Cassava Disease List

Total Page:16

File Type:pdf, Size:1020Kb

Cassava Disease List CASSAVA DISEASE LIST Name Abbreviation Classification Symptoms Diagnostic Bioassay-host range Distribution Mode of transmission method viruses African cassava ACMV Order: Unassigned Y PCR Manihot esculenta, Throughout Africa and Whitefly (B. tabaci ), infected mosaic virus1,2,6 Family: Nicotiana benthamiana, adjacent islands cuttings, mechanical, grafting but Geminiviridae Nicotiana clevelandii, not seed Genus: Begomovirus Datura stramonium East African EACMV Order: Unassigned Y PCR Kenya, Tanzania, Malawi, Whitefly (B. tabaci ), infected cassava mosaic Family: Zimbabwe, Madagascar, cuttings, mechanical, grafting but virus 3,4,5,6 Geminiviridae Nigeria, Cameroon, Ghana, not seed Genus: Begomovirus Guinea, Togo East African EACMCV Order: Unassigned Y PCR Cameroon Whitefly (B. tabaci ), infected cassava mosaic Family: cuttings, mechanical, grafting but Cameroon virus 6 Geminiviridae not seed Genus: Begomovirus East African EACMKV Order: Unassigned Y PCR Kenya Whitefly (B. tabaci ), infected cassava mosaic Family: cuttings, mechanical, grafting but Kenya virus 6 Geminiviridae not seed Genus: Begomovirus East African EACMMV Order: Unassigned Y PCR Malawi Whitefly (B. tabaci ), infected cassava mosaic Family: cuttings, mechanical, grafting but Malawi virus6 Geminiviridae not seed Genus: Begomovirus East African EACMZV Order: Unassigned Y PCR Tanzania Whitefly (B. tabaci ), infected cassava mosaic Family: cuttings, mechanical, grafting but Zanzibar virus6 Geminiviridae not seed Genus: Begomovirus East African EACMZV Order: Unassigned Y PCR Kenya, Congo Republic, Whitefly (B. tabaci ), infected cassava mosaic Family: Democratic Republic of cuttings, mechanical, grafting but virus-UG 7,8,9 Geminiviridae Congo, Rwanda, Sudan, not seed Genus: Begomovirus Tanzania, Uganda Indian cassava ICMV Order: Unassigned Y PCR Datura stramonium, India, Togo28? Whitefly (B. tabaci ), infected mosaic Family: Nicandra physalodes, cuttings, mechanical, grafting but virus 6,10,11,15 Geminiviridae Nicotiana benthamiana, not seed Genus: Begomovirus N. debneyi, N. glutinosa, N. occidentalis, N. rustica, N. sylvestris, N. tabacum (cv. Jaysree) and Petunia × hybrida South African SACMV Order: Unassigned Y PCR S. Africa, Madagascar, Whitefly (B. tabaci ), infected cassava mosaic Family: Zimbabwe cuttings, mechanical, grafting but virus 6,12,13,14 Geminiviridae not seed Genus: Begomovirus Sri Lankan SLCMV Order: Unassigned Y PCR Sri Lanka Whitefly (B. tabaci ), infected cassava mosaic Family: cuttings, mechanical, grafting but virus 6,15 Geminiviridae not seed Genus: Begomovirus Cassava brown CBSV Order: Unassigned Y? PCR Nicotiana benthamiana, Democratic Republic of Whitefly (B. tabaci ), infected streak Family: Potyviridae N. debneyi Congo, Malawi, cuttings, mechanical, grafting but no virus 2,16,17,18 Genus: Ipomovirus Mozambique, Kenya, data on seed transmission Tanzania, Uganda, Zimbabwe, Zambia Cassava common CsCMV Order: Timovirales Y Gomphrena globosa, Brazil, Colombia, Mexico, Mechanical, grafting, infected mosaic virus2,19 Family: Chenopodium Peru, Taiwan, and the USA cuttings but not seed. No known Alphaflexiviridae amaranticolor, C. murale, (Florida), Cote d'Ivoire vector Genus: Potexvirus C. quinoa, Gossypium (possibly). hirsutum, Manihot esculenta, Ricinus communis, Cassia occidentalis, Datura Cassava green CGMV Order: Picornavirales N? C.t quinoa, i N. Ni clevelandii, ti Solomon Islands Mechanical. Possible transmission mottle virus20 Family: Secoviridae P. vulgaris, C. sativus, R. by nematodes Sub-family: communis, I. batatas. M. Comovirinae Genus: esculenta, Solanum Nepovirus tuberosum, Cassava vein CVMV Order: Unassigned PCR? Manihot esculenta Brazil Mechanical, grafting but not seed or mosaic virus2 Family: pollen Caulimoviridae Genus: Cavemovirus Cassava American CALV Order: Picornavirales N Brazil, Guyana Mechanical. No data on vector or latent virus21 Family: Secoviridae seed transmission Sub-family: Comovirinae Genus: Nepovirus Cassava CCSV Flexiviridae; N Chenopodium spp., Columbia Mechanical. No data on vector or Columbian Potexvirus Nicotiana benthamiana seed transmission symptomless virus 22 Cassava Ivorian CIBV Unclassified N Chenopodiu Chenopodium Cote d'Ivoire Mechanical. No data on vector or bacilliform virus23 m murale amaranticolor, seed transmission (L), C. Chenopodium murale, C. amaranticol quinoa , Gomphrena or (W), C. globosa, Tetragonia quinoa (W). tetragonioides, Nicotiana benthamiana, Nicotiana clevelandii, N. rustica, N. tabacum cv. Samsun, Phaseolus vulgaris, Senecio cruentus Cassava virus X 24 CsVX Order: Timovirales N Nicotiana benthamiana Columbia, Venezuela Mechanical. No data on vector or Family: seed transmission Alphaflexiviridae Genus: Potexvirus Cassava virus CsVC Order: Unassigned N? ? Iran Mechanical. No data on vector or C 25,26 Family: Unassigned seed transmission Genus: Ourmiavirus Cassava Frogskin FSV Reoviridae? Y PCR Secundina spp. Brazil, Columbia, Costa Not transmitted mechanically orby virus2 Rica,Panama, Peru, seed. Suspected transmission by Venezuela whitefly B. tuberculata Cassava Congo Sequiviridae; sequivor virus Sequivirus kumi virus A25,26 No data Uganda Mechanical. No data on vector or seed transmission Kumi virus B25,26 Uganda Mechanical. No data on vector or seed transmission Cassava Nicotiana benthamiana Brazil Mode of transmission not known symptomless Rhabdovirus27 Cassava Caribbean Chenopodium quinoa, Mode of transmission not known mosaic (?) Nicotiana benthamiana potexvirus27 Bacteria Xanthomonas Y campestris pv. manihotis Xanthomonas Y campestris pv. cassavae Agrobacterium Y tumefaciens Biovar 1 MLOs Cassava antholysis MLO Y Cassava witches' Candidatus Y broom Phytoplasma asteri http://www.uniprot.org/taxonomy/8562 Lee et al. 2004 0 http://www.ncbi.nlm.nih.gov/Taxonomy /Browser/wwwtax.cgi?lvl=0&id=8562 0.
Recommended publications
  • A Novel Species of RNA Virus Associated with Root Lesion Nematode Pratylenchus Penetrans
    SHORT COMMUNICATION Vieira and Nemchinov, Journal of General Virology 2019;100:704–708 DOI 10.1099/jgv.0.001246 A novel species of RNA virus associated with root lesion nematode Pratylenchus penetrans Paulo Vieira1,2 and Lev G. Nemchinov1,* Abstract The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of plants. While analysing transcriptomic datasets of P. penetrans, we have identified a full-length genome of an unknown positive-sense single- stranded RNA virus, provisionally named root lesion nematode virus 1 (RLNV1). The 8614-nucleotide genome sequence encodes a single large polyprotein with conserved domains characteristic for the families Picornaviridae, Iflaviridae and Secoviridae of the order Picornavirales. Phylogenetic, BLAST and domain search analyses showed that RLNV1 is a novel species, most closely related to the recently identified sugar beet cyst nematode virus 1 and potato cyst nematode picorna- like virus. In situ hybridization with a DIG-labelled DNA probe confirmed the presence of the virus within the nematodes. A negative-strand-specific RT-PCR assay detected RLNV1 RNA in nematode total RNA samples, thus indicating that viral replication occurs in P. penetrans. To the best of our knowledge, RLNV1 is the first virus identified in Pratylenchus spp. In recent years, several new viruses infecting plant-parasitic assembly from high-throughput sequence data was supple- nematodes have been described [1–5]. Thus far, the viruses mented by sequencing of the 5¢ RACE-amplified cDNA have been identified in sedentary nematode species, such as ends of the virus. 5¢RACE reactions were performed with the soybean cyst nematode (SCN; Heterodera glycines), two the virus-specific primers GSP1, GSP2 and LN715 potato cyst nematode (PCN) species, Globodera pallida and (Table S1, available in the online version of this article) in G.
    [Show full text]
  • Biological and Molecular Characterization of Dahlia Mosaic Caulimovirus Abstract
    BIOLOGICAL AND MOLECULAR CHARACTERIZATION OF DAHLIA MOSAIC CAULIMOVIRUS By VIHANGA PAHALAWATTA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology AUGUST 2007 © Copyright by VIHANGA PAHALAWATTA, 2007 All Rights Reserved i To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of VIHANGA PAHALAWATTA find it satisfactory and recommend that it be accepted. _____________________________ Chair _____________________________ _____________________________ ____________________________ ii ACKNOWLEDGEMENT I would like to express my sincere gratitude to my major advisor, Dr. Hanu Pappu, for the tremendous support, guidance, encouragement and most of all the numerous opportunities that he made available to me during the time I spent working with him. Dr. Pappu has been an exceptional mentor who has been a constant source of inspiration to me. I would also like to thank Dr. Patricia Okubara, Dr. Ken Eastwell and Dr. Gary Chastagner for their advice, guidance and helpful discussions throughout my tenure. I wish to extend my gratitude to Keri Druffel, who taught me numerous techniques in the laboratory and for all the work she did that made my work so much easier. A special thanks to Robert Brueggeman for technical assistance. I am also grateful to the faculty and staff of the Department of Plant Pathology for all the help and support during my graduate studies at Washington State University. A special thank you to Dr. Tim Murray, for arranging departmental financial support and for giving me the opportunity to serve as a teaching assistant.
    [Show full text]
  • Sequences and Phylogenies of Plant Pararetroviruses, Viruses and Transposable Elements
    Hansen and Heslop-Harrison. 2004. Adv.Bot.Res. 41: 165-193. Page 1 of 34. FROM: 231. Hansen CN, Heslop-Harrison JS. 2004 . Sequences and phylogenies of plant pararetroviruses, viruses and transposable elements. Advances in Botanical Research 41 : 165-193. Sequences and Phylogenies of 5 Plant Pararetroviruses, Viruses and Transposable Elements CELIA HANSEN AND JS HESLOP-HARRISON* DEPARTMENT OF BIOLOGY 10 UNIVERSITY OF LEICESTER LEICESTER LE1 7RH, UK *AUTHOR FOR CORRESPONDENCE E-MAIL: [email protected] 15 WEBSITE: WWW.MOLCYT.COM I. Introduction ............................................................................................................2 A. Plant genome organization................................................................................2 20 B. Retroelements in the genome ............................................................................3 C. Reverse transcriptase.........................................................................................4 D. Viruses ..............................................................................................................5 II. Retroelements........................................................................................................5 A. Viral retroelements – Retrovirales....................................................................6 25 B. Non-viral retroelements – Retrales ...................................................................7 III. Viral and non-viral elements................................................................................7
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M
    Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin, Lyuba Ryabova To cite this version: Mikhail M. Pooggin, Lyuba Ryabova. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Frontiers in Microbiology, Frontiers Media, 2018, 9, pp.644. 10.3389/fmicb.2018.00644. hal-02289592 HAL Id: hal-02289592 https://hal.archives-ouvertes.fr/hal-02289592 Submitted on 16 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License fmicb-09-00644 April 9, 2018 Time: 16:25 # 1 REVIEW published: 10 April 2018 doi: 10.3389/fmicb.2018.00644 Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond Mikhail M. Pooggin1* and Lyubov A. Ryabova2* 1 INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France, 2 Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms.
    [Show full text]
  • Evidence That a Plant Virus Switched Hosts to Infect a Vertebrate and Then Recombined with a Vertebrate-Infecting Virus
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 8022–8027, July 1999 Evolution Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus MARK J. GIBBS* AND GEORG F. WEILLER Bioinformatics, Research School of Biological Sciences, The Australian National University, G.P.O. Box 475, Canberra 2601, Australia Communicated by Bryan D. Harrison, Scottish Crop Research Institute, Dundee, United Kingdom, April 28, 1999 (received for review December 22, 1998) ABSTRACT There are several similarities between the The history of viruses is further complicated by interspecies small, circular, single-stranded-DNA genomes of circoviruses recombination. Distinct viruses have recombined with each that infect vertebrates and the nanoviruses that infect plants. other, producing viruses with new combinations of genes (6, 7); We analyzed circovirus and nanovirus replication initiator viruses have also captured genes from their hosts (8, 9). These protein (Rep) sequences and confirmed that an N-terminal interspecies recombinational events join sequences with dif- region in circovirus Reps is similar to an equivalent region in ferent evolutionary histories; hence, it is important to test viral nanovirus Reps. However, we found that the remaining C- sequence datasets for evidence of recombination before phy- terminal region is related to an RNA-binding protein (protein logenetic trees are inferred. If a set of aligned sequences 2C), encoded by picorna-like viruses, and we concluded that contains regions with significantly different phylogenetic sig- the sequence encoding this region of Rep was acquired from nals and the regions are not delineated, errors may result. one of these single-stranded RNA viruses, probably a calici- Interspecies recombination between viruses has been linked virus, by recombination.
    [Show full text]
  • An Abstract of the Dissertation Of
    AN ABSTRACT OF THE DISSERTATION OF Alfredo Diaz Lara for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on December 16, 2016. Title: Identification of Endogenous and Exogenous Pararetroviruses in Red Raspberry (Rubus idaeus L.) and Blueberry (Vaccinium corymbosum L.). Abstract approved: ______________________________________________________ Robert R. Martin The Pacific Northwest (Oregon and Washington in the United States and British Columbia in Canada) is one of the major producers of red raspberry (Rubus idaeus L.) and blueberry (Vaccinium corymbosum L.) in the world. The expansion of growing area with these crops has resulted in the emergence of new virus diseases that cause serious economic losses. The majority of viruses affecting plants (including blueberry and red raspberry) contain RNA genomes. In contrast, plant viruses with DNA genomes are relatively rare and most of the time ignored in virus surveys. The family Caulimoviridae is a group of plant pararetroviruses (reverse-transcribing viruses) with the ability to integrate their DNA into the host genome, resulting in complex molecular interactions that lead to inconsistencies in terms of detection and disease symptoms. Albeit, few studies have been conducted to determine the nature of plant pararetroviruses and their relationships with the associated host. To investigate the presence of pararetroviruses in blueberry and red raspberry, and their possible integration events, different plant material suspected to be infected with viruses was collected in nurseries, commercial fields and clonal germplasm repositories for a period of four years. For blueberry, using rolling circle amplification (RCA) a new virus was identified and named Blueberry fruit drop-associated virus (BFDaV) because of its association with fruit-drop disorder.
    [Show full text]
  • Genomic Characterization of the Cacao Swollen Shoot Virus Complex and Other Theobroma Cacao-Infecting Badnaviruses
    Genomic Characterization of the Cacao Swollen Shoot Virus Complex and other Theobroma Cacao-Infecting Badnaviruses Item Type text; Electronic Dissertation Authors Chingandu, Nomatter Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 29/09/2021 07:25:04 Link to Item http://hdl.handle.net/10150/621859 GENOMIC CHARACTERIZATION OF THE CACAO SWOLLEN SHOOT VIRUS COMPLEX AND OTHER THEOBROMA CACAO-INFECTING BADNAVIRUSES by Nomatter Chingandu __________________________ A Dissertation Submitted to the Faculty of the SCHOOL OF PLANT SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN PLANT PATHOLOGY In the Graduate College THE UNIVERSITY OF ARIZONA 2016 1 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Nomatter Chingandu, entitled “Genomic characterization of the Cacao swollen shoot virus complex and other Theobroma cacao-infecting badnaviruses” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. _______________________________________________________ Date: 7.27.2016 Dr. Judith K. Brown _______________________________________________________ Date: 7.27.2016 Dr. Zhongguo Xiong _______________________________________________________ Date: 7.27.2016 Dr. Peter J. Cotty _______________________________________________________ Date: 7.27.2016 Dr. Barry M. Pryor _______________________________________________________ Date: 7.27.2016 Dr. Marc J. Orbach Final approval and acceptance of this dissertation is contingent upon the candidate’s submission of the final copies of the dissertation to the Graduate College.
    [Show full text]
  • Explaining Chemical Reactions
    Single and Mixed Infections of Plant RNA and DNA Viruses are Prevalent in Commercial Sweet Potato in Honduras and Guatemala Item Type text; Electronic Thesis Authors Avelar, Ana Sofia Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 02:50:51 Link to Item http://hdl.handle.net/10150/578609 SINGLE AND MIXED INFECTIONS OF PLANT RNA AND DNA VIRUSES ARE PREVALENT IN COMMERCIAL SWEET POTATO IN HONDURAS AND GUATEMALA by Ana Sofia Avelar ____________________________ A Thesis Submitted to the Faculty of the SCHOOL OF PLANT SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Molecular and transcriptomic characterization of natural resistance to cassava brown streak viruses in cassava Author(s): Anjanappa, Ravi B. Publication Date: 2015 Permanent Link: https://doi.org/10.3929/ethz-a-010572922 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 22704 Molecular and transcriptomic characterization of natural resistance to cassava brown streak viruses in cassava (Manihot esculenta, Crantz) A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) Presented by Ravi Bodampalli Anjanappa Master of Science in Plant Biotechnology, University of Agricultural Sciences, Bangalore Born 12th August 1979 Citizen of India Accepted on the recommendation of Prof. Dr. Wilhelm Gruissem, examiner Prof. Dr. Hervé Vanderschuren, co-examiner Dr. Maruthi M. N. Gowda, co-examiner 2015 Table of Contents Abstract 1 Zusammenfassung 3 Abbreviations 5 General Introduction 7 Chapter 1: Natural Resistance to Plant Viruses 13 Chapter 2: Characterization of brown streak virus-resistant cassava 55 Chapter 3: Transcriptome modulation in susceptible and resistant cassava 82 varieties inoculated with cassava brown streak viruses Chapter 4: Identification and characterization of a resistance-breaking 131 Cassava brown streak virus isolate Chapter 5: Discussion and persceptives 159 Acknowledgements 169 Curriculum Vitae 170 Abstract Cassava (Manihot esculenta Crantz) production in eastern and central African countries is adversely impacted by cassava brown streak disease (CBSD), thereby threatening food security. CBSD is caused by two viral species, Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV) which are collectively termed as cassava brown streak viruses (CBSVs).
    [Show full text]
  • Characterization of Grapevine Vein Clearing Virus Expression
    CHARACTERIZATION OF GRAPEVINE VEIN CLEARING VIRUS EXPRESSION STRATEGY AND DEVELOPMENT OF CAULIMOVIRUS INFECTIOUS CLONES _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in Plant, Insect and Microbial Sciences _____________________________________________________ by YU ZHANG Dr. James E. Schoelz, Dissertation Supervisor DECEMBER 2016 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled CHARACTERIZATION OF GRAPEVINE VEIN CLEARING VIRUS EXPRESSION STRATEGY AND DEVELOPMENT OF CAULIMOVIRUS INFECTIOUS CLONES Presented by Yu Zhang A candidate for the degree of doctor of philosophy In Plant, Insect and Microbial Sciences And hereby certify that, in their opinion, it is worthy of acceptance. Dr. James E. Schoelz, PhD Dr. Wenping Qiu, PhD Dr. David G. Mendoza-Cózatl, PhD Dr. Trupti Joshi, PhD ACKNOWLEDGEMENTS I wish to express my appreciation to my advisor, Dr. James Schoelz, for his constant guidance and support during my doctoral studies. He is a role model to me as an enthusiastic and hard working scientist. Although I will leave MU, I will keep what I learnt from him with my future life. I owe thanks to members of my doctoral committee, Dr. Wenping Qiu, Dr. David G. Mendoza-Cózatl, and Dr. Trupti Joshi, for their helpful comments and suggestions. I also want to thank Dr. Dmitry Korkin, who served in my committee for one year and helped me with bioinformatics and data interpretation. Thanks are due to my colleagues in the lab, Dr. Carlos Angel, Dr. Andres Rodriguez, Mustafa Adhab, and Mohammad Fereidouni, who I really enjoyed working with.
    [Show full text]