Medulloblastoma Possible Benefits of High-Dose Chemotherapy

Total Page:16

File Type:pdf, Size:1020Kb

Medulloblastoma Possible Benefits of High-Dose Chemotherapy Bone Marrow Transplantation (2002) 30, 565–569 2002 Nature Publishing Group All rights reserved 0268–3369/02 $25.00 www.nature.com/bmt Medulloblastoma Possible benefits of high-dose chemotherapy and autologous stem cell transplantation for adults with recurrent medulloblastoma MI Zia1,2, P Forsyth1,3, A Chaudhry1,4, J Russell1,2,4 and DA Stewart1,2,4 1Department of Oncology, University of Calgary, Calgary, Alberta, Canada; 2Department of Medicine, University of Calgary, Calgary, Alberta, Canada; 3Department of Neurosciences, University of Calgary, Calgary, Alberta, Canada; and 4Alberta Blood and Marrow Transplant Program, Tom Baker Cancer Centre, Calgary, Alberta, Canada Summary: The prognosis of adults with recurrent medulloblastoma remains poor, with median survival rates reported to be as In an attempt to improve the dismal prognosis of adults low as 5 months.1 Currently, there is no generally accept- with recurrent medulloblastoma, six patients were able therapy for tumor recurrences. The most active chemo- treated with aggressive salvage therapy including high- therapeutic agents include cisplatin or carboplatin,2–4 low- dose chemotherapy (HDCT) and autologous stem cell dose oral etoposide,5 PCV (procarbazine, CCNU, transplantation (ASCT). At relapse, all patients vincristine),6 MOPP (nitrogen mustard, vincristine, procar- underwent surgical debulking followed by HDCT/ASCT bazine, prednisone),7 and intraventricular and intrathecal and then radiotherapy when possible. The treatment therapy with Ara-C, methotrexate and thiotepa.8 Despite plan included two cycles of HDCT/ASCT; first with reasonably high response rates of 40–75% with these cyclophosphamide, etoposide and carboplatin (CECb) agents, no long-term disease-free survival has been and then 2 months later with cyclophosphamide and thi- reported.1–9 Given that these agents are amenable to sub- otepa (CT). Three of the six patients received the stantial dose-escalation, evaluation of high-dose chemo- planned therapy. One patient experienced severe tox- therapy (HDCT) and autologous stem cell transplantation icity requiring life-sustaining therapy. This patient (ASCT) has been suggested.9 Promising results with developed multi-organ dysfunction including multiple HDCT/ASCT prompted us to use this form of therapy for enhancing lesions in both cerebral hemispheres that young adults with recurrent medulloblastoma, who were slowly resolved over several months. Two other patients otherwise healthy and had no possibility of cure with did not mobilize sufficient stem cells for two ASCT pro- conventional dose therapy.10–15 cedures. They received one ASCT conditioned with Here, we report the outcomes of six adults who cyclophosphamide, thiotepa and carboplatin (CTCb). underwent HDCT (cyclophosphamide, carboplatin, thi- Three of six patients had a complete response (CR); the otepa, etoposide) with ASCT for medulloblastoma relapse. other three had a partial response (PR). Following the first ASCT, median duration of response was 13.5 months (range 9–29 months) and median survival was Patients and methods 21.5 months (range 12–42 months). There was no treat- ment-related mortality. We conclude that HDCT/ASCT Patients with CECb-CT or CTCb is active against recurrent medulloblastoma in adults and may be associated with Table 1 lists the clinical profile of patients 1–6. Between prolonged remissions. Multiple enhancing cerebral March 1995 and November 1999, these patients were lesions on brain MRI early post-HDCT/ASCT may be treated with this regimen at the Tom Baker Cancer Centre a consequence of the treatment rather than metastatic in Calgary, Alberta. This report includes follow-up of these disease. patients as of May 2001. The patient sample included five Bone Marrow Transplantation (2002) 30, 565–569. males and one female with a median age of 25 years (range: doi:10.1038/sj.bmt.1703725 8–33 years) at the time of initial diagnosis. All patients Keywords: medulloblastoma; autologous stem cell trans- were initially treated with surgery and radiation Ϯ pre-radi- plantation; neurotoxicity ation chemotherapy (three courses of vincristine and carboplatin). All patients had histologically documented recurrent medulloblastoma. The median age at relapse was 29.5 years (range: 21–35 years). The median time to relapse from initial diagnosis was 40 months (range: 19–204 months). Tumor staging at the time of relapse was done Correspondence: Dr D Stewart, Tom Baker Cancer Centre, 1331-29th using the Chang system. M0 indicates no evidence of meta- Street, NW, Calgary, Alberta, Canada, T2N 4N2 static disease, M1 is classified as positive CSF cytology, Received 30 January 2002; accepted 21 May 2002 M2 as gross nodular seeding of cerebral or cerebellar subar- HDCT and ASCT for recurrent medulloblastoma MI Zia et al 566 Table 1 Patient clinical profiles Patient Gender/Age Surgery RT (Gy) Age at Time to M Time from Histology No. at Initial at Initial craniospinal/ relapse relapse stage at relapse to Dx Dx primary (months) relapse protocol at initial Dx (months) 1 M/33 Total resection 36/54 35 24 2 2 DM 2 M/8 Subtotal resection 20/55 21 168 0 2 DM 3 M/10 Total resection 40/35 27 204 2 16 M 4 F/30 Total resection 36/50 (+ Cx) 32 19 0 22 M 5 M/31 Total resection Ϫ/55 35 50 1 12 DM 6 M/20 Subtotal resection 36/56 (+ Cx) 22 30 3 2 M Dx ϭ diagnosis; M ϭ male; F ϭ, female; RT ϭ radiation therapy; Cx ϭ chemotherapy (vincristine and carboplatin); DM ϭ desmoplastic medulloblas- toma; M ϭ ‘classic’ medulloblastoma. achanoid space or in the third or lateral ventricles, M3 as Response assessment gross nodular seeding of the spinal subarachnoid space, and M4 as extraneuroaxial metastases. At the time of relapse, Patients were assessed by the use of brain and spine MRI the M stage was M0 in two patients, M1 in one patient, after the first and second cycles of HDCT/ASCT, along M2 in two patients, M3 in one patient and M4 in no patient. with CSF cytology if there were prior evidence of metasta- Histologically, three patients had the classic form of medul- sis. Standard radiographic criteria were used to determine loblastoma, whereas the other three had the desmoplastic response. Complete response (CR) was defined as complete variant. resolution of all lesions and no clinical progression. Partial After relapse, three of the six patients underwent surgical response (PR) was defined as a >50% reduction in the pro- resection, two had a combination of surgery and chemo- duct of the maximum perpendicular diameters of all lesions therapy, and one patient had chemotherapy alone. None of and no clinical progression. Stable disease (SD) was the six patients received radiation therapy. Despite these defined as <50% reduction and <25% increase in size with efforts, all patients had symptomatic disease at the time of no clinical progression, and progressive disease (PD) was protocol. The median time from radiographic relapse to the defined as >25% increase in size. The patients’ Karnofsky first cycle of HDCT/ASCT was 7 months (range: 2–22 scores at the time of relapse and shortly (<30 days) after months). All patients had a Karnofsky score of 60% or completing the course of chemotherapy were also recorded. greater before the administration of the protocol. Results Protocol Protocol delivery Three out of six patients (Nos 2, 3 and 5) received the The original protocol consisted of two cycles of high-dose planned two cycles of HDCT/ASCT with CECb followed chemotherapy as follows. Leukapheresis was performed in by CT. Two patients (Nos 4 and 6) did not mobilize suf- all patients after chemotherapy and G-CSF administration, ficient stem cells for two ASCT procedures (only 1.3 and leading to the collection and cryopreservation of stem cells. 3.2 ϫ 106 CD34 cells/kg collected). Both these patients had On days Ϫ6, Ϫ5, and Ϫ4 patients received carboplatin (600 received craniospinal radiotherapy in the past. Conse- mg/m2 over 1 h), etoposide (600 mg/m2 over 3 h) and quently, these two patients received only one cycle of cyclophosphamide (50 mg/kg over 1 h). Approximately HDCT using cyclophosphamide, carboplatin and thiotepa 96 h after completion of chemotherapy, the cryopreserved (same doses as above). One patient (No. 1) experienced stem cells were reinfused. On day +1, granulocyte colony- severe toxicity from CECb/ASCT and declined the second stimulating factor (G-CSF) was administered at a dose of + transplant. For all six patients, the CD34 cell dose ranged 300 ␮g (if less than 70 kg) or 480 ␮g (if over 70 kg) via from 1.3 to 7.5 ϫ 106 cells/kg for the first cycle of the subcutaneous route once daily, until the neutrophils + HDCT/ASCT. The CD34 cell dose for the three patients engrafted. who received the second ASCT ranged from 3.6 to 15 ϫ For the patients who had initially mobilized sufficient 106 CD34 cells/kg. stem cells and established hematopoietic recovery, the second cycle of chemotherapy was administered. On days Ϫ Ϫ Ϫ 2 7, 6, 5, thiotepa (250 mg/m over 24 h) and cyclopho- Toxicity sphamide (2 g/m2 over 24 h) were administered. About 120 h later, the remaining stem cells from the initial harvest Hematological recovery post-ASCT was prompt for all were reinfused. Once again, G-CSF was administered as patients. No patient experienced treatment-related mor- per the first cycle. tality. Only one patient experienced severe life-threatening, Bone Marrow Transplantation HDCT and ASCT for recurrent medulloblastoma MI Zia et al 567 regimen-related toxicity (RRT). This patient developed a systemic inflammatory syndrome with multisystem dys- function of renal, pulmonary, cardiovascular, gastrointes- tinal and central nervous systems. His carboplatin dose was based on the Calvert formula using a measured 24-h creati- nine clearance of 230 ml/min and an area-under-the-curve (AUC) of 21.
Recommended publications
  • Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies
    International Journal of Molecular Sciences Review Endothelial-Tumor Cell Interaction in Brain and CNS Malignancies Maria Peleli 1,2,3,*, Aristidis Moustakas 1 and Andreas Papapetropoulos 2,3 1 Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; [email protected] 2 Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, 115 27 Athens, Greece; [email protected] 3 Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 157 71 Athens, Greece * Correspondence: [email protected]; Tel.: +46-768-795-270 Received: 28 August 2020; Accepted: 3 October 2020; Published: 6 October 2020 Abstract: Glioblastoma and other brain or CNS malignancies (like neuroblastoma and medulloblastoma) are difficult to treat and are characterized by excessive vascularization that favors further tumor growth. Since the mean overall survival of these types of diseases is low, the finding of new therapeutic approaches is imperative. In this review, we discuss the importance of the interaction between the endothelium and the tumor cells in brain and CNS malignancies. The different mechanisms of formation of new vessels that supply the tumor with nutrients are discussed. We also describe how the tumor cells (TC) alter the endothelial cell (EC) physiology in a way that favors tumorigenesis. In particular, mechanisms of EC–TC interaction are described such as (a) communication using secreted growth factors (i.e., VEGF, TGF-β), (b) intercellular communication through gap junctions (i.e., Cx43), and (c) indirect interaction via intermediate cell types (pericytes, astrocytes, neurons, and immune cells).
    [Show full text]
  • Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
    Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma,
    [Show full text]
  • Risk-Adapted Therapy for Young Children with Embryonal Brain Tumors, High-Grade Glioma, Choroid Plexus Carcinoma Or Ependymoma (Sjyc07)
    SJCRH SJYC07 CTG# - NCT00602667 Initial version, dated: 7/25/2007, Resubmitted to CPSRMC 9/24/2007 and 10/6/2007 (IRB Approved: 11/09/2007) Activation Date: 11/27/2007 Amendment 1.0 dated January 23, 2008, submitted to CPSRMC: January 23, 2008, IRB Approval: March 10, 2008 Amendment 2.0 dated April 16, 2008, submitted to CPSRMC: April 16, 2008, (IRB Approval: May 13, 2008) Revision 2.1 dated April 29, 2009 (IRB Approved: April 30, 2009 ) Amendment 3.0 dated June 22, 2009, submitted to CPSRMC: June 22, 2009 (IRB Approved: July 14, 2009) Activated: August 11, 2009 Amendment 4.0 dated March 01, 2010 (IRB Approved: April 20, 2010) Activated: May 3, 2010 Amendment 5.0 dated July 19, 2010 (IRB Approved: Sept 17, 2010) Activated: September 24, 2010 Amendment 6.0 dated August 27, 2012 (IRB approved: September 24, 2012) Activated: October 18, 2012 Amendment 7.0 dated February 22, 2013 (IRB approved: March 13, 2013) Activated: April 4, 2013 Amendment 8.0 dated March 20, 2014. Resubmitted to IRB May 20, 2014 (IRB approved: May 22, 2014) Activated: May 30, 2014 Amendment 9.0 dated August 26, 2014. (IRB approved: October 14, 2014) Activated: November 4, 2014 Un-numbered revision dated March 22, 2018. (IRB approved: March 27, 2018) Un-numbered revision dated October 22, 2018 (IRB approved: 10-24-2018) RISK-ADAPTED THERAPY FOR YOUNG CHILDREN WITH EMBRYONAL BRAIN TUMORS, HIGH-GRADE GLIOMA, CHOROID PLEXUS CARCINOMA OR EPENDYMOMA (SJYC07) Principal Investigator Amar Gajjar, M.D. Division of Neuro-Oncology Department of Oncology Section Coordinators David Ellison, M.D., Ph.D.
    [Show full text]
  • Meningioma ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Meningioma ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Meningioma Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit advocacy organization dedicated solely to brain tumor research. For nearly 45 years, the ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Santosh Kesari, MD, PhD, FANA, FAAN chair of department of translational neuro- oncology and neurotherapeutics, and Marlon Saria, MSN, RN, AOCNS®, FAAN clinical nurse specialist, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA; and Albert Lai, MD, PhD, assistant clinical professor, Adult Brain Tumors, UCLA Neuro-Oncology Program, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2017 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Meningioma INTRODUCTION Although meningiomas are considered a type of primary brain tumor, they do not grow from brain tissue itself, but instead arise from the meninges, three thin layers of tissue covering the brain and spinal cord.
    [Show full text]
  • Medulloblastoma with Patient Ips Cell-Derived Neural Stem Cells
    Modeling SHH-driven medulloblastoma with patient iPS cell-derived neural stem cells Evelyn Susantoa, Ana Marin Navarroa, Leilei Zhoua, Anders Sundströmb, Niek van Breea, Marina Stantica, Mohsen Moslemc, Jignesh Tailord,e, Jonne Rietdijka, Veronica Zubillagaa, Jens-Martin Hübnerf,g, Holger Weishauptb, Johanna Wolfsbergera, Irina Alafuzoffb, Ann Nordgrenh,i, Thierry Magnaldoj, Peter Siesjök,l, John Inge Johnsenm, Marcel Koolf,g, Kristiina Tammimiesm, Anna Darabil, Fredrik J. Swartlingb, Anna Falkc,1, and Margareta Wilhelma,1 aDepartment of Microbiology, Tumor and Cell biology (MTC), Karolinska Institutet, 171 65 Stockholm, Sweden; bDepartment of Immunology, Genetics, and Pathology, Science For Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden; cDepartment of Neuroscience, Karolinska Institutet, 171 65 Stockholm, Sweden; dDevelopmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; eDivision of Neurosurgery, University of Toronto, Toronto, ON M5S 1A8, Canada; fHopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany; gDivision of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Research Consortium (DKTK), 69120 Heidelberg, Germany; hDepartment of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden; iDepartment of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden; jInstitute for Research on Cancer and Aging, CNRS UMR 7284, INSERM U1081, University of Nice Sophia Antipolis, Nice, France; kDivision of Neurosurgery, Department of Clinical Sciences, Skane University Hospital, 221 85 Lund, Sweden; lGlioma Immunotherapy Group, Division of Neurosurgery, Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden; and mDepartment of Women’s and Children’s Health, Karolinska Institutet, 171 76 Stockholm, Sweden Edited by Matthew P.
    [Show full text]
  • Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities”
    “Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities” Arzu Onar-Thomas Member Biostatistics Department St. Jude Graduate School of Biomedical Sciences St. Jude Children's Research Hospital Precision Medicine in Pediatric Brain Tumors: Challenges and Opportunities DATA-DRIVEN PRECISION MEDICINE AND TRANSLATIONAL RESEARCH IN THE ERA OF BIG DATA – MAY 1, 2020 ARZU ONAR- THOMAS, PHD DEPARTMENT OF BIOSTATISTICS ST. JUDE CHILDREN’S RESEARCH HOSPITAL Disclosures Limited advisory role for Roche and Eli Lilly Grants and other support (e.g. investigational agent) for PBTC studies from: Novartis, Pfizer, Celgene, Apexigen, SecuraBio, Senhwa, Incyte, Novocure Childhood Cancer Research Landscape Report, American Cancer Society Special considerations forin pediatric precision cancersmedicine in pediatric cancers Childhood cancers are often biologically different than similarly named cancers in adults. Treatment side effects may differ between children and adults . Health impacts of pediatric cancer treatment may be more severe since they occur during a vulnerable period of development. Children have a special protective status in research . Research that may be ethical in adults many not be so for children. The rarity of childhood cancers can make designing and completing clinical trials challenging . small number of diagnosed patients or . competition between different research studies for the same children. Childhood Cancer Research Landscape Report, American Cancer Society "Sometimes reality is too complex. Stories give it form." --Jean Luc Godard, film writer, film critic, film director VIGNETTE 1: SHH MEDULLOBLASTOMA Medulloblastoma The most common malignant brain tumor in children . ~400-500 new cases/yr in the US One of the better understood pediatric brain tumors A relative success story with a 5-year PFS of ~70-75% Prognosis depends on degree of surgical resection and whether tumor is localized or has spread Molecular subgroup St Jude investigators have made significant contributions to the understanding of medulloblastoma.
    [Show full text]
  • Molecular Insights Into Malignant Progression of Atypical Choroid Plexus Papilloma
    Downloaded from molecularcasestudies.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press COLD SPRING HARBOR Molecular Case Studies | RESEARCH REPORT Molecular insights into malignant progression of atypical choroid plexus papilloma Maxim Yankelevich,1,2,9 Jonathan L. Finlay,3 Hamza Gorsi,2 William Kupsky,4 Daniel R. Boue,5 Carl J. Koschmann,6,7 Chandan Kumar-Sinha,7,8 and Rajen Mody6,7 1Pediatric Hematology/Oncology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08901, USA; 2Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan and Wayne State University School of Medicine, Detroit, Michigan 48201, USA; 3Division of Hematology, Oncology, and BMT, Nationwide Children’s Hospital and The Ohio State University, College of Medicine, Columbus, Ohio 43205, USA; 4Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA; 5Department of Pathology, Nationwide Children’s Hospital and The Ohio State University, College of Medicine, Columbus, Ohio 43205, USA; 6Department of Pediatrics, Michigan Medicine, 7Rogel Cancer Center, 8Michigan Center for Translational Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA Abstract Choroid plexus tumors are rare pediatric neoplasms ranging from low-grade pap- illomas to overtly malignant carcinomas. They are commonly associated with Li–Fraumeni syndrome and germline TP53 mutations. Choroid plexus carcinomas associated with Li–Fraumeni syndrome are less responsive to chemotherapy, and there is a need to avoid radiation therapy leading to poorer outcomes and survival. Malignant progression from choroid plexus papillomas to carcinomas is exceedingly rare with only a handful of cases re- ported, and the molecular mechanisms of this progression remain elusive.
    [Show full text]
  • Article 1, 1999 Treatment Strategies for Medulloblastoma and Primitive Neuroectodermal Tumors
    Neurosurg Focus 7 (2):Article 1, 1999 Treatment strategies for medulloblastoma and primitive neuroectodermal tumors Deborah R. Gold, M.D., Roger J. Packer, M.D., and Bruce H. Cohen, M.D. Departments of Neurology and Neurosurgery, and The Brain Tumor Center, The Cleveland Clinic Foundation, Cleveland, Ohio; and Division of Neurology and Pediatrics, Children's National Medical Center, George Washington University, Washington, DC Medulloblastoma and primitive neuroectodermal tumors (PNETs) are the most common malignant brain tumors in children. The concern for late sequelae of neuraxis irradiation and the obligation to improve disease-free survival in children who harbor malignant brain tumors has led to the additional provision of systemic chemotherapy to standard- and reduced-dose radiotherapy, as well as to the evaluation of alternate modes of radiotherapy delivery. Analysis of evidence has suggested that chemotherapy has an impact on length of survival in children with medulloblastoma and PNETs. The question remains as to whether chemotherapy combined with reduced-dose radiotherapy provides greater benefit than standard-dose radiotherapy alone, and which subset of children the treatment most benefits. Also unanswered is the question of whether chemotherapy can serve as the primary treatment in infants with these lesions. In an attempt to help answer these questions, the authors review the major chemotherapy and radiotherapy trials for newly diagnosed patients and those with recurrent medulloblastoma and PNETs. Key Words * medulloblastoma * primitive neuroectodermal tumor * radiotherapy * chemotherapy Tumors of the central nervous system (CNS) are the most common malignancy of childhood, comprising approximately 20% of all childhood malignancies.[55] Medulloblastoma accounts for 30% and supratentorial primitive neuroectodermal tumors (PNETs) for 1 to 2% of all childhood brain tumors.[8,33] Bailey and Cushing[7] first used the term "medulloblastoma" in 1925 to describe a pluripotential embryonal tumor that arose in the cerebellum.
    [Show full text]
  • Adult Cerebellar Medulloblastoma: Imaging Features with Emphasis on MR Findings
    Adult Cerebellar Medulloblastoma: Imaging Features with Emphasis on MR Findings Timothy M. Koci, 1 Frances Chiang, 1 C. Mark Mehringer, 1 William T. C. Yuh,2 Nina A. Mayr,2 Hideo ltabashi,3 and Henry F. W. Pribram4 PURPOSE: To describe the MR imaging features of cerebellar medulloblastoma in the adult. MATERIALS AND METHODS: The neuroimages and records of 15 adults with proved cerebellar medulloblastoma were retrospectively evalua'ted. In 12 patients, preoperative MR scans were reviewed; nine had Gd-DTPA-enhanced scans. RESULTS: Of the 12 tumors evaluated preopera­ tively, eight were hemispheric, two hemispheric-vermian, and two vermian. Tumor margins were well demarcated, except in three cases, two of which had large infiltrative tumors. In 10 cases, tumor extended to the brain surface, and in five of these, contiguity with the tentorium or cerebellopontine angle cistern was such that an extraaxial tumor was considered. The tumors were typically hypointense on T1 but a spectrum was seen on T2-weighted images. Enhancement ranged from minimal and patchy to marked. One tumor became isointense after Gd-DTPA. Other features included cystic changes, hemorrhage, exophytic invasion at the cerebellopontine angle, spinal cerebrospinal fluid seeding, intraventricular seeding, and bone metastasis. CONCLUSION: Although there is no pathognomonic MR appearance of adult cerebellar medulloblastoma, the finding of a well-demarcated, mild to moderately enhancing hemispheric mass involving the brain surface in a young adult is suggestive of medulloblastoma. Awareness that this tumor may resemble meningioma may avoid misdiagnosis and aid surgical planning. Index terms: Medulloblastoma; Cerebellum, neoplasms; Cerebellum, magnetic resonance AJNR 14:929-939, Jul/Aug 1993 Medulloblastoma is usually thought of as a manly in the cerebellar hemisphere than in the midline vermian tumor occurring in childhood.
    [Show full text]
  • Impact of RNA-Sequencing Analysis in Refining Diagnosis in Pediatric Neuro-Oncology Kathleen M
    Impact of RNA-sequencing analysis in refining diagnosis in pediatric neuro-oncology Kathleen M. Schieffer1, Katherine E. Miller1, Stephanie LaHaye1, James Fitch1, Kyle Voytovich1, Daniel C. Koboldt1, Benjamin Kelly1, Patrick Brennan1, Anthony Miller1, Elizabeth Varga1, Kristen Leraas1, Vibhuti Agarwal2, Diana Osorio2, Mohamed S. AbdelBaki2, Jonathan L. Finlay2, Jeffrey R. Leonard3, Alex Feldman4, Daniel R. Boue4, Julie M. Gastier-Foster1, Vincent Magrini1, Peter White1, Catherine E. Cottrell1, Elaine R. Mardis1, Richard K. Wilson1 1. Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH; 2. Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH; 3. Department of Neurosurgery, Nationwide Children’s Hospital, Columbus, OH; 4. Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH Background and demographics Methods Case 2: Refine diagnosis The Nationwide Children’s Hospital Institute for Genomic Medicine (IGM) translational research protocol Transcriptomic analysis was performed from 70 tissue sections collected from 56 patients: snap frozen (n=48), A 10-month-old was diagnosed with a sella/suprasellar tumor, most consistent with a CNS embryonal tumor. No enrolls pediatric patients with high-risk, relapsed, refractory, or difficult to classify tumors. The goal of formalin-fixed paraffin-embedded (FFPE) tissue (n=21), or disassociated cells (n=1). When possible, total RNA- constitutional or somatic variations or copy number aberrations were noted. The tissue was also sent to an this protocol is to refine the patient diagnosis, identify targeted therapeutics relevant to the individual sequencing was performed (n=60); however, when the sample was poor quality or low input, cDNA capture was outside institution for the Infinium MethylationEPIC 850K array, reporting a classification of pineoblastoma group tumor biology and eliminate unsuitable treatments, and determine eligibility for clinical trials.
    [Show full text]
  • Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors
    The American Journal of Pathology, Vol. 188, No. 6, June 2018 ajp.amjpathol.org ANIMAL MODELS Mice Expressing Myc in Neural Precursors Develop Choroid Plexus and Ciliary Body Tumors Morgan L. Shannon,* Ryann M. Fame,* Kevin F. Chau,*z Neil Dani,* Monica L. Calicchio,* Gwenaelle S. Géléoc,x{ Hart G.W. Lidov,* Sanda Alexandrescu,* and Maria K. Lehtinen*z From the Departments of Pathology* and Otolaryngologyx and the F.M. Kirby Center for Neurobiology,{ Boston Children’s Hospital, Boston; and the Program in Biological and Biomedical Sciences,z Harvard Medical School, Boston, Massachusetts Accepted for publication February 20, 2018. Choroid plexus tumors and ciliary body medulloepithelioma are predominantly pediatric neoplasms. Progress in understanding the pathogenesis of these tumors has been hindered by their rarity and lack Address correspondence to fi Maria K. Lehtinen, Ph.D., of models that faithfully recapitulate the disease. Here, we nd that endogenous Myc proto-oncogene Department of Pathology, Boston protein is down-regulated in the forebrain neuroepithelium, whose neural plate border domains give Children’s Hospital, 300 Long- rise to the anterior choroid plexus and ciliary body. To uncover the consequences of persistent Myc wood Ave., Boston, MA 02115. expression, MYC expression was forced in multipotent neural precursors (nestin-Cre:Myc), which E-mail: maria.lehtinen@ produced fully penetrant models of choroid plexus carcinoma and ciliary body medulloepithelioma. childrens.harvard.edu. Nestin-mediated MYC expression in the epithelial cells of choroid plexus leads to the regionalized formation of choroid plexus carcinoma in the posterior domain of the lateral ventricle choroid plexus and the fourth ventricle choroid plexus that is accompanied by loss of multiple cilia, up-regulation of protein biosynthetic machinery, and hydrocephalus.
    [Show full text]
  • SEOM Clinical Guideline for Management of Adult Medulloblastoma (2020)
    Clinical and Translational Oncology https://doi.org/10.1007/s12094-021-02581-1 CLINICAL GUIDES IN ONCOLOGY SEOM clinical guideline for management of adult medulloblastoma (2020) R. Luque1 · M. Benavides2 · S. del Barco3 · L. Egaña4 · J. García‑Gómez5 · M. Martínez‑García6 · P. Pérez‑Segura7 · E. Pineda8 · J. M. Sepúlveda9 · M. Vieito10 Accepted: 2 March 2021 © The Author(s) 2021 Abstract Recent advances in molecular profling, have reclassifed medulloblastoma, an undiferentiated tumor of the posterior fossa, in at least four diseases, each one with diferences in prognosis, epidemiology and sensibility to diferent treatments. The recommended management of a lesion with radiological characteristics suggestive of MB includes maximum safe resection followed by a post-surgical MR < 48 h, LCR cytology and MR of the neuroaxis. Prognostic factors, such as presence of a residual tumor volume > 1.5 cm 2, presence of micro- or macroscopic dissemination, and age > 3 years as well as pathological (presence of anaplastic or large cell features) and molecular fndings (group, 4, 3 or p53 SHH mutated subgroup) determine the risk of relapse and should guide adjuvant management. Although there is evidence that both high-risk patients and to a lesser degree, standard-risk patients beneft from adjuvant craneoespinal radiation followed by consolidation chemotherapy, tolerability is a concern in adult patients, leading invariably to dose reductions. Treatment after relapse is to be considered pal- liative and inclusion on clinical trials, focusing on the molecular alterations that defne each subgroup, should be encouraged. Selected patients can beneft from surgical rescue or targeted radiation or high-dose chemotherapy followed by autologous self-transplant.
    [Show full text]