatric cancers Childhood cancers are often biologically different than similarly named cancers in adults. Treatment side effects may differ between children and adults . Health impacts of pediatric cancer treatment may be more severe since they occur during a vulnerable period of development. Children have a special protective status in research . Research that may be ethical in adults many not be so for children. The rarity of childhood cancers can make designing and completing clinical trials challenging . small number of diagnosed patients or . competition between different research studies for the same children. Childhood Cancer Research Landscape Report, American Cancer Society "Sometimes reality is too complex. Stories give it form." --Jean Luc Godard, film writer, film critic, film director VIGNETTE 1: SHH MEDULLOBLASTOMA Medulloblastoma The most common malignant brain tumor in children . ~400-500 new cases/yr in the US One of the better understood pediatric brain tumors A relative success story with a 5-year PFS of ~70-75% Prognosis depends on degree of surgical resection and whether tumor is localized or has spread Molecular subgroup St Jude investigators have made significant contributions to the understanding of medulloblastoma.
    [Show full text]
  • Molecular Insights Into Malignant Progression of Atypical Choroid Plexus Papilloma
    Downloaded from molecularcasestudies.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press COLD SPRING HARBOR Molecular Case Studies | RESEARCH REPORT Molecular insights into malignant progression of atypical choroid plexus papilloma Maxim Yankelevich,1,2,9 Jonathan L. Finlay,3 Hamza Gorsi,2 William Kupsky,4 Daniel R. Boue,5 Carl J. Koschmann,6,7 Chandan Kumar-Sinha,7,8 and Rajen Mody6,7 1Pediatric Hematology/Oncology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA; 2Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan and Wayne State University School of Medicine, Detroit, Michigan 48201, USA; 3Division of Hematology, Oncology, and BMT, Nationwide Children’s Hospital and The Ohio State University, College of Medicine, Columbus, Ohio 43205, USA; 4Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA; 5Department of Pathology, Nationwide Children’s Hospital and The Ohio State University, College of Medicine, Columbus, Ohio 43205, USA; 6Department of Pediatrics, Michigan Medicine, 7Rogel Cancer Center, 8Michigan Center for Translational Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA Abstract Choroid plexus tumors are rare pediatric neoplasms ranging from low-grade pap- illomas to overtly malignant carcinomas. They are commonly associated with Li–Fraumeni syndrome and germline TP53 mutations. Choroid plexus carcinomas associated with Li–Fraumeni syndrome are less responsive to chemotherapy, and there is a need to avoid radiation therapy leading to poorer outcomes and survival. Malignant progression from choroid plexus papillomas to carcinomas is exceedingly rare with only a handful of cases re- ported, and the molecular mechanisms of this progression remain elusive.
    [Show full text]
  • Article 1, 1999 Treatment Strategies for Medulloblastoma and Primitive Neuroectodermal Tumors
    Neurosurg Focus 7 (2):Article 1, 1999 Treatment strategies for medulloblastoma and primitive neuroectodermal tumors Deborah R. Gold, M.D., Roger J. Packer, M.D., and Bruce H. Cohen, M.D. Departments of Neurology and Neurosurgery, and The Brain Tumor Center, The Cleveland Clinic Foundation, Cleveland, Ohio; and Division of Neurology and Pediatrics, Children's National Medical Center, George Washington University, Washington, DC Medulloblastoma and primitive neuroectodermal tumors (PNETs) are the most common malignant brain tumors in children. The concern for late sequelae of neuraxis irradiation and the obligation to improve disease-free survival in children who harbor malignant brain tumors has led to the additional provision of systemic chemotherapy to standard- and reduced-dose radiotherapy, as well as to the evaluation of alternate modes of radiotherapy delivery. Analysis of evidence has suggested that chemotherapy has an impact on length of survival in children with medulloblastoma and PNETs. The question remains as to whether chemotherapy combined with reduced-dose radiotherapy provides greater benefit than standard-dose radiotherapy alone, and which subset of children the treatment most benefits. Also unanswered is the question of whether chemotherapy can serve as the primary treatment in infants with these lesions. In an attempt to help answer these questions, the authors review the major chemotherapy and radiotherapy trials for newly diagnosed patients and those with recurrent medulloblastoma and PNETs. Key Words * medulloblastoma * primitive neuroectodermal tumor * radiotherapy * chemotherapy Tumors of the central nervous system (CNS) are the most common malignancy of childhood, comprising approximately 20% of all childhood malignancies.[55] Medulloblastoma accounts for 30% and supratentorial primitive neuroectodermal tumors (PNETs) for 1 to 2% of all childhood brain tumors.[8,33] Bailey and Cushing[7] first used the term "medulloblastoma" in 1925 to describe a pluripotential embryonal tumor that arose in the cerebellum.
    [Show full text]
  • Adult Cerebellar Medulloblastoma: Imaging Features with Emphasis on MR Findings
    Adult Cerebellar Medulloblastoma: Imaging Features with Emphasis on MR Findings Timothy M. Koci, 1 Frances Chiang, 1 C. Mark Mehringer, 1 William T. C. Yuh,2 Nina A. Mayr,2 Hideo ltabashi,3 and Henry F. W. Pribram4 PURPOSE: To describe the MR imaging features of cerebellar medulloblastoma in the adult. MATERIALS AND METHODS: The neuroimages and records of 15 adults with proved cerebellar medulloblastoma were retrospectively evalua'ted. In 12 patients, preoperative MR scans were reviewed; nine had Gd-DTPA-enhanced scans. RESULTS: Of the 12 tumors evaluated preopera­ tively, eight were hemispheric, two hemispheric-vermian, and two vermian. Tumor margins were well demarcated, except in three cases, two of which had large infiltrative tumors. In 10 cases, tumor extended to the brain surface, and in five of these, contiguity with the tentorium or cerebellopontine angle cistern was such that an extraaxial tumor was considered. The tumors were typically hypointense on T1 but a spectrum was seen on T2-weighted images. Enhancement ranged from minimal and patchy to marked. One tumor became isointense after Gd-DTPA. Other features included cystic changes, hemorrhage, exophytic invasion at the cerebellopontine angle, spinal cerebrospinal fluid seeding, intraventricular seeding, and bone metastasis. CONCLUSION: Although there is no pathognomonic MR appearance of adult cerebellar medulloblastoma, the finding of a well-demarcated, mild to moderately enhancing hemispheric mass involving the brain surface in a young adult is suggestive of medulloblastoma. Awareness that this tumor may resemble meningioma may avoid misdiagnosis and aid surgical planning. Index terms: Medulloblastoma; Cerebellum, neoplasms; Cerebellum, magnetic resonance AJNR 14:929-939, Jul/Aug 1993 Medulloblastoma is usually thought of as a manly in the cerebellar hemisphere than in the midline vermian tumor occurring in childhood.
    [Show full text]
  • Impact of RNA-Sequencing Analysis in Refining Diagnosis in Pediatric Neuro-Oncology Kathleen M
    Impact of RNA-sequencing analysis in refining diagnosis in pediatric neuro-oncology Kathleen M. Schieffer1, Katherine E. Miller1, Stephanie LaHaye1, James Fitch1, Kyle Voytovich1, Daniel C. Koboldt1, Benjamin Kelly1, Patrick Brennan1, Anthony Miller1, Elizabeth Varga1, Kristen Leraas1, Vibhuti Agarwal2, Diana Osorio2, Mohamed S. AbdelBaki2, Jonathan L. Finlay2, Jeffrey R. Leonard3, Alex Feldman4, Daniel R. Boue4, Julie M. Gastier-Foster1, Vincent Magrini1, Peter White1, Catherine E. Cottrell1, Elaine R. Mardis1, Richard K. Wilson1 1. Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH; 2. Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH; 3. Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH; 4. Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH Background and demographics Methods Case 2: Refine diagnosis The Nationwide Children’s Hospital Institute for Genomic Medicine (IGM) translational research protocol Transcriptomic analysis was performed from 70 tissue sections collected from 56 patients: snap frozen (n=48), A 10-month-old was diagnosed with a sella/suprasellar tumor, most consistent with a CNS embryonal tumor. No enrolls pediatric patients with high-risk, relapsed, refractory, or difficult to classify tumors. The goal of formalin-fixed paraffin-embedded (FFPE) tissue (n=21), or disassociated cells (n=1). When possible, total RNA- constitutional or somatic variations or copy number aberrations were noted. The tissue was also sent to an this protocol is to refine the patient diagnosis, identify targeted therapeutics relevant to the individual sequencing was performed (n=60); however, when the sample was poor quality or low input, cDNA capture was outside institution for the Infinium MethylationEPIC 850K array, reporting a classification of pineoblastoma group tumor biology and eliminate unsuitable treatments, and determine eligibility for clinical trials.
    [Show full text]
  • Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors
    The American Journal of Pathology, Vol. 188, No. 6, June 2018 ajp.amjpathol.org ANIMAL MODELS Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors Morgan L. Shannon,* Ryann M. Fame,* Kevin F. Chau,*z Neil Dani,* Monica L. Calicchio,* Gwenaelle S. Géléoc,x{ Hart G.W. Lidov,* Sanda Alexandrescu,* and Maria K. Lehtinen*z From the Departments of Pathology* and Otolaryngologyx and the F.M. Kirby Center for Neurobiology,{ Boston Children’s Hospital, Boston; and the Program in Biological and Biomedical Sciences,z Harvard Medical School, Boston, Massachusetts Accepted for publication February 20, 2018. Choroid plexus tumors and ciliary body medulloepithelioma are predominantly pediatric neoplasms. Progress in understanding the pathogenesis of these tumors has been hindered by their rarity and lack Address correspondence to fi Maria K. Lehtinen, Ph.D., of models that faithfully recapitulate the disease. Here, we nd that endogenous Myc proto-oncogene Department of Pathology, Boston protein is down-regulated in the forebrain neuroepithelium, whose neural plate border domains give Children’s Hospital, 300 Long- rise to the anterior choroid plexus and ciliary body. To uncover the consequences of persistent Myc wood Ave., Boston, MA 02115. expression, MYC expression was forced in multipotent neural precursors (nestin-Cre:Myc), which E-mail: maria.lehtinen@ produced fully penetrant models of choroid plexus carcinoma and ciliary body medulloepithelioma. childrens.harvard.edu. Nestin-mediated MYC expression in the epithelial cells of choroid plexus leads to the regionalized formation of choroid plexus carcinoma in the posterior domain of the lateral ventricle choroid plexus and the fourth ventricle choroid plexus that is accompanied by loss of multiple cilia, up-regulation of protein biosynthetic machinery, and hydrocephalus.
    [Show full text]
  • SEOM Clinical Guideline for Management of Adult Medulloblastoma (2020)
    Clinical and Translational Oncology https://doi.org/10.1007/s12094-021-02581-1 CLINICAL GUIDES IN ONCOLOGY SEOM clinical guideline for management of adult medulloblastoma (2020) R. Luque1 · M. Benavides2 · S. del Barco3 · L. Egaña4 · J. García‑Gómez5 · M. Martínez‑García6 · P. Pérez‑Segura7 · E. Pineda8 · J. M. Sepúlveda9 · M. Vieito10 Accepted: 2 March 2021 © The Author(s) 2021 Abstract Recent advances in molecular profling, have reclassifed medulloblastoma, an undiferentiated tumor of the posterior fossa, in at least four diseases, each one with diferences in prognosis, epidemiology and sensibility to diferent treatments. The recommended management of a lesion with radiological characteristics suggestive of MB includes maximum safe resection followed by a post-surgical MR < 48 h, LCR cytology and MR of the neuroaxis. Prognostic factors, such as presence of a residual tumor volume > 1.5 cm 2, presence of micro- or macroscopic dissemination, and age > 3 years as well as pathological (presence of anaplastic or large cell features) and molecular fndings (group, 4, 3 or p53 SHH mutated subgroup) determine the risk of relapse and should guide adjuvant management. Although there is evidence that both high-risk patients and to a lesser degree, standard-risk patients beneft from adjuvant craneoespinal radiation followed by consolidation chemotherapy, tolerability is a concern in adult patients, leading invariably to dose reductions. Treatment after relapse is to be considered pal- liative and inclusion on clinical trials, focusing on the molecular alterations that defne each subgroup, should be encouraged. Selected patients can beneft from surgical rescue or targeted radiation or high-dose chemotherapy followed by autologous self-transplant.
    [Show full text]