Paratrechina Longicornis Global Invasive Species Database (GISD)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis Geminata
The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. By Rebecca L. Sandidge A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Neil D. Tsutsui, Chair Professor Brian Fisher Professor Rosemary Gillespie Professor Ellen Simms Fall 2018 The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. © 2018 By Rebecca L. Sandidge 1 Abstract The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. by Rebecca L. Sandidge Doctor of Philosophy in Environmental Science Policy and Management, Berkeley Professor Neil Tsutsui, Chair Invasive species and habitat destruction are considered to be the leading causes of biodiversity decline, signaling declining ecosystem health on a global scale. Ants (Formicidae) include some on the most widespread and impactful invasive species capable of establishing in high numbers in new habitats. The tropical grasslands of Indonesia are home to several invasive species of ants. Invasive ants are transported in shipped goods, causing many species to be of global concern. My dissertation explores ant communities in the grasslands of southeastern Indonesia. Communities are described for the first time with a special focus on the Tropical Fire Ant, Solenopsis geminata, which consumes grass seeds and can have negative ecological impacts in invaded areas. The first chapter describes grassland ant communities in both disturbed and undisturbed grasslands. -
Taxonomic Recovery of the Ant Cricket Myrmecophilus Albicinctus from M. Americanus (Orthoptera, Myrmecophilidae)
A peer-reviewed open-access journal ZooKeysTaxonomic 589: 97–106 (2016)recovery of the ant cricket Myrmecophilus albicinctus from M. americanus... 97 doi: 10.3897/zookeys.589.7739 SHORT COMMUNICATION http://zookeys.pensoft.net Launched to accelerate biodiversity research Taxonomic recovery of the ant cricket Myrmecophilus albicinctus from M. americanus (Orthoptera, Myrmecophilidae) Takashi Komatsu1, Munetoshi Maruyama1 1 Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 Fukuoka, Japan Corresponding author: Takashi Komatsu ([email protected]) Academic editor: F. Montealegre-Z | Received 8 January 2016 | Accepted 12 April 2016 | Published 16 May 2016 http://zoobank.org/9956EB10-A4CE-4933-A236-A34D809645E8 Citation: Komatsu T, Maruyama M (2016) Taxonomic recovery of the ant cricket Myrmecophilus albicinctus from M. americanus (Orthoptera: Myrmecophilidae). ZooKeys 589: 97–106. doi: 10.3897/zookeys.589.7739 Abstract Myrmecophilus americanus and M. albicinctus are typical myrmecophilous insects living inside ant nests. These species are ecologically important due to the obligate association with tramp ant species, includ- ing harmful invasive ant species. However, the taxonomy of these “white-banded ant crickets” is quite confused owing to a scarcity of useful external morphological characteristics. Recently, M. albicinctus was synonymized with M. americanus regardless of the apparent host use difference. To clarify taxonomical relationship between M. albicinctus and M. albicinctus, we reexamined morphological characteristics of both species mainly in the viewpoint of anatomy. Observation of genitalia parts, together with a few external body parts, revealed that M. albicinctus showed different tendency from them of M. americanus. Therefore, we recover M. albicinctus as a distinct species on the basis of the morphology. -
The Mesosomal Anatomy of Myrmecia Nigrocincta Workers and Evolutionary Transformations in Formicidae (Hymeno- Ptera)
7719 (1): – 1 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The mesosomal anatomy of Myrmecia nigrocincta workers and evolutionary transformations in Formicidae (Hymeno- ptera) Si-Pei Liu, Adrian Richter, Alexander Stoessel & Rolf Georg Beutel* Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany; Si-Pei Liu [[email protected]]; Adrian Richter [[email protected]]; Alexander Stößel [[email protected]]; Rolf Georg Beutel [[email protected]] — * Corresponding author Accepted on December 07, 2018. Published online at www.senckenberg.de/arthropod-systematics on May 17, 2019. Published in print on June 03, 2019. Editors in charge: Andy Sombke & Klaus-Dieter Klass. Abstract. The mesosomal skeletomuscular system of workers of Myrmecia nigrocincta was examined. A broad spectrum of methods was used, including micro-computed tomography combined with computer-based 3D reconstruction. An optimized combination of advanced techniques not only accelerates the acquisition of high quality anatomical data, but also facilitates a very detailed documentation and vi- sualization. This includes fne surface details, complex confgurations of sclerites, and also internal soft parts, for instance muscles with their precise insertion sites. Myrmeciinae have arguably retained a number of plesiomorphic mesosomal features, even though recent mo- lecular phylogenies do not place them close to the root of ants. Our mapping analyses based on previous morphological studies and recent phylogenies revealed few mesosomal apomorphies linking formicid subgroups. Only fve apomorphies were retrieved for the family, and interestingly three of them are missing in Myrmeciinae. Nevertheless, it is apparent that profound mesosomal transformations took place in the early evolution of ants, especially in the fightless workers. -
Paratrechina Longicornis (A) PEST INFORMATION
Paratrechina longicornis Harris, R.; Abbott, K. (A) PEST INFORMATION A1. Classification Family: Formicidae h Subfamily: Formicinae c Tribe: Lasiini esear e R Genus: Paratrechina t , Landcar Species: longicornis of d T har Ric A2. Common names Crazy ant (Smith 1965), long-horned ant, hairy ant (Naumann 1993), higenaga-ameiro-ari (www36), slender crazy ant (Deyrup et al. 2000). A3. Original name Formica longicornis Latreille A4. Synonyms or changes in combination or taxonomy Paratrechina currens Motschoulsky, Formica gracilescens Nylander, Formica vagans Jerdon, Prenolepis longicornis (Latreille) Current subspecies: nominal plus Paratrechina longicornis var. hagemanni Forel A5. General description (worker) Identification Size: monomorphic workers about 2.3–3 mm long. Colour: head, thorax, petiole, and gaster are dark brown to blackish; the body often has faint bluish iridescence. Surface sculpture: head and body mostly with inconspicuous sculpture; appearing smooth and shining. INVASIVE ANT RISK ASSESSMENT Paratrechina longicornis Whole body has longish setae. Appears quite hairy. Hairs are light in colour grey to whitish. General description: antennae and legs extraordinarily long. Antenna slender, 12-segmented, without a club; scape at least 1.5 times as long as head including closed mandibles. Eyes large, maximum diameter 0.3 times head length; elliptical, strongly convex; placed close to the posterior border of the head. Head elongate; mandibles narrow, each with 5 teeth. Clypeus without longitudinal carinae. Alitrunk slender, dorsum almost straight from anterior portion of pronotum to propodeal dorsum. Metanotal groove slightly incised. Propodeum without spines, posterodorsal border rounded; propodeal spiracles distinct. One node (petiole) present, wedge-shaped, with a broad base, and inclined forward. Dorsal surface of head, alitrunk and gaster with long, coarse, suberect to erect greyish or whitish setae. -
Hymenoptera: Vespidae)
INSECTA MUNDI, Vol. 17, No. 3-4, September-December, 2003 209 Review of Zethus Fabricius from the West Indies (Hymenoptera: Vespidae) Lionel A. Stange Florida State Collection of Arthropods Florida Department of Agriculture and Consumer Services P.O.Box 147100 Gainesville, FL 32614-7100, USA Abstract. Eleven species of Zethus are reported for the West Indies including two new species. A re-evaluation of Z. albopictus Smith is accomplished based on new material from Hispaniola leading to the creation of a new species group. A new species from St. Vincent is described which is the first known representative of the Z. sichelianus group from the West Indies. Also, a new species of the Z. cubensis group is described from San Salvador. New records are provided for many species except Z. dentostipes Bohart and Stange, Z. islandicus Bohart and Stange and Z. arietis (Fabricius) which are still known only from the holotypes. A key to species is provided. Introduction 3. Abdominal petiole and gaster reddish yellow, dense- ly micropunctate, with few macropunctures; ster- Bohart and Stange (1965) recorded nine species of nite I constricted to median carina before ex- Zethus from the West Indies (excluding Trinidad). panded posterior section; St. Vincent (Z. siche- lianus Group) .................. Zethus woodruffi n.sp. Specimens studied from St. Vincent and San Salva- 3'. Abdominal petiole and gaster dark brown to black, dor islands represent two additional species. All of the macropunctate but not micropunctate; sternite I species are endemic to one island or island group with nearly completely united with tergite I with weak the possible exception of Z. -
A Guide to the Ants of Sabangau
A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No. -
Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F. -
Three New Species of the Army Ant Genus Aenictus SHUCKARD, 1840 (Hymenoptera: Formicidae: Aenictinae) from Borneo and the Philippines
Z.Arb.Gem.Öst.Ent. 62 115-125 Wien, 19. 11. 2010 ISSN 0375-5223 Three new species of the army ant genus Aenictus SHUCKARD, 1840 (Hymenoptera: Formicidae: Aenictinae) from Borneo and the Philippines Herbert ZETTEL & Daniela Magdalena SORGER Abstract Descriptions of three new species of army ants are provided: Aenictus pfeifferi sp.n. from Sarawak, Borneo; Aenictus pangantihoni sp.n. from Camiguin, the Philippines; and Aenictus carolianus sp.n. from Cebu, the Philippines. Key words: Hymenoptera, Formicidae, Aenictus, army ants, new species, taxonomy, Philippines, Malaysia, Borneo, Cebu, Camiguin. Zusammenfassung Diese Arbeit liefert die Beschreibungen von drei Ameisenarten aus der Unterfamilie der Aenictinae (Treiberameisen): Aenictus pfeifferi sp.n. wird aus Sarawak, Borneo, beschrie- ben, Aenictus pangantihoni sp.n. von der Insel Camiguin, Philippinen, und Aenictus caro- lianus sp.n. von der Insel Cebu, Philippinen. Introduction The islands in the western Pacific region still yield a wealth of undescribed ant species. Despite the interesting biology of army ants – a review was published by KRONAUER (2009) – their taxonomy and zoogeography are poorly studied and need much more atten- tion. To our knowledge, the “true” army ants of the genus Aenictus SHUCKARD, 1840 (sub- family Aenictinae) are remarkably specious in the region. The described species are often recorded from a single island; this might be either an effect of reduced dispersal abilities or just a lack of information. Since WILSON’s (1964) taxonomic revision only a few species have been described from Southeast Asia, including one from Borneo (YAMANE & HASHIMOTO 1999), but none from the Philippines. In our present study we describe three species. -
THE TRUE ARMY ANTS of the INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae)
Pacific Insects 6 (3) : 427483 November 10, 1964 THE TRUE ARMY ANTS OF THE INDO-AUSTRALIAN AREA (Hymenoptera: Formicidae: Dorylinae) By Edward O. Wilson BIOLOGICAL LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASS., U. S. A. Abstract: All of the known Indo-Australian species of Dorylinae, 4 in Dorylus and 34 in Aenictus, are included in this revision. Eight of the Aenictus species are described as new: artipus, chapmani, doryloides, exilis, huonicus, nganduensis, philiporum and schneirlai. Phylo genetic and numerical analyses resulted in the discarding of two extant subgenera of Aenictus (Typhlatta and Paraenictus) and the loose clustering of the species into 5 informal " groups" within the unified genus Aenictus. A consistency test for phylogenetic characters is discussed. The African and Indo-Australian doryline species are compared, and available information in the biology of the Indo-Australian species is summarized. The " true " army ants are defined here as equivalent to the subfamily Dorylinae. Not included are species of Ponerinae which have developed legionary behavior independently (see Wilson, E. O., 1958, Evolution 12: 24-31) or the subfamily Leptanillinae, which is very distinct and may be independent in origin. The Dorylinae are not as well developed in the Indo-Australian area as in Africa and the New World tropics. Dorylus itself, which includes the famous driver ants, is centered in Africa and sends only four species into tropical Asia. Of these, the most widespread reaches only to Java and the Celebes. Aenictus, on the other hand, is at least as strongly developed in tropical Asia and New Guinea as it is in Africa, with 34 species being known from the former regions and only about 15 from Africa. -
Akes an Ant an Ant? Are Insects, and Insects Are Arth Ropods: Invertebrates (Animals With
~ . r. workers will begin to produce eggs if the queen dies. Because ~ eggs are unfertilized, they usually develop into males (see the discus : ~ iaplodiploidy and the evolution of eusociality later in this chapter). =- cases, however, workers can produce new queens either from un ze eggs (parthenogenetically) or after mating with a male ant. -;c. ant colony will continue to grow in size and add workers, but at -: :;oint it becomes mature and will begin sexual reproduction by pro· . ~ -irgin queens and males. Many specie s produce males and repro 0 _ " females just before the nuptial flight . Others produce males and ---: : ._ tive fem ales that stay in the nest for a long time before the nuptial :- ~. Our largest carpenter ant, Camponotus herculeanus, produces males _ . -:= 'n queens in late summer. They are groomed and fed by workers :;' 0 it the fall and winter before they emerge from the colonies for their ;;. ights in the spring. Fin ally, some species, including Monomoriurn : .:5 and Myrmica rubra, have large colonies with multiple que ens that .~ ..ew colonies asexually by fragmenting the original colony. However, _ --' e polygynous (literally, many queens) and polydomous (literally, uses, referring to their many nests) ants eventually go through a -">O=- r' sexual reproduction in which males and new queens are produced. ~ :- . ant colony thus functions as a highly social, organ ized "super _ _ " 1." The queens and mo st workers are safely hidden below ground : : ~ - ed within the interstices of rotting wood. But for the ant workers ~ '_i S ' go out and forage for food for the colony,'life above ground is - =- . -
Herrera, H.W., Baert, L., Dekoninck, W., Causton, C.E., Sevilla
Belgian Journal of Entomology 93: 1–60 ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:2612CE09-F7FF-45CD-B52E-99F04DC2AA56 Belgian Journal of Entomology Distribution and habitat preferences of Galápagos ants (Hymenoptera: Formicidae) Henri W. HERRERA, Léon BAERT, Wouter DEKONINCK, Charlotte E. CAUSTON, Christian R. SEVILLA, Paola POZO & Frederik HENDRICKX Royal Belgian Institute of Natural Sciences, Entomology Department, Vautierstraat 29, B-1000 Brussels, Belgium. E-mail: [email protected] (corresponding author) Published: Brussels, May 5, 2020 HERRERA H.W. et al. Distribution and habitat preferences of Galápagos ants Citation: HERRERA H.W., BAERT L., DEKONINCK W., CAUSTON C.E., SEVILLA C.R., POZO P. & HENDRICKX F., 2020. - Distribution and habitat preferences of Galápagos ants (Hymenoptera: Formicidae). Belgian Journal of Entomology, 93: 1–60. ISSN: 1374-5514 (Print Edition) ISSN: 2295-0214 (Online Edition) The Belgian Journal of Entomology is published by the Royal Belgian Society of Entomology, a non-profit association established on April 9, 1855. Head office: Vautier street 29, B-1000 Brussels. The publications of the Society are partly sponsored by the University Foundation of Belgium. In compliance with Article 8.6 of the ICZN, printed versions of all papers are deposited in the following libraries: - Royal Library of Belgium, Boulevard de l’Empereur 4, B-1000 Brussels. - Library of the Royal Belgian Institute of Natural Sciences, Vautier street 29, B-1000 Brussels. - American Museum of Natural History Library, Central Park West at 79th street, New York, NY 10024-5192, USA. - Central library of the Museum national d’Histoire naturelle, rue Geoffroy SaintHilaire 38, F- 75005 Paris, France. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species.