Biological Role of Lactoferrin

Total Page:16

File Type:pdf, Size:1020Kb

Biological Role of Lactoferrin Archives ofDisease in Childhood 1992; 67: 657-661 657 REGULAR REVIEW Arch Dis Child: first published as 10.1136/adc.67.5.657 on 1 May 1992. Downloaded from Biological role of lactoferrin Lourdes Sanchez, Miguel Calvo, Jeremy H Brock Lactoferrin is an iron-binding protein closely bearing in mind when considering its possible related in structure to the serum iron transport biological function. protein transferrin. Unlike transferrin, only Human milk contains 3-6-12-5 ,umol/l of traces are normally present in serum, and it is iron, and of this only 60-70% is in the whey instead found mainly in milk and other external fraction, the remainder being in the lipid secretions, and in the secondary granules of fraction (11-20%) or bound to casein (2-14%). " neutrophils. Although lactoferrin was first iso- As a consequence, milk lactoferrin is only 6-8% lated 30 years ago, its biological role remains saturated with iron, presumably because of the unclear. Some aspects of its function were difficulty in gaining access to iron in the lipid discussed about 12 years ago in this journal,' fraction or casein micelles. and this review will attempt to reassess the function of lactoferrin in the light of the large amount of new information that has accrued Association of lactoferrin with other since then. molecules Knowledge of the structure of lactoferrin has Lactoferrin is very prone to binding to other been advanced by recent x ray crystallographic macromolecules. These include other milk studies, and the structure and iron binding proteins such as IgA, casein, secretory compo- properties of lactoferrin are reviewed in detail nent, albumin, lysozyme, and f1-lactoglobulin.'2 elsewhere.2 Briefly lactoferrin, like transferrin, Lactoferrin also binds to DNA.'3 A report of reversibly binds two ferric ions, for which multiple forms of lactoferrin in human milk, synergistic binding of an anion, usually bicar- some of which exhibit ribonuclease activity,'4 bonate or carbonate, is necessary. However, its may arise from an interaction between lactoferrin affinity constant for iron is 300 times greater and milk ribonuclease. Bovine milk ribonuclease http://adc.bmj.com/ than that of transferrin, and even in the is, like lysozyme, a small basic protein (mole- presence of a competing iron chelator such as cular weight 13 600),'5 and some ribonuclease citrate it can retain iron down to pH 3 or less activity in human milk was also associated with while transferrin loses it at pH 5. Unlike a molecule of this size. 14 So far no clear transferrin, lactoferrin is strongly basic. Human biological role has been established for this lactoferrin has been cloned and sequenced4 and propensity of lactoferrin to interact with other the recombinant protein expressed in baby proteins. hamster kidney cells.5 on September 28, 2021 by guest. Protected copyright. Biological functions of lactoferrin Lactoferrin in milk BACTERIOSTATIC ACTIVITY Human milk is particularly rich in lactoferrin, Almost all bacteria require iron for growth, and the concentration ranging from about 7 g/l in because of their iron sequestering properties, colostrum to about 1 g/l in mature milk, though the iron free (apo) forms of lactoferrin and it may rise again towards the end of lactation.6 7 transferrin are able to impede iron utilisation by A similar pattern is seen in the cow, but bacteria. A large number of studies, reviewed importantly the concentration in mid-lactation elsewhere,'6 have demonstrated a bacteriostatic Department of Food milk is very much lower, only about 0-1 g/l.8 effect and in some cases a bactericidal effect of Technology and Lactoferrin concentrations were normal in iron lactoferrin in vitro on a wide range of micro- Biochemistry, Veterinary Faculty, deficient mothers,9 but lower in mothers who organisms, including Gram positive and Gram University of Zaragoza, were generally malnourished,'0 which suggests negative bacteria, aerobes, anaerobes, and Spain that protein energy malnutrition rather than yeasts. However, mechanisms other than simple Lourdes Sanchez Miguel Calvo iron influences lactoferrin synthesis in the iron withholding may be involved in the anti- University Department mammary gland. Although lactoferrin is found bacterial action of lactoferrin, such as blockade of Immunology, in the milk of some other species, it is completely of microbial carbohydrate metabolism'" or Western Infirmary, absent in others, such as the rat, rabbit, and destabilisation of the bacterial cell wall, perhaps Glasgow dog.6 The milk of the rat and rabbit do however through binding of calcium and magnesium.'8 Jeremy H Brock contain significant amounts of transferrin, but Lactoferrin may synergise with other anti- Correspondence and reprint requests to: the milk of the dog contains neither protein, bacterial proteins such as lysozyme, which is Dr Lourdes Sanchez, even though the iron content is exceptionally also present in milk. In this case even the iron Department of Immunology, Western Infirmary, high.6 The fact that lactoferrin is absent from saturated form is active, and inhibition results Glasgow Gll 6NT. the milk of some species is a point worth from agglutination by lactoferrin of bacteria 658 Sanchez, Calvo, Brock whose cell wall has been modified by lysozyme. 19 unproved until the wealth of in vitro data Antibodies can also enhance the bacteriostatic showing antimicrobial activity is supported by action of lactoferrin,20 probably by blocking convincing in vivo data, particularly from production or uptake of microbial siderophores. clinical trials. The possibility that lactoferrin Arch Dis Child: first published as 10.1136/adc.67.5.657 on 1 May 1992. Downloaded from Lactoferrin may also possess antiviral activity, might exert a systemic protective effect also as it could protect mice against polycythaemia deserves further investigation, as studies in due to Friend virus.2' This appears to be an mice have shown that lactoferrin has a protective indirect effect, perhaps via a reduction in target effect in experimental E coli septicaemia that is cell proliferation, and is probably related to the independent of its iron content.27 proposed inhibitory role of lactoferrin in myelopoiesis (see below). In vivo, lactoferrin in milk might exercise its ROLE OF LACTOFERRIN IN INFLAMMATION AND inhibitory effect on microbial growth in the THE IMMUNE SYSTEM mammary gland, in the intestine ofthe newborn, A number of studies suggest that lactoferrin or both. Its role as a defence against infection in may mediate some of the effects of inflammation the human mammary gland appears not to have and have a role in regulating various components been investigated, but in cattle concentrations of the immune system. It was proposed some of lactoferrin increase during intramammary years ago that lactoferrin released by degranu- infection,22 suggesting a possible role as a lating neutrophils mediated the hyposideraemia mammary non-specific defence mechanism. of inflammation by removing iron from plasma Conditions in the bovine mammary gland im- transferrin and short circuiting it to macrophages mediately before parturition and during involu- of the reticuloendothelial system, where it was tion favour antimicrobial activity of lactoferrin incorporated into ferritin.28 However, iron as concentrations of bicarbonate are higher and uptake by macrophages from lactoferrin is at those of citrate lower than in milk.22 23 Thus best extremely slow,29 and there is no recycling lactoferrin might perform a role in preventing of the protein as occurs with transferrin, as infection of the mammary gland, particularly at lactoferrin that has bound to monocytes cannot parturition and involution. subsequently rebind to these cells.30 In addition, It has frequently been suggested that the the rate of exchange of iron between transferrin antimicrobial activity of lactoferrin plays a part and lactoferrin at physiological pH is likely to in the selection of the intestinal flora of the beextremely slow, and finallyneutrophil-derived newborn and preventing colonisation by entero- lactoferrin differs from milk lactoferrin, which pathogenic organisms. The conditions in the was used in most studies, in lacking the intestine ofthe newborn may be more favourable terminal fucose residues in its glycan chains that for lactoferrin than those in the lactating mam- are required for binding to macrophages.3' It mary gland, as citrate is rapidly absorbed and has also been found in mice that interleukin-1 intestinal fluid has a high concentration of induces hypoferraemia even in the presence of bicarbonate, although this function might be neutropenia,32 suggesting that lactoferrin is adversely affected by the proteolytic enzymes unimportant. Thus it now seems unlikely that http://adc.bmj.com/ present in the intestine, as discussed below. lactoferrin plays a significant part in the hypo- Nevertheless, despite the wealth of in vitro ferraemia of inflammation. data, attempts to establish an in vivo anti- Lactoferrin might also contribute to the microbial role for lactoferrin have generally bactericidal activity of neutrophils by two yielded disappointing results. The much quoted opposing mechanisms. In the apo form it may experimental study of Bullen et al,20 which perform an iron withholding function and suggested a protective effect of lactoferrin in prevent growth of phagocytosed bacteria.33 On on September 28, 2021 by guest. Protected copyright. newborn guinea pigs infected with Escherichia the other hand iron-lactoferrin may provide
Recommended publications
  • Types of Acute Phase Reactants and Their Importance in Vaccination (Review)
    BIOMEDICAL REPORTS 12: 143-152, 2020 Types of acute phase reactants and their importance in vaccination (Review) RAFAAT H. KHALIL1 and NABIL AL-HUMADI2 1Department of Biology, College of Science and Technology, Florida Agricultural and Mechanical University, Tallahassee, FL 32307; 2Office of Vaccines, Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD 20993, USA Received May 10, 2019; Accepted November 25, 2019 DOI: 10.3892/br.2020.1276 Abstract. Vaccines are considered to be one of the most human and veterinary medicine. Proteins which are expressed cost-effective life-saving interventions in human history. in the acute phase are potential biomarkers for the diagnosis The body's inflammatory response to vaccines has both of inflammatory disease, for example, acute phase proteins desired effects (immune response), undesired effects [(acute (APPs) are indicators of successful organ transplantation phase reactions (APRs)] and trade‑offs. Trade‑offs are and can be used to predict the ameliorative effect of cancer more potent immune responses which may be potentially therapy (1,2). APPs are primarily synthesized in hepatocytes. difficult to separate from potent acute phase reactions. The acute phase response is a spontaneous reaction triggered Thus, studying acute phase proteins (APPs) during vaccina- by disrupted homeostasis resulting from environmental distur- tion may aid our understanding of APRs and homeostatic bances (3). Acute phase reactions (APRs) usually stabilize changes which can result from inflammatory responses. quickly, after recovering from a disruption to homeostasis Depending on the severity of the response in humans, these within a few days to weeks; however, APPs expression levels reactions can be classified as major, moderate or minor.
    [Show full text]
  • Lactoferrin and Its Detection Methods: a Review
    nutrients Review Lactoferrin and Its Detection Methods: A Review Yingqi Zhang, Chao Lu and Jin Zhang * Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada; [email protected] (Y.Z.); [email protected] (C.L.) * Correspondence: [email protected] Abstract: Lactoferrin (LF) is one of the major functional proteins in maintaining human health due to its antioxidant, antibacterial, antiviral, and anti-inflammatory activities. Abnormal levels of LF in the human body are related to some serious diseases, such as inflammatory bowel disease, Alzheimer’s disease and dry eye disease. Recent studies indicate that LF can be used as a biomarker for diagnosis of these diseases. Many methods have been developed to detect the level of LF. In this review, the biofunctions of LF and its potential to work as a biomarker are introduced. In addition, the current methods of detecting lactoferrin have been presented and discussed. We hope that this review will inspire efforts in the development of new sensing systems for LF detection. Keywords: lactoferrin; biomarkers; immunoassay; instrumental analysis; sensor 1. Introduction Lactoferrin (known as lactotransferrin, LF), with a molecular weight of about 80 kDa, is a functional glycoprotein, which contains about 690 amino acid residues. It was first isolated from bovine milk by Sorensen in 1939 and was first isolated from human milk by Citation: Zhang, Y.; Lu, C.; Zhang, J. Johanson in 1960 [1,2]. The three-dimensional structure of LF has been unveiled by high Lactoferrin and Its Detection resolution X-ray crystallographic analysis, and it consists of two homologous globular lobes Methods: A Review.
    [Show full text]
  • Influence of Infection and Inflammation on Biomarkers of Nutritional Status
    A2.4 INFLUENCE OF INFECTION AND INFLAMMATION ON BIOMARKERS OF NUTRITIONAL STATUS A2.4 Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron David I. Thurnham1 and George P. McCabe2 1 Northern Ireland Centre for Food and Health, University of Ulster, Coleraine, United Kingdom of Great Britain and Northern Ireland 2 Statistics Department, Purdue University, West Lafayette, Indiana, United States of America Corresponding author: David I. Thurnham; [email protected] Suggested citation: Thurnham DI, McCabe GP. Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron. In: World Health Organization. Report: Priorities in the assessment of vitamin A and iron status in populations, Panama City, Panama, 15–17 September 2010. Geneva, World Health Organization, 2012. Abstract n Many plasma nutrients are influenced by infection or tissue damage. These effects may be passive and the result of changes in blood volume and capillary permeability. They may also be the direct effect of metabolic alterations that depress or increase the concentration of a nutrient or metabolite in the plasma. Where the nutrient or metabolite is a nutritional biomarker as in the case of plasma retinol, a depression in retinol concentrations will result in an overestimate of vitamin A deficiency. In contrast, where the biomarker is increased due to infection as in the case of plasma ferritin concentrations, inflammation will result in an underestimate of iron deficiency. Infection and tissue damage can be recognized by their clinical effects on the body but, unfortunately, subclinical infection or inflammation can only be recognized by measur- ing inflammation biomarkers in the blood.
    [Show full text]
  • The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria Kell, Douglas B.; Heyden, Eugene L.; Pretorius, Etheresia Published in: Frontiers in Immunology Link to article, DOI: 10.3389/fimmu.2020.01221 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kell, D. B., Heyden, E. L., & Pretorius, E. (2020). The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria. Frontiers in Immunology, 11, [1221]. https://doi.org/10.3389/fimmu.2020.01221 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. HYPOTHESIS AND THEORY published: 28 May 2020 doi: 10.3389/fimmu.2020.01221 The Biology of Lactoferrin, an Iron-Binding Protein That Can Help Defend Against Viruses and Bacteria Douglas B.
    [Show full text]
  • Serum Alpha2-Macroglobulin, Transferrin, Albumin, and Igg Levels in Preeclampsia
    J. clin. Path., 1970, 23, 514-516 J Clin Pathol: first published as 10.1136/jcp.23.6.514 on 1 September 1970. Downloaded from Serum alpha2-macroglobulin, transferrin, albumin, and IgG levels in preeclampsia C. H. W. HORNE, P. W. HOWIE, AND R. B. GOUDIE From the University Departments ofPathology and Obstetrics and Gynaecology, Western Infirmary, Glasgow SYNOPSIS A radial immunodiffusion technique has been used to measure levels of four serum proteins in preeclampsia with or without proteinuria and in normal pregnant and non-pregnant controls. In preeclampsia unaccompanied by proteinuria, albumin and transferrin levels are similar to those found in the normal pregnant controls, but there are significant falls in 0x2-macroglobulin and IgG. When preeclampsia is accompanied by proteinuria there is a marked fall in albumin and an increase in o'2-macroglobulin. Since oU2-macroglobulin has antiplasmin activity it is possible that increased levels of this protein in preeclampsia accom-copyright. panied by proteinuria contribute to the intravascular coagulation which has been described in this disorder. Both in pregnancy and the nephrotic syndrome tension (bloodpressurehigher than 140/90mm Hg) increased levels of serum x2-macroglobulin have on two or more separate occasions after 28 weeks been reported (Schumacher and Schlumberger, of pregnancy in patients whose blood pressurehttp://jcp.bmj.com/ 1963; Schultze and Schwick, 1959). We therefore was less than 140/90 m-m Hg in the first trimester. thought it would be of interest to determine the Most of the patients had oedema. Preeclampsia serum oI2-macroglobulin levels in preeclampsia, a with proteinuria was diagnosed when proteinuria complication of pregnancy which bears a certain was detected for the first time after 28 weeks of similarity to the nephrotic syndrome.
    [Show full text]
  • Weakness of Biochemical Markers of Nutritional and Inflammatory Status
    European Journal of Clinical Nutrition (1997) 51, 148±153 ß 1997 Stockton Press. All rights reserved 0954±3007/97 $12.00 Weakness of biochemical markers of nutritional and in¯ammatory status as prognostic indices for growth retardation and morbidity of young children in central Africa R Tonglet1,4, E Mahangaiko Lembo2,4, M Dramaix3 and P Hennart3,4 1School of Public Health, Faculty of Medicine, Catholic University of Louvain, Brussels, Belgium; 2Rural Health District of Kirotshe, Goma, Northern Kivu, Zaire; 3School of Public Health, Faculty of Medicine, Free University of Brussels, Brussels, Belgium; and 4Centre Scienti®que et MeÂdical de l'Universite Libre de Bruxelles pour ses ActiviteÂs de CoopeÂration (CEMUBAC), Brussels, Belgium Objective: To determine to what extent biochemical markers of the nutritional and in¯ammatory status of young children are related to subsequent growth retardation and morbidity. Design: Population-based follow-up study of a cohort of children from admission to ®nal survey round six months later. Setting: Health area in Northern Kivu, Zaire. Subjects: 842 children under two years of age of whom about one-third gave informed consent to capillary blood collection. Main outcome measures: Concentration of albumin, transferrin, transthyretin, a1-acid glycoprotein, C-reactive protein, and complement component C3 at baseline, and three and six months later. Incremental growth per 1 month, 3 months and 6 months of follow-up. Cumulative incidence of disease per 1 month and 3 months interval. Results: A high proportion of children was with low concentrations of transport proteins and high concentrations of acute-phase reactants. Weight growth and arm circumference growth did not vary signi®cantly with respect to initial concentrations of biomarkers, but subsequent height growth was lower in children with high values of transferrin, a1-acid glycoprotein, and complement component C3 at baseline.
    [Show full text]
  • Transferrin Plays a Central Role in Coagulation Balance by Interacting with Clotting Factors
    www.nature.com/cr www.cell-research.com ARTICLE OPEN Transferrin plays a central role in coagulation balance by interacting with clotting factors Xiaopeng Tang1,2, Zhiye Zhang1, Mingqian Fang1,2, Yajun Han1, Gan Wang1, Sheng Wang3, Min Xue1,2, Yaxiong Li4, Li Zhang4, Jian Wu4, Biqing Yang5, James Mwangi1,2, Qiumin Lu1, Xiaoping Du6 and Ren Lai1,7,8,9,10 Coagulation balance is maintained through fine-tuned interactions among clotting factors, whose physiological concentrations vary substantially. In particular, the concentrations of coagulation proteases (pM to nM) are much lower than their natural inactivator antithrombin (AT, ~ 3 μM), suggesting the existence of other coordinators. In the current study, we found that transferrin (normal plasma concentration ~40 μM) interacts with fibrinogen, thrombin, factor XIIa (FXIIa), and AT with different affinity to maintain coagulation balance. Normally, transferrin is sequestered by binding with fibrinogen (normal plasma concentration ~10 μM) at a molar ratio of 4:1. In atherosclerosis, abnormally up-regulated transferrin interacts with and potentiates thrombin/FXIIa and blocks AT’s inactivation effect on coagulation proteases by binding to AT, thus inducing hypercoagulability. In the mouse model, transferrin overexpression aggravated atherosclerosis, whereas transferrin inhibition via shRNA knockdown or treatment with anti- transferrin antibody or designed peptides interfering with transferrin-thrombin/FXIIa interactions alleviated atherosclerosis. Collectively, these findings identify that transferrin
    [Show full text]
  • Alpha -Antitrypsin Deficiency
    The new england journal of medicine Review Article Dan L. Longo, M.D., Editor Alpha1-Antitrypsin Deficiency Pavel Strnad, M.D., Noel G. McElvaney, D.Sc., and David A. Lomas, Sc.D.​​ lpha1-antitrypsin (AAT) deficiency is one of the most common From the Department of Internal Med­ genetic diseases. Most persons carry two copies of the wild-type M allele icine III, University Hospital RWTH of SERPINA1, which encodes AAT, and have normal circulating levels of the (Rheinisch–Westfälisch Technische Hoch­ A schule) Aachen, Aachen, Germany (P.S.); protein. Ninety-five percent of severe cases of AAT deficiency result from the homo- the Irish Centre for Genetic Lung Dis­ zygous substitution of a single amino acid, Glu342Lys (the Z allele), which is present ease, Royal College of Surgeons in Ire­ in 1 in 25 persons of European descent (1 in 2000 persons of European descent land, Beaumont Hospital, Dublin (N.G.M.); and UCL Respiratory, Division of Medi­ are homozygotes). Mild AAT deficiency typically results from a different amino cine, Rayne Institute, University College acid replacement, Glu264Val (the S allele), which is found in 1 in 4 persons in the London, London (D.A.L.). Address re­ Iberian peninsula. However, many other alleles have been described that have vari- print requests to Dr. Lomas at UCL Re­ spiratory, Rayne Institute, University Col­ able effects, such as a lack of protein production (null alleles), production of mis- lege London, London WC1E 6JF, United folded protein, or no effect on the level or function of circulating AAT (Table 1). Kingdom, or at d .
    [Show full text]
  • Identification of Key Pathways and Genes in Dementia Via Integrated Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of Key Pathways and Genes in Dementia via Integrated Bioinformatics Analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440371; this version posted July 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein–protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis.
    [Show full text]
  • 2019 Laboratory Report
    Page 1 of 24 Division of Health Care Financing & Policy SB278 Section 16 from the 2011 Legislative Session Physician Rates Reporting Laboratory Rate Comparison Medicaid Nevada 2019 vs. Proccedure Medicaid Medicare Medicare Code Description Rates Lab Rates Lab Rates 36415 Routine venipuncture $3.98 $3.00 $0.98 78267 Breath tst attain/anal c-14 $11.94 $11.06 $0.88 78268 Breath test analysis c-14 $102.44 $94.41 $8.03 80047 METABOLIC PANEL IONIZED CA $5.77 $13.73 ($7.96) 80048 METABOLIC PANEL TOTAL CA $5.77 $9.40 ($3.63) 80051 ELECTROLYTE PANEL $4.79 $7.79 ($3.00) 80053 COMPREHEN METABOLIC PANEL $7.21 $11.74 ($4.53) 80055 OBSTETRIC PANEL $32.56 $53.12 ($20.56) 80061 LIPID PANEL $9.14 $14.88 ($5.74) 80069 Renal function panel $5.93 $9.65 ($3.72) 80074 Acute hepatitis panel $32.50 $52.93 ($20.43) 80076 Hepatic function panel $5.57 $9.08 ($3.51) 80150 Assay of amikacin $10.28 $16.75 ($6.47) 80156 Assay carbamazepine total $9.94 $16.18 ($6.24) 80157 Assay carbamazepine free $9.05 $14.73 ($5.68) 80158 ASSAY OF CYCLOSPORINE $12.32 $20.06 ($7.74) 80162 Assay of digoxin total $9.06 $14.75 ($5.69) 80164 Assay dipropylacetic acd tot $9.25 $15.05 ($5.80) 80168 Assay of ethosuximide $11.15 $18.15 ($7.00) 80170 Assay of gentamicin $11.18 $18.20 ($7.02) 80173 Assay of haloperidol $9.94 $16.18 ($6.24) 80176 Assay of lidocaine $10.02 $16.32 ($6.30) 80178 Assay of lithium $4.51 $7.35 ($2.84) 80184 Assay of phenobarbital $7.81 $15.30 ($7.49) 80185 Assay of phenytoin total $9.05 $14.73 ($5.68) 80186 Assay of phenytoin free $9.39 $15.29 ($5.90) 80188 Assay of
    [Show full text]
  • A Deficiency in Golgi Localised N-Acetyl-Glucosaminyltransferase II 125
    Archives of Disease in Childhood 1994; 71: 123-127 123 Carbohydrate deficient glycoprotein syndrome type II: a deficiency in Golgi localised Arch Dis Child: first published as 10.1136/adc.71.2.123 on 1 August 1994. Downloaded from N-acetyl-glucosaminyltransferase II J Jaeken, H Schachter, H Carchon, P De Cock, B Coddeville, G Spik Abstract Case report The carbohydrate deficient glycoprotein The patient, a Belgian boy, was born in 1983 (CDG) syndromes are a family of genetic after a normal pregnancy and delivery. His multisystemic disorders with severe birth weight was 3250 g, length 50 cm, and nervous system involvement. This report head circumference 35 cm. He had a younger is on a child with a CDG syndrome that healthy brother; the parents were not related. differs from the classical picture but is The father's height was on the 3rd centile and very similar to a patient reported in head circumference on the 90th centile; he 1991. Both these patients are therefore showed some facial dysmorphism with a short designated CDG syndrome type II. neck but was otherwise normal. From birth Compared with type I patients they have the patient was hypotonic. He showed a more severe psychomotor retardation dysmorphic features: a hook nose, large but no peripheral neuropathy nor cere- dysplastic ears in oblique position, thin lips, bellar hypoplasia. The serum transferrin prognathia of the maxilla, short neck, isoform pattern obtained by isoelec- proximal implantation of the thumbs, and tric focusing showed disialotransferrin irregular position of the toes. There was a as the major fraction. The serum cardiac murmur due to a small ventricular disialotransferrin, studied in the present septal defect.
    [Show full text]
  • The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice
    International Journal of Molecular Sciences Article The Acute Phase Response Is a Prominent Renal Proteome Change in Sepsis in Mice Beáta Róka 1,Pál Tod 1,2, Tamás Kaucsár 1, Matej Vizovišek 3 , Robert Vidmar 3, Boris Turk 3,4 , Marko Fonovi´c 3,4,Gábor Szénási 1 and Péter Hamar 1,2,* 1 Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; [email protected] (B.R.); [email protected] (P.T.); [email protected] (T.K.); [email protected] (G.S.) 2 Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary 3 Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; [email protected] (M.V.); [email protected] (R.V.); [email protected] (B.T.); [email protected] (M.F.) 4 Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, 1000 Ljubljana, Slovenia * Correspondence: [email protected]; Tel.: +36-20-825-9751; Fax: +36-1-210-0100 Received: 18 November 2019; Accepted: 20 December 2019; Published: 27 December 2019 Abstract: (1) Background: Sepsis-induced acute kidney injury (AKI) is the most common form of acute kidney injury (AKI). We studied the temporal profile of the sepsis-induced renal proteome changes. (2) Methods: Male mice were injected intraperitoneally with bacterial lipopolysaccharide (LPS) or saline (control). Renal proteome was studied by LC-MS/MS (ProteomeXchange: PXD014664) at the early phase (EP, 1.5 and 6 h after 40 mg/kg LPS) and the late phase (LP, 24 and 48 h after 10 mg/kg LPS) of LPS-induced AKI.
    [Show full text]