Elements and Opposition Dates of Neas M

Total Page:16

File Type:pdf, Size:1020Kb

Elements and Opposition Dates of Neas M ELEMENTS AND OPPOSITION DATES OF NEAS ecliptic and equinox 2000.0, epoch 2019 nov. 13.0 tt Planet H G M ω Ω i e µ a q Q T Oppos. V m ◦ ◦ ◦ ◦ ◦ 433 Eros 11.16 0.46 159.13751 178.86442 304.29940 10.82968 0.2227898 0.55970241 1.458 1.133 1.783 Am — — 719 Albert 15.4 X 94.29503 156.16897 183.87741 11.56557 0.5464055 0.22993223 2.639 1.197 4.081 Am — — 887 Alinda 13.4 −0.12 243.98019 350.44809 110.43062 9.39213 0.5699347 0.25312888 2.475 1.064 3.886 Am 7 15.3 18.9 1036 Ganymed 9.45 0.30 319.50932 132.36220 215.55467 26.67990 0.5331414 0.22654096 2.665 1.244 4.086 Am 4 15.9 14.2 1221 Amor 17.7 X 324.39919 26.68213 171.33071 11.87639 0.4352468 0.37065775 1.919 1.084 2.755 Am — — 1566 Icarus 16.9 X 16.02751 31.38412 88.00256 22.82633 0.8269766 0.88048012 1.078 0.187 1.970 Ap 8 30.1 17.5 1580 Betulia 14.7 X 134.55015 159.51493 62.29499 52.09650 0.4874792 0.30267222 2.197 1.126 3.268 Am 11 8.5 19.7 1620 Geographos 15.60 X 93.33512 276.94496 337.19119 13.33699 0.3355034 0.70895859 1.246 0.828 1.664 Ap 1 6.1 16.6 1627 Ivar 13.2 0.60 179.02799 167.78126 133.11868 8.45117 0.3966872 0.38745938 1.863 1.124 2.603 Am — — 1685 Toro 14.23 X 166.98133 127.21611 274.24547 9.38342 0.4360195 0.61638878 1.367 0.771 1.964 Ap — — 1862 Apollo 16.25 0.09 337.98283 285.96733 35.62967 6.35511 0.5598651 0.55292634 1.470 0.647 2.293 Ap 2 16.1 19.1 1863 Antinous 15.54 X 11.72905 268.06626 346.44201 18.40063 0.6065740 0.29035430 2.259 0.889 3.629 Ap 1 19.4 19.5 1864 Daedalus 14.85 X 109.60452 325.62786 6.62765 22.20927 0.6143834 0.55812837 1.461 0.563 2.359 Ap — — 1865 Cerberus 16.84 X 187.68346 325.24879 212.92046 16.09639 0.4668743 0.87817470 1.080 0.576 1.584 Ap 8 15.7 17.5 1866 Sisyphus 12.4 X 28.54318 293.06702 63.49390 41.20049 0.5380284 0.37818741 1.894 0.875 2.913 Ap — — 1915 Quetz´alcoatl 18.97 0.10 206.96495 347.84164 162.93671 20.40398 0.5705043 0.24299649 2.543 1.092 3.994 Am 8 26.5 24.6 1916 Boreas 14.93 X 122.20176 335.85456 340.60536 12.87815 0.4495280 0.28757212 2.273 1.251 3.295 Am — — 1917 Cuyo 13.9 X 192.01185 194.51984 188.31094 23.96161 0.5055741 0.31290162 2.149 1.062 3.235 Am 3 17.3 18.1 1943 Anteros 15.75 X 73.00454 338.38203 246.32997 8.70624 0.2560437 0.57607818 1.430 1.064 1.797 Am — — 1980 Tezcatlipoca 13.92 X 321.41865 115.43669 246.57421 26.86759 0.3645814 0.44090052 1.710 1.086 2.333 Am 4 12.9 17.2 1981 Midas 15.2 X 229.49853 267.81244 356.87215 39.82694 0.6503517 0.41621969 1.777 0.621 2.932 Ap — — 2059 Baboquivari 16.0 X 358.48400 192.43202 200.69845 11.01375 0.5308560 0.22925730 2.644 1.240 4.048 Am 8 11.0 17.3 2061 Anza 16.56 X 122.68861 157.02755 207.38475 3.79850 0.5355925 0.28921431 2.265 1.052 3.477 Am — — 2062 Aten 16.80 X 272.08356 147.99859 108.55329 18.93383 0.1827436 1.03691502 0.967 0.790 1.143 At — — 2063 Bacchus 17.3 X 97.66875 55.33531 33.09294 9.43200 0.3495547 0.88050116 1.078 0.701 1.455 Ap — — 2100 Ra–Shalom 16.05 0.12 272.03784 356.04904 170.80796 15.75278 0.4365289 1.29867012 0.832 0.469 1.195 At 9 21.3 13.6 2101 Adonis 18.8 X 259.36025 43.59052 349.51935 1.32273 0.7641498 0.38401153 1.875 0.442 3.307 Ap 4 23.8 23.5 2102 Tantalus 16.0 X 307.47798 61.52729 94.36235 64.00718 0.2991723 0.67257882 1.290 0.904 1.676 Ap — — 2135 Aristaeus 17.94 X 45.54602 290.86364 191.20787 23.06012 0.5030441 0.48713587 1.600 0.795 2.404 Ap — — 2201 Oljato 15.25 X 141.59579 98.25337 74.98770 2.52239 0.7128861 0.30745526 2.174 0.624 3.724 Ap 9 1.9 20.1 2202 Pele 17.1 X 204.22959 217.92060 169.97242 8.74364 0.5129026 0.28447620 2.290 1.115 3.464 Am 4 4.4 21.8 2212 Hephaistos 13.87 X 346.77173 209.39424 27.53077 11.55205 0.8376857 0.31061255 2.159 0.350 3.968 Ap — — 2329 Orthos 14.5 X 211.66223 146.02718 169.28003 24.46515 0.6539138 0.26351573 2.410 0.834 3.985 Ap 1 21.3 20.2 2340 Hathor 20.2 X 284.54439 40.05416 211.35384 5.85854 0.4499014 1.27146264 0.844 0.464 1.224 At — — 2368 Beltrovata 15.21 X 297.88469 43.02919 287.33951 5.22352 0.4134091 0.32272082 2.105 1.235 2.975 Am 3 6.6 19.4 2608 Seneca 17.52 X 190.73794 37.37891 167.35653 14.67475 0.5711355 0.24696542 2.516 1.079 3.953 Am 10 23.2 23.2 3102 Krok 16.1 X 39.42274 154.72648 172.07115 8.44149 0.4492657 0.31243008 2.151 1.185 3.117 Am 11 24.9 17.5 3103 Eger 15.38 X 317.82758 254.07457 129.75396 20.93062 0.3541108 0.59230932 1.404 0.907 1.901 Ap 5 3.5 17.8 3122 Florence 14.1 X 326.65952 27.84059 336.06595 22.14189 0.4229489 0.41889426 1.769 1.021 2.517 Am 4 11.2 17.6 3199 Nefertiti 14.84 X 261.03156 53.40567 339.99633 32.96029 0.2840346 0.49882268 1.575 1.127 2.022 Am 3 20.9 17.3 3200 Phaethon 14.6 X 91.45042 322.18750 265.21561 22.26038 0.8898792 0.68756239 1.271 0.140 2.403 Ap 10 20.3 16.8 3271 Ul 16.4 X 82.22870 159.06416 158.82257 25.06844 0.3958128 0.32348629 2.102 1.270 2.934 Am 12 27.5 20.2 3288 Seleucus 15.2 X 349.09205 349.33706 218.64865 5.93017 0.4560024 0.34002589 2.033 1.106 2.960 Am — — 3352 McAuliffe 15.8 X 19.31881 15.88692 107.36303 4.77333 0.3691809 0.38270604 1.879 1.185 2.572 Am — — 3360 Syrinx 15.9 X 311.66385 63.45917 242.55514 21.16197 0.7460702 0.25462647 2.465 0.626 4.305 Ap 2 1.9 21.9 3361 Orpheus 19.03 X 132.22438 301.89181 189.17479 2.67747 0.3229491 0.74018229 1.210 0.819 1.601 Ap — — 3362 Khufu 18.3 X 357.56524 55.05719 152.43466 9.91675 0.4684736 1.00127690 0.990 0.526 1.453 At — — 3551 Verenia 16.75 X 337.10421 193.24573 173.78916 9.50694 0.4868363 0.32551381 2.093 1.074 3.112 Am 5 16.2 20.0 3552 Don Quixote 12.8 X 62.14327 316.47101 349.98516 31.08156 0.7089028 0.11210163 4.260 1.240 7.280 Am 12 27.6 20.0 3553 Mera 16.4 X 168.44289 288.88530 232.52759 36.77083 0.3201555 0.46736884 1.644 1.118 2.171 Am 7 13.7 19.5 3554 Amun 15.82 X 180.94458 359.40497 358.61249 23.35727 0.2805951 1.02545469 0.974 0.701 1.247 At — — 3671 Dionysus 16.4 X 307.51704 204.26677 82.08634 13.53432 0.5416229 0.30238449 2.198 1.008 3.389 Ap 1 21.9 21.2 3691 Bede 14.7 X 314.58143 234.95807 348.75015 20.35812 0.2841163 0.41702012 1.774 1.270 2.278 Am — — 3752 Camillo 15.3 X 33.15694 312.21563 147.96831 55.55732 0.3017464 0.58646865 1.414 0.987 1.840 Ap — — 3753 Cruithne 15.6 X 328.67152 43.83804 126.22541 19.80567 0.5147945 0.98901064 0.998 0.484 1.511 At — — 3757 Anagolay 18.95 X 299.73073 17.23176 74.96106 3.86783 0.4462739 0.39672318 1.834 1.016 2.653 Ap 8 3.7 21.7 3838 Epona 15.6 X 344.84016 49.69060 235.50453 29.20855 0.7025070 0.53388630 1.505 0.448 2.562 Ap — — 3908 Nyx 17.3 X 222.88460 126.59482 261.24968 2.18595 0.4592733 0.36834608 1.927 1.042 2.813 Am 3 30.8 20.9 3988 Huma 17.8 X 112.08959 86.88865 229.81798 10.76762 0.3165764 0.51345238 1.545 1.056 2.034 Am — — 4015 Wilson–Harrington 15.99 X 124.68820 95.37404 266.82044 2.79832 0.6310030 0.23158006 2.626 0.969 4.283 Ap 2 4.1 19.8 4034 Vishnu 18.4 X 73.90363 296.64113 157.94155 11.16931 0.4441757 0.90345250 1.060 0.589 1.530 Ap — — 4055 Magellan 14.7 X 264.91706 154.38232 164.83413 23.25406 0.3262815 0.40136103 1.820 1.226 2.414 Am 1 20.0 18.1 4179 Toutatis 15.30 0.10 262.77535 277.99585 125.22895 0.44767 0.6248874 0.24275541 2.545 0.955 4.135 Ap 5 16.5 21.0 4183 Cuno 14.4 X 260.75223 236.35580 294.86902 6.70401 0.6341803 0.35297873 1.983 0.725 3.240 Ap 10 2.6 18.7 4197 Morpheus 14.6 X 206.56908 122.45819 7.09066 12.58434 0.7720940 0.28339367 2.295 0.523 4.068 Ap 8 6.1 20.4 4257 Ubasti 15.9 X 41.69730 278.92939 169.19011 40.71358 0.4684790 0.46627284 1.647 0.875 2.419 Ap — — 4341 Poseidon 15.9 X 50.43254 15.64562 108.10289 11.85166 0.6794778 0.39643802 1.835 0.588 3.082 Ap — — 4401 Aditi 16.0 X 65.86114 68.12363 22.90124 26.64680 0.5646430 0.23779027 2.580 1.123 4.037 Am — — 4450 Pan 17.1 X 247.90833 291.83031 311.81656 5.52062 0.5866243 0.56900882 1.442 0.596 2.288 Ap — — 4486 Mithra 15.6 X 333.51114 168.90857 82.23628 3.03971 0.6630181 0.30218270 2.199 0.741 3.658 Ap — — 4487 Pocahontas 17.3 X 36.46955 173.97142 198.12276 16.40416 0.2964081 0.43296502 1.730 1.218 2.243 Am — — 4503 Cleobulus 15.6 X 248.66376 76.30406 45.96545 2.51280 0.5239257 0.22159442 2.705 1.288 4.122 Am 8 15.0 21.0 4544 Xanthus 17.1 X 126.43649 333.84753 23.98681 14.14521 0.2501606 0.92651695 1.042 0.781 1.303 Ap — — 4581 Asclepius 20.7 X 296.63463 255.27148 180.22520 4.91871 0.3570910 0.95368750 1.022 0.657 1.387 Ap 4 24.7 18.2 4596 1981 QB 16.3 X 120.76708 248.41531 154.22842 37.07635 0.5199521 0.29422343 2.239 1.075 3.403 Am 2 11.9 17.8 4660 Nereus 18.2 X 293.42258 158.06747 314.40724 1.43217 0.3603075 0.54263140 1.489 0.952 2.025 Ap 8 23.6 19.6 4688 1980 WF 19.4 X 233.48673 213.74581 241.27559 6.37483 0.5170674 0.29520121 2.234 1.079 3.389 Am 7 2.2 24.2 4769 Castalia 16.9 X 145.77788 121.38960 325.54957 8.88435 0.4832454 0.89905258 1.063 0.549 1.577 Ap — — 4947 Ninkasi 18.0 X 118.29173 192.91602 215.45044 15.65254 0.1684899 0.61469566 1.370 1.139 1.601 Am — — 4953 1990 MU 14.1 X 145.68534 77.75367 77.70868 24.39084 0.6575137 0.47751368 1.621 0.555 2.687 Ap 8 7.2 17.4 – 7541 – ELEMENTS AND OPPOSITION DATES OF NEAS ecliptic and equinox 2000.0, epoch 2019 nov.
Recommended publications
  • BENNU from OSIRIS-Rex APPROACH and PRELIMINARY SURVEY OBSERVATIONS
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1956.pdf VNIR AND TIR SPECTRAL CHARACTERISTICS OF (101955) BENNU FROM OSIRIS-REx APPROACH AND PRELIMINARY SURVEY OBSERVATIONS. V. E. Hamilton1, A. A. Simon2, P. R. Christensen3, D. C. Reuter2, D. N. Della Giustina4, J. P. Emery5, R. D. Hanna6, E. Howell4, H. H. Kaplan1, B. E. Clark7, B. Rizk4, D. S. Lauretta4, and the OSIRIS-REx Team, 1Southwest Research Institute, 1050 Walnut St. #300, Boulder, CO 80302 ([email protected]), 2NASA Goddard Space Flight Center, Greenbelt, MD, 3School of Earth & Space Ex- ploration, Arizona State University, Tempe, AZ 85287, 4Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, 5Dept. Earth & Planetary Science, University of Tennessee, Knoxville, TN 37996, 6University of Texas, Austin, TX, 78712, 7Dept. Physics & Astronomy, Ithaca College, Ithaca, NY 14850. Introduction: Visible to near infrared (VNIR) and generation and application of a photometric model, thermal infrared (TIR) spectrometers onboard the Ori- production of bolometric Bond albedo, reflectance gins, Spectral Interpretation, Resource Identification, factor spectra, and the calculation of spectral indices. Security–Regolith Explorer (OSIRIS-REx) spacecraft For OTES, this includes deriving emissivity spectra have revealed evidence of hydrated phases across the and temperature information with emissivity being an surface of asteroid (101955) Bennu. Here we describe input into a linear least squares mixing model and a spectral features identified
    [Show full text]
  • Bennu: Implications for Aqueous Alteration History
    RESEARCH ARTICLES Cite as: H. H. Kaplan et al., Science 10.1126/science.abc3557 (2020). Bright carbonate veins on asteroid (101955) Bennu: Implications for aqueous alteration history H. H. Kaplan1,2*, D. S. Lauretta3, A. A. Simon1, V. E. Hamilton2, D. N. DellaGiustina3, D. R. Golish3, D. C. Reuter1, C. A. Bennett3, K. N. Burke3, H. Campins4, H. C. Connolly Jr. 5,3, J. P. Dworkin1, J. P. Emery6, D. P. Glavin1, T. D. Glotch7, R. Hanna8, K. Ishimaru3, E. R. Jawin9, T. J. McCoy9, N. Porter3, S. A. Sandford10, S. Ferrone11, B. E. Clark11, J.-Y. Li12, X.-D. Zou12, M. G. Daly13, O. S. Barnouin14, J. A. Seabrook13, H. L. Enos3 1NASA Goddard Space Flight Center, Greenbelt, MD, USA. 2Southwest Research Institute, Boulder, CO, USA. 3Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA. 4Department of Physics, University of Central Florida, Orlando, FL, USA. 5Department of Geology, School of Earth and Environment, Rowan University, Glassboro, NJ, USA. 6Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ, USA. 7Department of Geosciences, Stony Brook University, Stony Brook, NY, USA. 8Jackson School of Geosciences, University of Texas, Austin, TX, USA. 9Smithsonian Institution National Museum of Natural History, Washington, DC, USA. 10NASA Ames Research Center, Mountain View, CA, USA. 11Department of Physics and Astronomy, Ithaca College, Ithaca, NY, USA. 12Planetary Science Institute, Tucson, AZ, Downloaded from USA. 13Centre for Research in Earth and Space Science, York University, Toronto, Ontario, Canada. 14John Hopkins University Applied Physics Laboratory, Laurel, MD, USA. *Corresponding author. E-mail: Email: [email protected] The composition of asteroids and their connection to meteorites provide insight into geologic processes that occurred in the early Solar System.
    [Show full text]
  • Polarimetric and Photometric Observations of Neas with the 1.6M Pirka Telescope
    PPS03-P17 Japan Geoscience Union Meeting 2018 Polarimetric and Photometric observations of NEAs with the 1.6m Pirka Telescope *Ryo Okazaki1, Tomohiko Sekiguchi1, Akari Kamada1, Masateru Ishiguro2, Hiroyuki Naito3, Masataka Imai4, Tatsuharu Ono4 1. Hokkaido University of Education, 2. Seoul National University, 3. Nayoro Observatory, 4. Hokkaido University Polarimetric observations of 3 near-Earth asteroids, 2000 PD3, 2012 TC4 and (3200) Phaethon, were carried out in 2017 using the 1.6m Pirka telescope at the Nayoro Observatory, Hokkaido, as well as BVRIphotometric color observations were conducted for 2000 PD3. Polarimetry is a useful method for investigating asteroids’ physical properties such as the albedo, regolith particle size and taxonomy of asteroids. In general, Pr (the linear polarization degree) exhibits a strong dependence on the phase angle (Sun-Target-Observer’s angle, α). 2000 PD3 In order to understand Pmax (maximum Polarization degree) , we attempted to obtain polarimetric data at different phase angles (α=22°-120°). A geometric albedo of pv=0.26±0.06% were derived from a limited αrange ( 25°-84°) which is in good agreement with that of S-type asteroids. BVRI photometric data (B-V=0.132±0.002mag,V-R=0.114±0.002mag,V-I=0.180±0.002mag) supports S-type classification. 2012 TC4 In October 2017, 2012 TC4 approached to the Earth at about 50,000 km of the closest distance. A fast rotation period about 0.2 hours (Ryan and Ryan, 2017) indicates a monolithic suraface layer which is not covered with a rubble pile. The liner polarization Pr=5.62±5.26% (α=34°) in the R-band is in close accord with that of C-type asteroids, although October run was performed under bad weather.
    [Show full text]
  • An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
    Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1].
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • Near-Infrared Observations of Active Asteroid (3200) Phaethon Reveal No Evidence for Hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P
    ARTICLE https://doi.org/10.1038/s41467-020-15637-7 OPEN Near-infrared observations of active asteroid (3200) Phaethon reveal no evidence for hydration ✉ Driss Takir 1,7 , Theodore Kareta 2, Joshua P. Emery3, Josef Hanuš 4, Vishnu Reddy2, Ellen S. Howell2, Andrew S. Rivkin5 & Tomoko Arai6 Asteroid (3200) Phaethon is an active near-Earth asteroid and the parent body of the Geminid Meteor Shower. Because of its small perihelion distance, Phaethon’s surface reaches 1234567890():,; temperatures sufficient to destabilize hydrated materials. We conducted rotationally resolved spectroscopic observations of this asteroid, mostly covering the northern hemisphere and the equatorial region, beyond 2.5-µm to search for evidence of hydration on its surface. Here we show that the observed part of Phaethon does not exhibit the 3-µm hydrated mineral absorption (within 2σ). These observations suggest that Phaethon’s modern activity is not due to volatile sublimation or devolatilization of phyllosilicates on its surface. It is possible that the observed part of Phaethon was originally hydrated and has since lost volatiles from its surface via dehydration, supporting its connection to the Pallas family, or it was formed from anhydrous material. 1 JETS/ARES, NASA Johnson Space Center, Houston, TX 77058-3696, USA. 2 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721- 0092, USA. 3 Department of Astronomy and Planetary Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA. 4 Institute of Astronomy, Charles University, CZ-18000 Prague 8, Czech Republic. 5 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20273, USA. 6 Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Japan.
    [Show full text]
  • Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A
    Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A. Taylor (LPI, USRA), Anne K. Virkki, Flaviane C.F. Venditti, Sean E. Marshall, Dylan C. Hickson, Luisa F. Zambrano-Marin (Arecibo Observatory, UCF), Edgard G. Rivera-Valent´ın, Sriram S. Bhiravarasu, Betzaida Aponte-Hernandez (LPI, USRA), Michael C. Nolan, Ellen S. Howell (U. Arizona), Tracy M. Becker (SwRI), Jon D. Giorgini, Lance A. M. Benner, Marina Brozovic, Shantanu P. Naidu (JPL), Michael W. Busch (SETI), Jean-Luc Margot, Sanjana Prabhu Desai (UCLA), Agata Rozek˙ (U. Kent), Mary L. Hinkle (UCF), Michael K. Shepard (Bloomsburg U.), and Christopher Magri (U. Maine) Summary We propose the continuation of the long-running project R3037 to physically and dynamically characterize the population of near-Earth asteroids with the Arecibo S-band (2380 MHz; 12.6 cm) planetary radar system. The objectives of project R3037 are to: (1) collect high-resolution radar images of and (2) report ultra-precise radar astrometry for the strongest predicted radar targets for the 2020 calendar year plus early January 2021. Such images will be used for three-dimensional shape modeling as the data sets allow. These observations will be carried out as part of the NASA- funded Arecibo planetary radar program, Grant No. 80NSSC19K0523, to PI Anne Virkki (Arecibo Observatory, University of Central Florida) with Patrick Taylor as Institutional PI at the Lunar and Planetary Institute (Universities Space Research Association). Background Radar is arguably the most powerful Earth-based technique for post-discovery physical and dynamical characterization of near-Earth asteroids (NEAs) and plays a crucial role in the nation’s planetary defense initiatives led through the NASA Planetary Defense Coordination Office.
    [Show full text]
  • The University of Chicago Glimpses of Far Away
    THE UNIVERSITY OF CHICAGO GLIMPSES OF FAR AWAY PLACES: INTENSIVE ATMOSPHERE CHARACTERIZATION OF EXTRASOLAR PLANETS A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ASTRONOMY AND ASTROPHYSICS BY LAURA KREIDBERG CHICAGO, ILLINOIS AUGUST 2016 Copyright c 2016 by Laura Kreidberg All Rights Reserved Far away places with strange sounding names Far away over the sea Those far away places with strange sounding names Are calling, calling me. { Joan Whitney & Alex Kramer TABLE OF CONTENTS LIST OF FIGURES . vii LIST OF TABLES . ix ACKNOWLEDGMENTS . x ABSTRACT . xi 1 INTRODUCTION . 1 1.1 Exoplanets' Greatest Hits, 1995 - present . 1 1.2 Moving from Discovery to Characterization . 2 1.2.1 Clues from Planetary Atmospheres I: How Do Planets Form? . 2 1.2.2 Clues from Planetary Atmospheres II: What are Planets Like? . 3 1.2.3 Goals for This Work . 4 1.3 Overview of Atmosphere Characterization Techniques . 4 1.3.1 Transmission Spectroscopy . 5 1.3.2 Emission Spectroscopy . 5 1.4 Technical Breakthroughs Enabling Atmospheric Studies . 7 1.5 Chapter Summaries . 10 2 CLOUDS IN THE ATMOSPHERE OF THE SUPER-EARTH EXOPLANET GJ 1214b . 12 2.1 Introduction . 12 2.2 Observations and Data Reduction . 13 2.3 Implications for the Atmosphere . 14 2.4 Conclusions . 18 3 A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b . 21 3.1 Introduction . 21 3.2 Observations and Data Reduction . 23 3.3 Analysis . 24 3.4 Results . 27 3.4.1 Constraints from the Emission Spectrum .
    [Show full text]
  • The Orbital Evolution of Asteroid 367943 Duende (2012 Da14) Under Yarkovsky Effect Influence and Its Implications for Collision with the Earth
    Journal of Engineering Science and Technology Special Issue on AASEC’2016, October (2017) 42 - 52 © School of Engineering, Taylor’s University THE ORBITAL EVOLUTION OF ASTEROID 367943 DUENDE (2012 DA14) UNDER YARKOVSKY EFFECT INFLUENCE AND ITS IMPLICATIONS FOR COLLISION WITH THE EARTH JUDHISTIRA ARIA UTAMA1,2,*, TAUFIQ HIDAYAT3, UMAR FAUZI4 1Astronomy Post Graduate Study Program, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia 2Physics Education Department, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi 229, Bandung, 40154, Indonesia 3Astronomy Research Division, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia 4Geophysics & Complex System Research Division, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia *Corresponding Author: [email protected] Abstract Asteroid 367943 Duende (2012 DA14) holds the record as the one of Aten subpopulation with H 24 that had experienced deep close encounter event to the Earth (0.09x Earth-Moon distance) as informed in NASA website. In this work, we studied the orbital evolution of 120 asteroid clones and the nominal up to 5 Megayears (Myr) in the future using Swift integrator package with and without the Yarkovsky effect inclusion. At the end of orbital integration with both integrators, we found as many as 17 asteroid clones end their lives as Earth impactor. The prediction of maximum semimajor axis drift for this subkilometer-sized asteroid from diurnal and seasonal variants of Yarkovsky effect was 9.0×10-3 AU/Myr and 2.6×10-4 AU/Myr, respectively. By using the MOID (Minimum Orbital Intersection Distance) data set calculated from our integrators of entire clones and nominal asteroids, we obtained the value of impact rate with the Earth of 2.35×10-7 per year (with Yarkovsky effect) and 2.37×10-7 per year (without Yarkovsky effect), which corresponds to a mean lifetime of 4.25 Myr and 4.22 Myr, respectively.
    [Show full text]
  • Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
    Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments.
    [Show full text]
  • Asteroids + Comets
    Datasets for Asteroids and Comets Caleb Keaveney, OpenSpace intern Rachel Smith, Head, Astronomy & Astrophysics Research Lab North Carolina Museum of Natural Sciences 2020 Contents Part 1: Visualization Settings ………………………………………………………… 3 Part 2: Near-Earth Asteroids ………………………………………………………… 5 Amor Asteroids Apollo Asteroids Aten Asteroids Atira Asteroids Potentially Hazardous Asteroids (PHAs) Mars-crossing Asteroids Part 3: Main-Belt Asteroids …………………………………………………………… 12 Inner Main Asteroid Belt Main Asteroid Belt Outer Main Asteroid Belt Part 4: Centaurs, Trojans, and Trans-Neptunian Objects ………………………….. 15 Centaur Objects Jupiter Trojan Asteroids Trans-Neptunian Objects Part 5: Comets ………………………………………………………………………….. 19 Chiron-type Comets Encke-type Comets Halley-type Comets Jupiter-family Comets C 2019 Y4 ATLAS About this guide This document outlines the datasets available within the OpenSpace astrovisualization software (version 0.15.2). These datasets were compiled from the Jet Propulsion Laboratory’s (JPL) Small-Body Database (SBDB) and NASA’s Planetary Data Service (PDS). These datasets provide insights into the characteristics, classifications, and abundance of small-bodies in the solar system, as well as their relationships to more prominent bodies. OpenSpace: Datasets for Asteroids and Comets 2 Part 1: Visualization Settings To load the Asteroids scene in OpenSpace, load the OpenSpace Launcher and select “asteroids” from the drop-down menu for “Scene.” Then launch OpenSpace normally. The Asteroids package is a big dataset, so it can take a few hours to load the first time even on very powerful machines and good internet connections. After a couple of times opening the program with this scene, it should take less time. If you are having trouble loading the scene, check the OpenSpace Wiki or the OpenSpace Support Slack for information and assistance.
    [Show full text]
  • Regn Lst 1948 to 2020.Xls
    AMERICAN FUCHSIA SOCIETY REGISTERED FUCHSIAS, 1948 - 2020 CULTIVAR REG NO HYBRIDIZER YEAR FORM GROWTH Jardins de France 4439 Massé 2000 sgl up All Square 2335 Adams 1988 sgl up Beatrice Ellen 2336 Adams 1988 sgl up Cardiff Rose 2337 Adams 1988 sgl up/tr Glas Lyn 2338 Adams 1988 sgl up Purple Laddie 2339 Adams 1988 dbl up Velma 1522 Adams 1979 sgl up Windmill 4556 Adams 2001 dbl up Bo Bo 1587 Adkins 1980 dbl up Bonnie Sue 1550 Adkins 1980 dbl tr Dariway 1551 Adkins 1980 sgl up Delta Rae 1552 Adkins 1980 sgl tr Grinnell Bay 1553 Adkins 1980 sgl tr Joanne Lynn 1554 Adkins 1980 sdbl up Grandma Ellen 3066 Ainsworth 1993 sgl up Percy Ainsworth 3065 Ainsworth 1993 sgl tr Tufty Joe 3063 Ainsworth 1993 dbl tr Heidi Joy 2246 Akers/Laburnum 1987 dbl up Elaine Allen 1214 Allen 1974 sdbl up Susan Allen 1215 Allen 1974 sgl up Grandpa Jack 3789 Allso 1997 dbl up/tr Amazing Maisie 4632 Allsop 2001 s-dbl up/tr Amelia Rose 8018 Allsop 2012 sgl tr Arthur C. Boggis 4629 Allsop 2001 s-dbl up Beautiful Bobbie 3781 Allsop 1997 dbl tr Beloved Brian 5689 Allsop 2005 sgl up/tr Betty’s Buddies 8610 Allsop 2015 sgl up Captivating Kelly 3782 Allsop 1997 dbl tr Cheeky Chantelle 3783 Allsop 1997 dbl tr Cinque Port Liberty 4626 Allsop 2001 dbl up/tr Clara Agnes 5572 Allsop 2004 sgl up/tr Conner's Cascade 8019 Allsop 2012 sgl tr CutieKaren 4040 Allsop 1998 dbl tr Danielle’s Dream 4630 Allsop 2001 dbl tr Darling Danielle 3784 Allsop 1997 dbl tr Doodie Dane 3785 Allsop 1997 dbl gtr Dorothy Ann 4627 Allsop 2001 sgl tr Elaine's Gem 8020 Allsop 2012 sgl up Generous Jean 4813
    [Show full text]