Handout 3 V. Resolution

Total Page:16

File Type:pdf, Size:1020Kb

Handout 3 V. Resolution 06-26264 Reasoning The University of Birmingham Spring Semester 2019 School of Computer Science Volker Sorge 29 January, 2019 Handout 3 Summary of this handout: Soundness — Completeness — Resolution — Satisfiability Checking We finish the previous section by introducing two important theoretical notions: soundness and com- pleteness of a calculus. IV.6 Soundness We first contrast the semantic notion of a tautology, i.e., a semantic consequence that is always valid, against the syntactic notion of a theorem. 19. Theorem in a logical calculus is a formula or sentence, that has a proof in that calculus, or in other words, its validity can be derived using the rules of inference of that formal system. Soundness and completeness now establish a relation between the semantic and the syntactic notion. Informally soundess is the property of a calculus to not enable fallacious derivations. More formally we define it as: Definition 15 (Soundness). Let S be an inference system. We say that S is sound if every sentence that is provable in S is also a valid tautology. `S ' implies that j= ' This effectively means that if a formula has a proof in S it is also valid under all possible interpretations. IV.7 Completeness Completeness is in many ways the dual to soundness. Definition 16 (Completeness). Let S be an inference system. We say S is complete if every tautology of S is also a theorem of S. That is, j= ' implies that `S ' Naturally, when building a logical calculus one wants it to be sound and complete, at least from a theo- retical point of view. In practice, completeness is not always achievable or even deliberately ignored in order to allow for proof strategies that are effective. However, one definitely never wants to relax on the soundness condition! We will see in the following section how these ideas are used in practice. V. Resolution Resolution is an efficient logic calculus that makes use of the Clause Normal Form. It is based on the principle of modus ponens. Let’s first recall the corresponding rule from the ND calculus: PP ! Q !E Q If we rewrite the implication we get the following form of the rule: P :P _ Q Q 17 20. The Resolution Rule effectively expresses the fact that for any interpretation I to satisfy both P and :P _ Q we have to have I(P ) = T. Hence the satisfiability of the second formula only depends on whether I j= Q. We now generalise this to the full resolution principle, which is of the form P _ Q1 _ ::: _ Qn :P _ R1 _ ::: _ Rm Res Q1 _ ::: _ Qn _ R1 _ ::: _ Rm We can also write the rule more conventiently in set notation. Let C1;C2 be clauses, let l be a literal and its negation :l, then we can express the resolution rule as flg [ C1 f:lg [ C2 Res C1 [ C2 While the correctness of the simple rule follows directly from the correctness of modus ponens, the correctness of the extended rule Res is not necessarily obvious. Hence, we have to show it explicility. Theorem 17 (Resolution Rule). The conclusion of Res is satisfiable if and only if the premises of Res are satisfiable. Proof. First, show that if I is a model for the premises, then it is also a model for C1 [ C2. We have 0 0 either I(l) = T or I(:l) = T. If I(l) = T, then there must exist a l 2 C2, such that I(l ) = T. After 0 applying Res l 2 C1 [ C2, ensuring that it is satisfiable under I. We can give a symmetric argument for I(:l) = T. 0 Conversely, let’s assume C1 [ C2 is satisfiable with interpretation I. Then there exists an l 2 C1 [ C2, 0 such that I(l ) = T. Since neither l; :l are in C1 [ C2, they do not yet have a truth value assigned by the 0 model. Hence, we can extend I in the following way: If l 2 C1, then the first premise is satisfied and 0 we choose I(l) = F to ensure that the second premise is satisfied. Likewise, if l 2 C2 then we choose I(l) = T. The conclusion of the resolution rule is generally called the resolvent. Observe that this resolvent can be empty. If n = m = 0 then the application of Res leads to an empty set of literals, or the empty clause, thereby establishing that the original set of premises was unsatisfiable. We will denote the empty clause using a box symbol . 21. The Resolution Procedure can be defined as exhaustive application of the resolution rule until either we have derived or no new clauses can be derived, thus establishing the last resolvent as a new fact. More formally we define the procedure as: 1. Let Φ0 be the initial set of clauses. 2. For Φi; i ≥ 0 choose two clauses C1;C2 2 Φi that have not yet been resolved and that contain one complementary literal. Let C be the resolvent clause. 3. Set Φi+1 = Φi [ fCg. 4. If C = then terminate with Φ unsatisfiable. 5. If Φi+1 = Φi then terminate with Φ satisfiable. 6. Else continue at step 2. One point we have not yet made fully explicit is how to obtain our initial clause set for a proposition that is given in the form of f'1;:::;'ng ` Effectively we can consider the set of premises (or axioms) as a conjunction and use each as an initial set. Later we will also see that the whole proposition can effectively be treated like an implication, i.e., 18 '1 ^:::^'n ! , although there is a clear semantic difference, with regards to the meaning of premises and hypotheses. However, we are interested in building purely syntactic procedures we will not worry about that. Example: Let’s show fP; P ! Q; Q ! Rg `Res R. We build our initial set of clauses from fP; P ! Q; Q ! Rg. Effectively, we can view this as a conjunction Once in clause normal form we get ffP g; f:P; Qg; f:Q; Rgg. We can then perform the following derivation: P :P; Q Res Q :Q; R Res R Soundness of the procedure can be shown quite easily for the resolution procedure, by demonstrating inductively with Theorem 17 that the leaves of the resolution tree are satisfiable if and only if the root is. Unfortunately the resolution procedure is not complete, in that we can not show every semantic conse- quence. For example, we can not show fP ^ Qg ` P _ Q. 22. Refutation To get around this we use resolution not as a proof procedure but as a refutation procedure. That is, instead of trying to prove a theorem using the resolution rule, we are trying to derive for the negation of the theorem using the resolution rule. This exploits the fact that that a sentence is valid if and only if its negation is unsatisfiable. Hence the first step of the resolution proof will always be to negate the formula. For this we now exploit the idea of rewriting a proposition of the form ' ` into the form ' ! and observe the following two equivalences :(' ! ) =∼ :(:' _ ) =∼ ' ^ : hence we also get ∼ :(('1 ^ ::: ^ 'n) ! ) = '1 ^ ::: ^ 'n ^ : Now the problem of showing fP ^ Qg ` P _ Q becomes trivial, as the negation immediately collapses to the empty clause. Example: In order to show that ` (:B ! A) ! ((:B !:A) ! B) holds we are refuting the negation using resolution. So we get :((:B ! A) ! ((:B !:A) ! B)) which simplifies into the clause set ffB; Ag; fB; :Ag; f:Bgg We can then derive the following resolution proof B; :A :B B; A :B Res Res :A A Res In the above proof we have reused the clause f:Bg. In most cases we will need to use clauses multiple times, which makes the use of tree notation rather awkward. We therefore introduce a linear format for resolution proofs. 23. Linear Resolution Proofs are written simply in lines with justifications referring to the clauses a partic- ular line is the resolvent of. For our example we get a six line proof. 1. B; :A 2. B; A 3. :B 4. :A Res 1,3 5. A Res 2,3 6. Res 4,5 19 Note that it would not be strictly necessary to explicility denote the Res rule in the justifications of our lines, as we only have one inference rule in our calculus. However, later when we move to first order logic we will get at least one more rule, thus denoting the rule will make sense. 24. Soundness effectively follows from the soundness of the resolution procedure we have argued earlier. However, instead of having a resolution tree for validity we now have a refutation tree to show unsatisfi- ability. Theorem 18 (Soundness of Propositional Resolution). If there exists a refutation tree for a formula ', then ' is unsatisfiable. 25. Completeness is more difficult to establish. There are several ways to prove the theorem. A common one argues via semantic trees, but we will briefly sketch an induction proof. Theorem 19 (Completeness of Propositional Resolution). If a formula ' is unsatisfiable then ' has a refutation tree. Proof. We show the theorem via induction on the number of variables in '. Let Φ be the CNF of ' Base case: We have one variable P . All possible clauses of Φ are fP g and f:P g. If Φ is unsatisfiable then both clauses occur, and we can derive . Induction hypothesis: Suppose the hypothesis is true for formulas with less than n variables.
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Revisiting Gödel and the Mechanistic Thesis Alessandro Aldini, Vincenzo Fano, Pierluigi Graziani
    Theory of Knowing Machines: Revisiting Gödel and the Mechanistic Thesis Alessandro Aldini, Vincenzo Fano, Pierluigi Graziani To cite this version: Alessandro Aldini, Vincenzo Fano, Pierluigi Graziani. Theory of Knowing Machines: Revisiting Gödel and the Mechanistic Thesis. 3rd International Conference on History and Philosophy of Computing (HaPoC), Oct 2015, Pisa, Italy. pp.57-70, 10.1007/978-3-319-47286-7_4. hal-01615307 HAL Id: hal-01615307 https://hal.inria.fr/hal-01615307 Submitted on 12 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Theory of Knowing Machines: Revisiting G¨odeland the Mechanistic Thesis Alessandro Aldini1, Vincenzo Fano1, and Pierluigi Graziani2 1 University of Urbino \Carlo Bo", Urbino, Italy falessandro.aldini, [email protected] 2 University of Chieti-Pescara \G. D'Annunzio", Chieti, Italy [email protected] Abstract. Church-Turing Thesis, mechanistic project, and G¨odelian Arguments offer different perspectives of informal intuitions behind the relationship existing between the notion of intuitively provable and the definition of decidability by some Turing machine. One of the most for- mal lines of research in this setting is represented by the theory of know- ing machines, based on an extension of Peano Arithmetic, encompassing an epistemic notion of knowledge formalized through a modal operator denoting intuitive provability.
    [Show full text]
  • An Un-Rigorous Introduction to the Incompleteness Theorems∗
    An un-rigorous introduction to the incompleteness theorems∗ phil 43904 Jeff Speaks October 8, 2007 1 Soundness and completeness When discussing Russell's logical system and its relation to Peano's axioms of arithmetic, we distinguished between the axioms of Russell's system, and the theorems of that system. Roughly, the axioms of a theory are that theory's basic assumptions, and the theorems are the formulae provable from the axioms using the rules provided by the theory. Suppose we are talking about the theory A of arithmetic. Then, if we express the idea that a certain sentence p is a theorem of A | i.e., provable from A's axioms | as follows: `A p Now we can introduce the notion of the valid sentences of a theory. For our purposes, think of a valid sentence as a sentence in the language of the theory that can't be false. For example, consider a simple logical language which contains some predicates (written as upper-case letters), `not', `&', and some names, each of which is assigned some object or other in each interpretation. Now consider a sentence like F n In most cases, a sentence like this is going to be true on some interpretations, and false in others | it depends on which object is assigned to `n', and whether it is in the set of things assigned to `F '. However, if we consider a sentence like ∗The source for much of what follows is Michael Detlefsen's (much less un-rigorous) “G¨odel'stheorems", available at http://www.rep.routledge.com/article/Y005.
    [Show full text]
  • Q1: Is Every Tautology a Theorem? Q2: Is Every Theorem a Tautology?
    Section 3.2: Soundness Theorem; Consistency. Math 350: Logic Class08 Fri 8-Feb-2001 This section is mainly about two questions: Q1: Is every tautology a theorem? Q2: Is every theorem a tautology? What do these questions mean? Review de¯nitions, and discuss. We'll see that the answer to both questions is: Yes! Soundness Theorem 1. (The Soundness Theorem: Special case) Every theorem of Propositional Logic is a tautol- ogy; i.e., for every formula A, if A, then = A. ` j Sketch of proof: Q: Is every axiom a tautology? Yes. Why? Q: For each of the four rules of inference, check: if the antecedent is a tautology, does it follow that the conclusion is a tautology? Q: How does this prove the theorem? A: Suppose we have a proof, i.e., a list of formulas: A1; ; An. A1 is guaranteed to be a tautology. Why? So A2 is guaranteed to be a tautology. Why? S¢o¢ ¢A3 is guaranteed to be a tautology. Why? And so on. Q: What is a more rigorous way to prove this? Ans: Use induction. Review: What does S A mean? What does S = A mean? Theorem 2. (The Soun`dness Theorem: General cjase) Let S be any set of formulas. Then every theorem of S is a tautological consequence of S; i.e., for every formula A, if S A, then S = A. ` j Proof: This uses similar ideas as the proof of the special case. We skip the proof. Adequacy Theorem 3. (The Adequacy Theorem for the formal system of Propositional Logic: Special Case) Every tautology is a theorem of Propositional Logic; i.e., for every formula A, if = A, then A.
    [Show full text]
  • Automated Theorem Proving Introduction
    Automated Theorem Proving Scott Sanner, Guest Lecture Topics in Automated Reasoning Thursday, Jan. 19, 2006 Introduction • Def. Automated Theorem Proving: Proof of mathematical theorems by a computer program. • Depending on underlying logic, task varies from trivial to impossible: – Simple description logic: Poly-time – Propositional logic: NP-Complete (3-SAT) – First-order logic w/ arithmetic: Impossible 1 Applications • Proofs of Mathematical Conjectures – Graph theory: Four color theorem – Boolean algebra: Robbins conjecture • Hardware and Software Verification – Verification: Arithmetic circuits – Program correctness: Invariants, safety • Query Answering – Build domain-specific knowledge bases, use theorem proving to answer queries Basic Task Structure • Given: – Set of axioms (KB encoded as axioms) – Conjecture (assumptions + consequence) • Inference: – Search through space of valid inferences • Output: – Proof (if found, a sequence of steps deriving conjecture consequence from axioms and assumptions) 2 Many Logics / Many Theorem Proving Techniques Focus on theorem proving for logics with a model-theoretic semantics (TBD) • Logics: – Propositional, and first-order logic – Modal, temporal, and description logic • Theorem Proving Techniques: – Resolution, tableaux, sequent, inverse – Best technique depends on logic and app. Example of Propositional Logic Sequent Proof • Given: • Direct Proof: – Axioms: (I) A |- A None (¬R) – Conjecture: |- ¬A, A ∨ A ∨ ¬A ? ( R2) A A ? |- A∨¬A, A (PR) • Inference: |- A, A∨¬A (∨R1) – Gentzen |- A∨¬A, A∨¬A Sequent (CR) ∨ Calculus |- A ¬A 3 Example of First-order Logic Resolution Proof • Given: • CNF: ¬Man(x) ∨ Mortal(x) – Axioms: Man(Socrates) ∀ ⇒ Man(Socrates) x Man(x) Mortal(x) ¬Mortal(y) [Neg. conj.] Man(Socrates) – Conjecture: • Proof: ∃y Mortal(y) ? 1. ¬Mortal(y) [Neg. conj.] 2. ¬Man(x) ∨ Mortal(x) [Given] • Inference: 3.
    [Show full text]
  • Logic and Proof Computer Science Tripos Part IB
    Logic and Proof Computer Science Tripos Part IB Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2015 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 2 3 Proof Systems for Propositional Logic 5 4 First-order Logic 8 5 Formal Reasoning in First-Order Logic 11 6 Clause Methods for Propositional Logic 13 7 Skolem Functions, Herbrand’s Theorem and Unification 17 8 First-Order Resolution and Prolog 21 9 Decision Procedures and SMT Solvers 24 10 Binary Decision Diagrams 27 11 Modal Logics 28 12 Tableaux-Based Methods 30 i 1 INTRODUCTION AND LEARNING GUIDE 1 1 Introduction and Learning Guide 2008 Paper 3 Q6: BDDs, DPLL, sequent calculus • 2008 Paper 4 Q5: proving or disproving first-order formulas, This course gives a brief introduction to logic, including • resolution the resolution method of theorem-proving and its relation 2009 Paper 6 Q7: modal logic (Lect. 11) to the programming language Prolog. Formal logic is used • for specifying and verifying computer systems and (some- 2009 Paper 6 Q8: resolution, tableau calculi • times) for representing knowledge in Artificial Intelligence 2007 Paper 5 Q9: propositional methods, resolution, modal programs. • logic The course should help you to understand the Prolog 2007 Paper 6 Q9: proving or disproving first-order formulas language, and its treatment of logic should be helpful for • 2006 Paper 5 Q9: proof and disproof in FOL and modal logic understanding other theoretical courses. It also describes • 2006 Paper 6 Q9: BDDs, Herbrand models, resolution a variety of techniques and data structures used in auto- • mated theorem provers.
    [Show full text]
  • Proof of the Soundness Theorem for Sentential Logic
    The Soundness Theorem for Sentential Logic These notes contain a proof of the Soundness Theorem for Sentential Logic. The Soundness Theorem says that our natural deduction proofs represent a sound (or correct) system of reasoning. Formally, the Soundness Theorem states that: If Γ├ φ then Γ╞ φ. This says that for any set of premises, if you can prove φ from that set, then φ is truth-functionally entailed by that set. In other words, if our rules let you prove that something follows from some premises, then it ‘really does’ follow from those premises. By definition Γ╞ φ means that there is no TVA that makes all of the members of Γ true and also makes φ false. Note that an equivalent definition would be “Γ╞ φ if any TVA that makes all the members of Γ true also makes φ true”. By contraposition, the soundness theorem is equivalent to “If it is not true that Γ╞ φ then it is not true that Γ├ φ.” Unpacking the definitions, this means “If there is a TVA that makes all the members of Γ true but makes φ false, then there is no way to prove φ from Γ.” We might call this “The Negative Criterion.” This is important since the standard way of showing that something is not provable is to give an invalidating TVA. This only works assuming that the soundness theorem is true. Let’s get started on the proof. We are trying to prove a conditional claim, so we assume its antecedent and try to prove its consequent.
    [Show full text]
  • Logic and Proof
    Logic and Proof Computer Science Tripos Part IB Lent Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2018 by Lawrence C. Paulson I Logic and Proof 101 Introduction to Logic Logic concerns statements in some language. The language can be natural (English, Latin, . ) or formal. Some statements are true, others false or meaningless. Logic concerns relationships between statements: consistency, entailment, . Logical proofs model human reasoning (supposedly). Lawrence C. Paulson University of Cambridge I Logic and Proof 102 Statements Statements are declarative assertions: Black is the colour of my true love’s hair. They are not greetings, questions or commands: What is the colour of my true love’s hair? I wish my true love had hair. Get a haircut! Lawrence C. Paulson University of Cambridge I Logic and Proof 103 Schematic Statements Now let the variables X, Y, Z, . range over ‘real’ objects Black is the colour of X’s hair. Black is the colour of Y. Z is the colour of Y. Schematic statements can even express questions: What things are black? Lawrence C. Paulson University of Cambridge I Logic and Proof 104 Interpretations and Validity An interpretation maps variables to real objects: The interpretation Y 7 coal satisfies the statement Black is the colour→ of Y. but the interpretation Y 7 strawberries does not! A statement A is valid if→ all interpretations satisfy A. Lawrence C. Paulson University of Cambridge I Logic and Proof 105 Consistency, or Satisfiability A set S of statements is consistent if some interpretation satisfies all elements of S at the same time.
    [Show full text]
  • Satisfiability 6 the Decision Problem 7
    Satisfiability Difficult Problems Dealing with SAT Implementation Klaus Sutner Carnegie Mellon University 2020/02/04 Finding Hard Problems 2 Entscheidungsproblem to the Rescue 3 The Entscheidungsproblem is solved when one knows a pro- cedure by which one can decide in a finite number of operations So where would be look for hard problems, something that is eminently whether a given logical expression is generally valid or is satis- decidable but appears to be outside of P? And, we’d like the problem to fiable. The solution of the Entscheidungsproblem is of funda- be practical, not some monster from CRT. mental importance for the theory of all fields, the theorems of which are at all capable of logical development from finitely many The Circuit Value Problem is a good indicator for the right direction: axioms. evaluating Boolean expressions is polynomial time, but relatively difficult D. Hilbert within P. So can we push CVP a little bit to force it outside of P, just a little bit? In a sense, [the Entscheidungsproblem] is the most general Say, up into EXP1? problem of mathematics. J. Herbrand Exploiting Difficulty 4 Scaling Back 5 Herbrand is right, of course. As a research project this sounds like a Taking a clue from CVP, how about asking questions about Boolean fiasco. formulae, rather than first-order? But: we can turn adversity into an asset, and use (some version of) the Probably the most natural question that comes to mind here is Entscheidungsproblem as the epitome of a hard problem. Is ϕ(x1, . , xn) a tautology? The original Entscheidungsproblem would presumable have included arbitrary first-order questions about number theory.
    [Show full text]
  • Solving the Boolean Satisfiability Problem Using the Parallel Paradigm Jury Composition
    Philosophæ doctor thesis Hoessen Benoît Solving the Boolean Satisfiability problem using the parallel paradigm Jury composition: PhD director Audemard Gilles Professor at Universit´ed'Artois PhD co-director Jabbour Sa¨ıd Assistant Professor at Universit´ed'Artois PhD co-director Piette C´edric Assistant Professor at Universit´ed'Artois Examiner Simon Laurent Professor at University of Bordeaux Examiner Dequen Gilles Professor at University of Picardie Jules Vernes Katsirelos George Charg´ede recherche at Institut national de la recherche agronomique, Toulouse Abstract This thesis presents different technique to solve the Boolean satisfiability problem using parallel and distributed architec- tures. In order to provide a complete explanation, a careful presentation of the CDCL algorithm is made, followed by the state of the art in this domain. Once presented, two proposi- tions are made. The first one is an improvement on a portfo- lio algorithm, allowing to exchange more data without loosing efficiency. The second is a complete library with its API al- lowing to easily create distributed SAT solver. Keywords: SAT, parallelism, distributed, solver, logic R´esum´e Cette th`ese pr´esente diff´erentes techniques permettant de r´esoudre le probl`eme de satisfaction de formule bool´eenes utilisant le parall´elismeet du calcul distribu´e. Dans le but de fournir une explication la plus compl`ete possible, une pr´esentation d´etaill´ee de l'algorithme CDCL est effectu´ee, suivi d'un ´etatde l'art. De ce point de d´epart,deux pistes sont explor´ees. La premi`ereest une am´eliorationd'un algorithme de type portfolio, permettant d'´echanger plus d'informations sans perte d’efficacit´e.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic
    Bard College Bard Digital Commons Senior Projects Spring 2016 Bard Undergraduate Senior Projects Spring 2016 Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic Alex Gabriel Goodlad Bard College, [email protected] Follow this and additional works at: https://digitalcommons.bard.edu/senproj_s2016 Part of the Logic and Foundations Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Goodlad, Alex Gabriel, "Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic" (2016). Senior Projects Spring 2016. 137. https://digitalcommons.bard.edu/senproj_s2016/137 This Open Access work is protected by copyright and/or related rights. It has been provided to you by Bard College's Stevenson Library with permission from the rights-holder(s). You are free to use this work in any way that is permitted by the copyright and related rights. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. For more information, please contact [email protected]. Constructing a Categorical Framework of Metamathematical Comparison Between Deductive Systems of Logic A Senior Project submitted to The Division of Science, Mathematics, and Computing of Bard College by Alex Goodlad Annandale-on-Hudson, New York May, 2016 Abstract The topic of this paper in a broad phrase is \proof theory". It tries to theorize the general notion of \proving" something using rigorous definitions, inspired by previous less general theories. The purpose for being this general is to eventually establish a rigorous framework that can bridge the gap when interrelating different logical systems, particularly ones that have not been as well defined rigorously, such as sequent calculus.
    [Show full text]