The Anti-Bacterial Iron-Restriction Defence Mechanisms of Egg White
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplementary Information Changes in the Plasma Proteome At
Supplementary Information Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease Julia Muenchhoff1, Anne Poljak1,2,3, Anbupalam Thalamuthu1, Veer B. Gupta4,5, Pratishtha Chatterjee4,5,6, Mark Raftery2, Colin L. Masters7, John C. Morris8,9,10, Randall J. Bateman8,9, Anne M. Fagan8,9, Ralph N. Martins4,5,6, Perminder S. Sachdev1,11,* Supplementary Figure S1. Ratios of proteins differentially abundant in asymptomatic carriers of PSEN1 and APP Dutch mutations. Mean ratios and standard deviations of plasma proteins from asymptomatic PSEN1 mutation carriers (PSEN1) and APP Dutch mutation carriers (APP) relative to reference masterpool as quantified by iTRAQ. Ratios that significantly differed are marked with asterisks (* p < 0.05; ** p < 0.01). C4A, complement C4-A; AZGP1, zinc-α-2-glycoprotein; HPX, hemopexin; PGLYPR2, N-acetylmuramoyl-L-alanine amidase isoform 2; α2AP, α-2-antiplasmin; APOL1, apolipoprotein L1; C1 inhibitor, plasma protease C1 inhibitor; ITIH2, inter-α-trypsin inhibitor heavy chain H2. 2 A) ADAD)CSF) ADAD)plasma) B) ADAD)CSF) ADAD)plasma) (Ringman)et)al)2015)) (current)study)) (Ringman)et)al)2015)) (current)study)) ATRN↓,%%AHSG↑% 32028% 49% %%%%%%%%HC2↑,%%ApoM↓% 24367% 31% 10083%% %%%%TBG↑,%%LUM↑% 24256% ApoC1↓↑% 16565% %%AMBP↑% 11738%%% SERPINA3↓↑% 24373% C6↓↑% ITIH2% 10574%% %%%%%%%CPN2↓%% ↓↑% %%%%%TTR↑% 11977% 10970% %SERPINF2↓↑% CFH↓% C5↑% CP↓↑% 16566% 11412%% 10127%% %%ITIH4↓↑% SerpinG1↓% 11967% %%ORM1↓↑% SerpinC1↓% 10612% %%%A1BG↑%%% %%%%FN1↓% 11461% %%%%ITIH1↑% C3↓↑% 11027% 19325% 10395%% %%%%%%HPR↓↑% HRG↓% %%% 13814%% 10338%% %%% %ApoA1 % %%%%%%%%%GSN↑% ↓↑ %%%%%%%%%%%%ApoD↓% 11385% C4BPA↓↑% 18976%% %%%%%%%%%%%%%%%%%ApoJ↓↑% 23266%%%% %%%%%%%%%%%%%%%%%%%%%%ApoA2↓↑% %%%%%%%%%%%%%%%%%%%%%%%%%%%%A2M↓↑% IGHM↑,%%GC↓↑,%%ApoB↓↑% 13769% % FGA↓↑,%%FGB↓↑,%%FGG↓↑% AFM↓↑,%%CFB↓↑,%% 19143%% ApoH↓↑,%%C4BPA↓↑% ApoA4↓↑%%% LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) LOAD/MCI)plasma) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) (Song)et)al)2014)) (Muenchhoff)et)al)2015)) Supplementary Figure S2. -
Egg Consumption and Human Health
nutrients Egg Consumption and Human Health Edited by Maria Luz Fernandez Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients Egg Consumption and Human Health Special Issue Editor Maria Luz Fernandez MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Maria Luz Fernandez University of Connecticut USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) in 2015–2016 (available at: http://www.mdpi.com/journal/nutrients/special issues/egg-consumption-human-health). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range. First Edition 2018 ISBN 978-3-03842-666-0 (Pbk) ISBN 978-3-03842-667-7 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents About the Special Issue Editor ...................................... v Preface to ”Egg Consumption and Human Health” .......................... vii Jose M. Miranda, Xaquin Anton, Celia Redondo-Valbuena, Paula Roca-Saavedra, Jose A. -
Tests for the Evaluation of Preterm Labor and Premature Rupture of Membranes
Medical Coverage Policy Effective Date ............................................. 7/15/2021 Next Review Date ....................................... 7/15/2022 Coverage Policy Number .................................. 0099 Tests for the Evaluation of Preterm Labor and Premature Rupture of Membranes Table of Contents Related Coverage Resources Overview .............................................................. 1 Recurrent Pregnancy Loss: Diagnosis and Treatment Coverage Policy ................................................... 1 Ultrasound in Pregnancy (including 3D, 4D and 5D General Background ............................................ 2 Ultrasound) Medicare Coverage Determinations .................. 13 Coding/Billing Information .................................. 13 References ........................................................ 15 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ -
Tangential Flow Filtration of Haptoglobin
Received: 10 January 2020 Revised: 7 April 2020 Accepted: 21 April 2020 DOI: 10.1002/btpr.3010 RESEARCH ARTICLE Tangential flow filtration of haptoglobin Ivan S. Pires | Andre F. Palmer William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State Abstract University, Columbus, Ohio Haptoglobin (Hp) is a plasma glycoprotein that scavenges cell-free hemoglobin (Hb). Correspondence Hp has various potential therapeutic applications, but it has been mainly studied for *Andre F. Palmer, William G. Lowrie treatment of acute hemolytic conditions that can arise from situations such as mas- Department of Chemical and Biomolecular Engineering, The Ohio State University, sive blood transfusion, infusion of stored red blood cells, severe burns, trauma, sepsis, 151 West Woodruff Ave, Columbus, OH radiation injury, and others. Therefore, Hp may also be beneficial during chronic 43210. Email: [email protected] hemolytic disease states such as hereditary spherocytosis, nocturnal hemoglobinuria, sickle-cell anemia, and malaria. Various methods have been developed to purify Hp Funding information National Cancer Institute, Grant/Award from plasma or plasma fractions. However, none of these methods have exploited Number: P30 CA016058; National Heart, the large molecular weight (MW) range distribution of Hp polymers to easily isolate Lung, and Blood Institute, Grant/Award Numbers: R01HL126945, R01HL138116, Hp from other plasma proteins. The present study used tangential flow filtration R56HL123015; National Institute of (TFF) to isolate polymeric Hp from plasma proteins using human Fraction IV (FIV) as Biomedical Imaging and Bioengineering, Grant/ Award Number: R01EB021926; NIH Office of the starting material. After removal of insoluble material from a suspension of FIV the Director, Grant/Award Number: S10 paste, the protein mixture was clarified on a 0.2 μm hollow fiber (HF) TFF filter. -
Life Technologies (India) Pvt. Ltd. 306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA)
Product Specification Sheet Chicken conalbumin (ovotransferrin) proteins Antibodies Cat # CECA15-S Rabbit Anti-Chicken conalbumin protein antiserum SIZE: 100 ul Cat # CECA15-C Chicken conalbumin protein control for Western blot SIZE: 100 ul Cat # CECA16-N Chicken conalbumin proteins SIZE: 10 mg liquid at 10 mg/ml in PBS 0.05% azide or in powder form. Allergy to chicken egg or proteins is one of the more frequent Reconstitute powder in PBS at 1-10 mg/ml. It can be used causes of food hypersensitivity in infants and young children. Both positive control for antibody #CECA15-S or for coating IgG and IgA class antibodies may be detected. Ovalbumin ELISA plates. intolerance has been implicated in a number of conditions affecting children. In particular, children with cystic fibrosis show elevated anti-ovalbumin antibodies. Ovalbumin antibodies have For Western blot +ve control (Cat # CECA15-C) is supplied also been noted in some forms of kidney disease. A relationship in SDS-PAGE sample buffer (reduced). Load 10 ul/lane of between food allergy and infantile autism has also been observed. #CECA15-C for good visibility with antibody Cat #CECA15- Children with insulin-dependent diabetes mellitus show an S. Store at –20oC in suitable size aliquots. SDS may enhanced immune response to both β-lactoglobulin and crystallize in cold conditions. It should redissolve by ovalbumin, a phenomenon that may be related to the development warming before taking it from the stock. It should be of the disease. Conditions related to ovalbumin intolerance usually heated once prior to loading on gels. If the product has resolve once egg and egg based foods have been withdrawn from been stored for several weeks, then it may be preferable to the patient's diet. -
Acute Phase Proteins and Biomarkers for Health in Chickens Emily
O'Reilly, Emily (2016) Acute phase proteins and biomarkers for health in chickens. PhD thesis http://theses.gla.ac.uk/7428/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] 1 Acute phase proteins and biomarkers for health in chickens Emily Louise O’Reilly B.Sc. (Hon), BVMS, M.Sc. Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Ph.D.) Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary and Life Sciences University of Glasgow February 2016 © E. L. O’Reilly, 2016 2 Abstract Acute phase proteins (APPs) are proteins synthesised predominantly in the liver, whose plasma concentrations increase (positive APP) or decrease (negative APP) as a result of infection, inflammation, trauma and tissue injury. They also change as a result of the introduction of immunogens such as bacterial lipopolysaccharide (LPS), turpentine and vaccination. While publications on APPs in chickens are numerous, the limited availability of anti-sera and commercial ELISAs has resulted in a lot of information on only a few APPs. -
Pathological Conditions Involving Extracellular Hemoglobin
Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for alpha(1)-Microglobulin Gram, Magnus; Allhorn, Maria; Bülow, Leif; Hansson, Stefan; Ley, David; Olsson, Martin L; Schmidtchen, Artur; Åkerström, Bo Published in: Antioxidants & Redox Signaling DOI: 10.1089/ars.2011.4282 2012 Link to publication Citation for published version (APA): Gram, M., Allhorn, M., Bülow, L., Hansson, S., Ley, D., Olsson, M. L., Schmidtchen, A., & Åkerström, B. (2012). Pathological Conditions Involving Extracellular Hemoglobin: Molecular Mechanisms, Clinical Significance, and Novel Therapeutic Opportunities for alpha(1)-Microglobulin. Antioxidants & Redox Signaling, 17(5), 813-846. https://doi.org/10.1089/ars.2011.4282 Total number of authors: 8 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Conalbumin More Resistant to Proteolysis and Ther- the Use Of
IRON AND PROTEIN KINETICS STUDIED BY MEANS OF DOUBLY LABELED HUMAN CRYSTALLINE TRANSFERRIN * BY JAY H. KATZ (From the Radioisotope and Medical Services of the Boston Veterans Administration Hospital, and the Dept. of Medicine, Boston University School of Medicine, Boston, Mass.) (Submitted for publication June 16, 1961; accepted August 10, 1961) Although proteins isotopically labeled with io- demonstrated that not only is the iron complex of dine have been used in tracer studies for some conalbumin more resistant to proteolysis and ther- years, interest has been mainly focused on their mal denaturation than the metal-free protein, but distribution and degradation in the body. While it that it is possible to maintain the iron-binding ca- is often possible to produce iodoproteins whose pacity of the former after extensive iodination. physical and chemical properties are not grossly Since both iron and transferrin levels are af- altered, the possible effects of iodination on the fected in a variety of disease states, a technique functional properties of such substances in a in which both can be followed simultaneously in physiologic setting have been less thoroughly in- vivo should prove valuable. Elmlinger and co- vestigated. That it is possible to trace label pro- workers (18) have reported in abstract form on teins without significantly reducing their biologi- the use of doubly labeled "iron-binding globulin" cal activities has been demonstrated in the case of in human subjects, but few details were given as insulin (2) and certain anterior pituitary hor- to the methods of preparation and the distribution mones (3, 4). of the two labels. -
Sites of Formation of the Serum Proteins Transferrin and Hemopexin
Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. Thorbecke, … , K. Cox, U. Muller-Eberhard J Clin Invest. 1973;52(3):725-731. https://doi.org/10.1172/JCI107234. Research Article Sites of synthesis of hemopexin and transferrin were determined by culturing various tissues of rabbits and monkeys in the presence of labeled amino acids. Labeling of the serum proteins was examined by means of autoradiographs of immunoelectrophoretic patterns as well as by precipitation in the test tubes employing immunospecific antisera. Good correlation was seen between the results obtained by the two different methods. The liver was found to be the only site of many tissues studied that synthesized hemopexin. Transferrin production was observed in the liver, submaxillary gland, lactating mammary gland, testis, and ovary. Find the latest version: https://jci.me/107234/pdf Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. THORBECKE, H. H. LiEM, S. KNIGHT, K. Cox, and U. MULLER-EBERHARD From the Department of Pathology, New York University School of Medicine, New York 10016, and the Department of Biochemistry, Scripps Clinic and Research Foundation, and Division of Pediatric Hematology, University of California at San Diego, La Jolla, California 92037 A B S T R A C T Sites of synthesis of hemopexin and in iron deficiency and the decrease in inflammatory re- transferrin were determined by culturing various tis- actions (8). sues of rabbits and monkeys in the presence of labeled Preliminary findings (9, 10) suggested that hemo- amino acids. Labeling of the serum proteins was ex- pexin is formed by the liver. -
Erature and Shear Thinning Behaviour, Suggesting That Ovomucin Can Be Used As a Thickener and Stabilizer in Various Applications
University of Alberta N-glycosylation and gelling properties of ovomucin from egg white by Marina Offengenden A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Food Science and Technology Department of Agricultural, Food and Nutritional Science ©Marina Offengenden Fall 2011 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Dedication To Ron, my shining sun on cloudy days Abstract Ovomucin is a bioactive egg white glycoprotein responsible for its gel-like properties and is believed to be involved in egg white thinning, a natural process that occurs during storage. Ovomucin is composed of two subunits: a carbohydrate-rich β-ovomucin and a carbohydrate-poor α-ovomucin. N- glycosylation of ovomucin was studied by nano LC ESI-MS, MS/MS and MALDI MS. Both proteins were N-glycosylated and site-occupancy of 18 potential N-glycosylation sites in α-ovomucin and two sites in β-ovomucin was determined. -
Tissue Distribution of Human Α1 -Microglobulin
Tissue Distribution of Human α1-Microglobulin Kimiteru Takagi, … , Toshihiko Shimoda, Toshio Shikata J Clin Invest. 1979;63(2):318-325. https://doi.org/10.1172/JCI109305. Research Article Human α1-microglobulin was isolated from the urine of patients with tubular proteinuria, and its molecular weight was established by sodium dodecyl sulfate-polyacrylamide gel electrophoresis at 33,000 daltons. The carbohydrate content was 21.7%. Anti-α1-microglobulin serum was prepared and observed to react monospecifically in gel diffusion to purified α1-microglobulin, as well as to normal human serum and urine. Sera from the domestic chicken, mouse, rat, rabbit, dog, calf, cow, goat, sheep, and horse, however, did not react to anti-α1-microglobulin serum in immunodiffusion. The lymphocyte culture supernate was found to contain α1-microglobulin. Both thymus-derived(T)- and bone marrow- derived(B)-lymphocyte culture media clearly displayed a specific precipitin line against anti-α1-microglobulin serum when tested with the Ouchterlony immunodiffusion method. The tissue distribution of α1-microglobulin was studied under immunofluorescence, and a positive staining was recognized on the lymphocyte surface. Identical staining patterns were noted on both T and B lymphocytes, though B lymphocytes took a more intense stain. It would thus seem quite possible that lymphocytes are the primary source of α1-microglobulin and that this is filtered through the glomerular basement membrane and partly reabsorbed by the renal tubules. This, then, would suggest the possibility -
(12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu Et Al
USOO8940687B2 (12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu et al. (45) Date of Patent: Jan. 27, 2015 (54) ANTIMICROBIAL ANGIOGENIN 5,286,487 A 2/1994 Vallee et al. COMPLEXES (ANGEX) AND USES THEREOF 7,074,7596,172,040 B2B1 7,1/2001 2006 Naidu 7,125,963 B2 10/2006 Naidu (71) Applicant: Naidu LP, Pomona, CA (US) 7,601,689 B2 10/2009 Naidu 7.956,031 B2 6, 2011 Naidu et al. (72) Inventors: A. Satyanarayan Naidu, Diamond Bar, 8,003,603 B2 8/2011 Naidu CA (US); A. G. Tezus Naidu, Santa 8,021,659 B2 9, 2011 Naidu et al. Ana, CA (US); A. G. Sreus Naidu, 8,309,080 B2 11/2012 Naidu et al. Santa Ana, CA (US 2007, 0141101 A1 6/2007 Nugent et al. anta Ana, CA (US) 2008/02540.18 A1 10, 2008 Naidu 2011/0200575 A1 8, 2011 Naidu et al. (73) Assignee: Naidu LP, Pomona, CA (US) 2011/0286986 A1 11/2011 Naidu et al. (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. González-Chávez et al. ((International Journal of Antimicrobial 21) Appl. No.: 13/861,236 Agents 33 (2009) 301.e1-301.e8).* (21) ppl. No.: 9 Acharya, et al. “Crystal Structure of Human Angiogenin Reveals the Structural Basis for its Functional Divergence from Ribonuclease.” (22) Filed: Apr. 11, 2013 Proc. Natl. Acad. Sci. USA, vol. 91, pp. 2915-2919, Apr. 1994. O O Hu, et al.