1918.] Integrals Related to Lebesgue Integrals. 177
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theory of the Integral
THEORY OF THE INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as a treatise for a rigorous course introducing the ele- ments of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered. The text can be considered a sequel to the four chapters of the more elementary text THE CALCULUS INTEGRAL which can be downloaded from our web site. For advanced readers, however, the text is self-contained. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are free PDF files of all of our texts available for download as well as instructions on how to order trade paperback copies. We also allow access to the content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. COVER IMAGE: This mosaic of M31 merges 330 individual images taken by the Ultravio- let/Optical Telescope aboard NASA’s Swift spacecraft. It is the highest-resolution image of the galaxy ever recorded in the ultraviolet. The image shows a region 200,000 light-years wide and 100,000 light-years high (100 arcminutes by 50 arcminutes). Credit: NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP) —http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html Citation: Theory of the Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2013), [ISBN 1467924393 ] Date PDF file compiled: June 11, 2013 ISBN-13: 9781467924399 ISBN-10: 1467924393 CLASSICALREALANALYSIS.COM Preface The text is a self-contained account of integration theory on the real line. -
Densities for the Navier-Stokes Equations with Noise
Densities for the Navier–Stokes equations with noise Marco Romito DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI PISA LARGO BRUNO PONTECORVO 5 I–56127 PISA,ITALIA E-mail address: [email protected] URL: http://www.dm.unipi.it/pages/romito Leonardo Da Vinci, Royal Collection, Windsor, England, UK 2010 Mathematics Subject Classification. Primary 60G30, 35Q30, 35R60; Secondary 76D05, 76D06, 60H15, 60H30, 76M35 Key words and phrases. Density of laws, Navier–Stokes equations, stochastic partial differential equations, Malliavin calculus, Girsanov transformation, Besov spaces, Fokker–Planck equation ABSTRACT. One of the most important open problem for the Navier–Stokes equations concerns regularity of solutions. There is an extensive literature de- voted to the problem, both in the non–random and randomly forced case. Ex- istence of densities for the distribution of the solution is a probabilistic form of regularity and the course addresses some attempts at understanding, charac- terizing and proving existence of such mathematical objects. While the topic is somewhat specific, it offers the opportunity to introduce the mathematical theory of the Navier–Stokes equations, together with some of the most recent results, as well as a good selection of tools in stochastic analysis and in the theory of (stochastic) partial differential equations. In the first part of the course we give a quick introduction to the equations and discuss a few results in the literature related to densities and absolute con- tinuity. We then present four different methods to prove existence of a density with respect to the Lebesgue measure for the law of finite dimensional function- als of the solutions of the Navier-Stokes equations forced by Gaussian noise. -
Author Index ______
______AUTHOR INDEX ______ a space; Homology group; Infinite Arellano, E. Ramirez de see: Ramirez de form in logarithms; Siegel theorem; dimensional space; Local decompo Arellano, E. Transcendental number sition; Metrizable space; Pontryagin __A __ Argand, J .R. see: Arithmetic; Complex Ball, R. see: Helical calculus duality; Projection spectrum; Suslin number; Imaginary number Balusabramanian, R. see: Waring prob theorem; Topological space; Width Aristotle see: Modal logic; Space-time lem Abel, N.H. see: Abel differential Alexander, J.W. see: Alexander dual Arkhangel'skil, A.V. see: Feathering Banach, S. see: Area; Banach indica equation; Abel-Goncharov prob ity; Alexander invariants; Duality; Arno I'd, V.I. see: Composite function; trix; Banach-Mazur functional; Ba lem; Abel problem; Abel theorem; Homology group; Jordan theorem; Quasi-periodic motion nach space; Banach-Steinhaus the Abel transformation; Abelian group; Knot theory; Manifold; Pontryagin Arsenin, V. Ya. see: Descriptive set the orem; Completely-continuous oper Abelian integral; Abelian variety; duality; Reaction-diffusion equation; ory ator; Contracting-mapping princi Algebra; Algebraic equation; Alge Topology of imbeddings Artin, E. see: Abstract algebraic ge ple; Franklin system; Hahn-Banach braic function; Algebraic geometry; Alexandrov, A.B. see: Boundary prop ometry; Algebra; Algebraic number theorem; Lacunary system; Linear Binomial series; Convergence, types erties of analytic functions theory; Alternative rings and alge operator; Luzin N -property; Non of; Elliptic function; Finite group; Alling, N.L. see: Surreal numbers bras; Commutative algebra; Con differentiable function; Nuclear op Galois theory; Group; Interpola Almgren, F.J. see: Plateau problem, gruence modulo a prime number; erator; Open-mapping theorem; Or tion; Inversion of an elliptic integral; multi-dimensional Divisorial ideal; Foundations of ge thogonal series; Tonelli plane vari Jacobi elliptic functions; Liouville Alvarez-Gaume, L. -
Bibliographical and Historical Comments
Bibliographical and Historical Comments One gets a strange feeling having seen the same drawings as if drawn by the same hand in the works of four schol- ars that worked completely independently of each other. An involuntary thought comes that such a striking, myste- rious activity of mankind, lasting several thousand years, cannot be occasional and must have a certain goal. Having acknowledged this, we come by necessity to the question: what is this goal? I.R. Shafarevich. On some tendencies of the develop- ment of mathematics. However, also in my contacts with the American Shake- speare scholars I confined myself to the concrete problems of my research: dating, identification of prototypes, direc- tions of certain allusions. I avoided touching the problem of personality of the Great Bard, the “Shakespeare prob- lem”; neither did I hear those scholars discussing such a problem between themselves. I.M. Gililov. A play about William Shakespeare or the Mystery of the Great Phoenix. The extensive bibliography in this book covers, however, only a small portion of the existing immense literature on measure theory; in particular, many authors are represented by a minimal number of their most character- istic works. Guided by the proposed brief comments and this incomplete list, the reader, with help of modern electronic data-bases, can considerably en- large the bibliography. The list of books is more complete (although it cannot pretend to be absolutely complete). For the reader’s convenience, the bibli- ography includes the collected (or selected) works of A.D. Alexandrov [15], R. Baire [47], S. Banach [56], E. -
Theory of the Integral
THEORY OF THE INTEGRAL Brian S. Thomson Simon Fraser University CLASSICALREALANALYSIS.COM This text is intended as a treatise for a rigorous course introducing the ele- ments of integration theory on the real line. All of the important features of the Riemann integral, the Lebesgue integral, and the Henstock-Kurzweil integral are covered. The text can be considered a sequel to the four chapters of the more elementary text THE CALCULUS INTEGRAL which can be downloaded from our web site. For advanced readers, however, the text is self-contained. For further information on this title and others in the series visit our website. www.classicalrealanalysis.com There are free PDF files of all of our texts available for download as well as in- structions on how to order trade paperback copies. We also allow access to the content of our books on GOOGLE BOOKS and on the AMAZON Search Inside the Book feature. COVER IMAGE: This mosaic of M31 merges 330 individual images taken by the Ultraviolet/Optical Telescope aboard NASA’s Swift spacecraft. It is the highest-resolution image of the galaxy ever recorded in the ultraviolet. The image shows a region 200,000 light-years wide and 100,000 light- years high (100 arcminutes by 50 arcminutes). Credit: NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP) —http://www.nasa.gov/mission_pages/swift/bursts/uv_andromeda.html Citation: Theory of the Integral, Brian S. Thomson, ClassicalRealAnalysis.com (2012), [ISBN 1467924393 ] Date PDF file compiled: June 19, 2012 ISBN-13: 9781467924399 ISBN-10: 1467924393 CLASSICALREALANALYSIS.COM Preface The text is a self-contained account of integration theory on the real line. -
Differentiable Measures and the Malliavin Calculus
Mathematical Surveys and Monographs Volume 164 Differentiable Measures and the Malliavin Calculus Vladimir I. Bogachev American Mathematical Society http://dx.doi.org/10.1090/surv/164 Differentiable Measures Differentiable Measures and the Malliavin Calculus and the Malliavin Calculus Vladimir I. Bogachev Mathematical Surveys and Monographs Volume 164 Differentiable Measures and the Malliavin Calculus Vladimir I. Bogachev American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 28Cxx, 46Gxx, 58Bxx, 60Bxx, 60Hxx. For additional information and updates on this book, visit www.ams.org/bookpages/surv-164 Library of Congress Cataloging-in-Publication Data Bogachev, V. I. (Vladimir Igorevich), 1961– Differentiable measures and the Malliavin calculus / Vladimir I. Bogachev p. cm. – (Mathematical surveys and monographs ; v. 164) Includes bibliographical references and index. ISBN 978-0-8218-4993-4 (alk. paper) 1. Measure theory. 2. Theory of distributions (Functional analysis) 3. Sobolev spaces. 4. Malliavin calculus. I. Title. QA312.B638 2010 515.42–dc22 2010005829 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. -
Random Partial Differential Equations on Evolving Hypersurfaces
Freie Universitat¨ Berlin Random partial differential equations on evolving hypersurfaces Vorgelegt von Ana Djurdjevac Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universitat¨ Berlin Berlin, 2018 Betreuer: Prof. Dr. Ralf Kornhuber Freie Universitat¨ Berlin Fachbereich Mathematik und Informatik Gutachter: Prof. Dr. Ralf Kornhuber Prof. Dr. Charles Elliott (University of Warwick) Tag der Disputation: 27. November 2018 Selbststandigkeitserkl¨ arung¨ Hiermit erklare¨ ich, dass ich diese Arbeit selbststandig¨ verfasst und keine anderen als die angegebe- nen Hilfsmittel und Quellen verwendet habe. Ich erklare¨ weiterhin, dass ich die vorliegende Arbeit oder deren Inhalt nicht in einem fruheren¨ Promotionsverfahren eingereicht habe. Ana Djurdjevac Berlin, den 24.07.2018 iii Acknowledgments Firstly, I would like to express my sincere gratitude to my Ph.D. supervisor Ralf Kornhuber. He gave me the freedom and support that allowed me to broaden my knowledge, while at the same time he guided me during my graduate studies and helped me to stay on track. We had many helpful discussions and he provided a stimulating research environment. I would also like to express my gratitude to Charles M. Elliott for many helpful suggestions and insightful conversations, but also for the hard questions which motivated me to widen my research from various perspectives. My sincere thanks goes to Thomas Ranner for his numerous discussions. I was lucky to have Elias Pipping as my office mate. We had various mathematical blackboard discussions during which I learned to present my problems and solve most of them. He was my great teacher and friend.