Densities for the Navier–Stokes equations with noise Marco Romito DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DI PISA LARGO BRUNO PONTECORVO 5 I–56127 PISA,ITALIA E-mail address:
[email protected] URL: http://www.dm.unipi.it/pages/romito Leonardo Da Vinci, Royal Collection, Windsor, England, UK 2010 Mathematics Subject Classification. Primary 60G30, 35Q30, 35R60; Secondary 76D05, 76D06, 60H15, 60H30, 76M35 Key words and phrases. Density of laws, Navier–Stokes equations, stochastic partial differential equations, Malliavin calculus, Girsanov transformation, Besov spaces, Fokker–Planck equation ABSTRACT. One of the most important open problem for the Navier–Stokes equations concerns regularity of solutions. There is an extensive literature de- voted to the problem, both in the non–random and randomly forced case. Ex- istence of densities for the distribution of the solution is a probabilistic form of regularity and the course addresses some attempts at understanding, charac- terizing and proving existence of such mathematical objects. While the topic is somewhat specific, it offers the opportunity to introduce the mathematical theory of the Navier–Stokes equations, together with some of the most recent results, as well as a good selection of tools in stochastic analysis and in the theory of (stochastic) partial differential equations. In the first part of the course we give a quick introduction to the equations and discuss a few results in the literature related to densities and absolute con- tinuity. We then present four different methods to prove existence of a density with respect to the Lebesgue measure for the law of finite dimensional function- als of the solutions of the Navier-Stokes equations forced by Gaussian noise.