Meteoritics & Planetary Science 46, Nr 12, 1863–1877 (2011) doi: 10.1111/j.1945-5100.2011.01302.x Evidence for an asteroid–comet continuum from simulations of carbonaceous microxenolith dynamical evolution Giacomo BRIANI1,2,5*, Alessandro MORBIDELLI3, Matthieu GOUNELLE2, and David NESVORNY´4 1Dipartimento di Fisica e Astronomia, Universita` di Firenze, Largo E. Fermi 2, 50125 Firenze, Italy 2Laboratoire de Mine´ralogie et Cosmochimie du Muse´um, UMR7202, Muse´um National d’Histoire Naturelle – CNRS, 61 rue Buffon, 75005 Paris, France 3De´partement Cassiope´e, UMR6202, Observatoire de la Coˆte d’Azur – CNRS, 06304 Nice Cedex 4, France 4Department of Space Studies, Southwest Research Institute, 1050 Walnut St., Suite 400, Boulder, Colorado 80302, USA 5Present address: Laboratoire Interuniversitaire des Syste` mes Atmosphe´riques, UMR 7583 du CNRS, Universite´s Paris 7 et 12, Cre´teil, France *Corresponding author. E-mail:
[email protected] (Received 16 March 2011; revision accepted 06 October 2011) Abstract–Micrometeoroids with 100 and 200 lm size dominate the zodiacal cloud dust. Such samples can be studied as micrometeorites, after their passage through the Earth atmosphere, or as microxenoliths, i.e., submillimetric meteorite inclusions. Microxenoliths are samples of the zodiacal cloud dust present in the asteroid Main Belt hundreds of millions years ago. Carbonaceous microxenoliths represent the majority of observed microxenoliths. They have been studied in detail in howardites and H chondrites. We investigate the role of carbonaceous asteroids and Jupiter-family comets as carbonaceous microxenolith parent bodies. The probability of low velocity collisions of asteroidal and cometary micrometeoroids with selected asteroids is computed, starting from the micrometeoroid steady-state orbital distributions obtained by dynamical simulations.