RESUMEN ABSTRACT Sedimentary Environment and Provenance Of

Total Page:16

File Type:pdf, Size:1020Kb

RESUMEN ABSTRACT Sedimentary Environment and Provenance Of Boletín de la Sociedad Geológica Mexicana / 73 (1) / A140920/ 2021 / 1 Sedimentary environment and provenance of sandstones from the Qadir member in the Nayband Formation, Tabas block, east-central Iran Ambiente sedimentario y procedencia de las areniscas del miembro Qadir de la Formación Nayband, bloque de Tabas, centro-este de Irán 1 1,* 1 1 Ehsan Zamaniyan , Mohammad Khanehbad , Reza Moussavi-Harami ,Asadollah Mahboubi ABSTRACT 1 Department of Geology, Faculty of Sci- ABSTRACT RESUMEN ence, Ferdowsi University of Mashhad, Azadi Square, Mashhad, Iran. Qadir Member of Nayband Formation, El miembro Qadir de la Formación Nayband, * Corresponding author: (M. Khanehbad) located in East of Central Iran, has ubicada en el este del centro de Irán, se ha [email protected] developed to a great extent. Investigation desarrollado en gran medida. La investigación of the lithofacies and sedimentary de la litofacies y el medio sedimentario resultó environment, resulted in identification en la identificación de los depósitos deltaicos of the deltaic and marine deposits. y marinos. Basado en evidencia de campo y Based on field evidence and facies fea- características de facies, Qadir Member consta tures, Qadir Member consists of two de dos litofacies, incluidas facies de carbonato lithofacies, including carbonate and y siliciclástico. Se identificó que las facies siliciclastic facies. The siliciclastic facies siliciclásticas tenían cuatro facies de arenisca, were identified as having four sandstone incluidas Sr, Sh, Sp, St, tres litofacies de grano facies including Sr, Sh, Sp, St, three fine- fino, incluidas FI, Fm, Fl (Sr) / Sr (FI) y una grained lithofacies, including FI, Fm, Fl facies de carbón. Además, con respecto al campo, (Sr) / Sr (FI) and one coal facies. Also, los estudios de laboratorio y la identificación de regarding the field, laboratory studies, litofacies, se identificaron la llanura costera, and identification of lithofacies, the deltaica (incluida la llanura deltaica, frente coastal plain, deltaic (including deltaic deltaico proximal, frente delta distal y prodelta) plain, proximal delta front, distal delta y ambientes marinos abiertos para el Miembro front, and prodelta) and open marine Qadir que se encuentra bajo el impacto. de las environments were identified for Qadir corrientes de marea. El índice de meteorización Member which is is under the impact química (71%) indicó condiciones semiáridas a of tidal currents. The chemical weath- semihúmedas y el trazado de los datos geoquími- How to cite this article: ering index (71%) indicated semi-arid cos mostró la procedencia del reciclaje y el mar- Zamaniyan, E., Khanehbad, M., Moussavi- to semi-humid conditions and plotting gen continental activo y, debido al índice químico Harami, R., Mahboubi, A., 2021, Sedimentary the geochemical data showed the prov- de alteración, la tasa de meteorización resultó ser environment and provenance of sandstones enance of re-cycling and active conti- bastante media. en lo alto. Los diagramas geo- from the Qadir member in the Nayband nental margin and because of Chemical químicos también mostraron una fuente probable Formation, Tabas block, east-central Iran: Index of Alteration, the weathering rate de rocas ígneas y sedimentarias intermedias. Las Boletín de la Sociedad Geológica Mexicana, was found to be rather medium to high. condiciones del margen continental activo para 73 (1), A140920. http://dx.doi.org/10.18268/ The geochemical diagrams also showed este depósito podrían sugerir la subducción de BSGM2021v73n1a140920 a probable source of the intermediate Neotethys bajo la placa de Irán y la actividad igneous and sedimentary rocks. The volcánica al final del Triásico, que coincidió active continental margin conditions for con la orogenia cimeria temprana en Alborz y el Manuscript received: March 16,2020 this deposit could suggest the Neotethys microcontinente iraní centro-este. Corrected manuscript received: August 25, 2020 Manuscript accepted: September 14, 2020 subduction under Iran’s plate and volca- nic activity at the end of Triassic, which Palabras clave: Formación coincided with the early Cimmerian Nayband, Triásico, Bloque Peer Reviewing under the responsibility of orogeny in Alborz and Central East Tabas, Ambiente sedimentario, Universidad Nacional Autónoma de México. Iranian Microcontinent. Procedencia. This is an open access article under the CC BY-NC-SA Keywords: Nayband Formation, license(https://creativecommons.org/licenses/by-nc-sa/4.0/) Triassic, Tabas Block, Sedimentary environment, Provenance. Sedimentary environment and provenance of sandstones from the Qadir member in Nayband Formation http://dx.doi.org/10.18268/BSGM2021v73n1a140920 2 / Boletín de la Sociedad Geológica Mexicana // 7373 (1)(1) // A140920/A140920 / 2021 2021 1. Introduction facies analyses, investigation of provenance (tec- tonic setting, source region, and paleoweathering Examination of sedimentary facies is one of the of the original region) has always been the center most important tools in identifying sedimentary of attention. Nowadays, the geochemical studies and the implementation of discriminant diagrams INTRODUCTION / GEOLOGICAL SETTING environments and interpreting sedimentation pro- cesses in different areas. Investigation of sedimen- have been used as an effective tool to identify the tary facies is a very good basis for sedimentology siliciclastic rocks. This study aims to investigate studies to interpret global sea-level changes (Geel, and interpret the sedimentary environment and 2000). One of the most important ways to identify provenance of siliciclastic deposits of the Qadir and determine facies and interpret the sedimentary Member of the Nayband Formation in the east of environment is the use of lithology data including Central Iran (Tabas Block) through the field stud- field studies, petrography, or geochemical analyses ies, petrography and modal analysis along with (Flugel, 2010). Accordingly, facies analysis iden- geochemical methods. Our results can be used for tifies sedimentological features that include grain reconstruction of the paleogeography of eastern size, texture, and sedimentary structures, while part of Central Iran during Late Triassic. facies associations characterize the alteration of sedimentation processes in the sedimentary envi- ronment (Aboumaria et al., 2009). Since lithofa- 2. Geological Setting cies are controlled and formed by sedimentation processes in sedimentary environments, the study The study area is located in the central part of and identification of lithofacies are a great help in Central East Iranian Microcontinent (CEIM). the interpretation of syn-sedimentation processes Tabas Basin is an intra-continental depression (Catuneanu, 2003). and a part of the CEIM witch has experienced Also, the relation of tectonic setting, prove- a complex structural history (Aghanabati, 2006). nance, and composition of siliciclastic rocks has The tectonic movements of Early Cimmerian at been investigated by many researchers (Dickin- the end of the Middle to Late Triassic time played son and Suczek, 1979; Bhatia and Crook, 1986; an important role in forming Iran’s geology in the Quanren et al., 2002; Tijani et al., 2010; Ozkan and Late Triassic and Jurassic. At this time, the shallow Ayaz‐Bozdag, 2011; Mishra and Sen, 2012; Zhang coastal-continental basins, in addition to siliciclas- et al., 2014; Fleming et al., 2016, Fathy et al., 2018; tic rocks, caused the coal-bearing sequences to be Sabbagh Bajestani et al., 2018; Iqbal et al., 2019; formed between the two tectonic occurrences of Zamaniyan et al., 2019), because the interpreta- Early Cimmerian to Middle Cimmerian orogeny tion of provenance could be used to identify the (Wilmsen et al., 2009a). After the occurrence of pre-sedimentary history and reconstruction as well Early Cimmerian orogeny, because of the sea as interpretation of initial erosion of the source level rise, Nayband Formation (Late Triassic) with rock up to the final deposition and burial history of the thickness of 3000 m was deposited in Cen- rocks (Weltje, 2002; Weltje and Von Eynatten, 2004; tral Iran’s sedimentary structural zone and the Khanehbad et al., 2012a, 2012b). Clastic modal type section has been measured and introduced analysis of sandstones is employed to identify the in south of the Nayband Mountain (the West of tectonic settings and the relationships of sandstone Nayband village; Aghanabati, 2006). The Late compositions and their provenance (Dickinson Triassic (Norian-Rhaetian) Nayband Formation is and Suczek, 1979; Dickinson et al., 1983; Dick- distributed over a large area in central and eastern inson, 1985; Critelli, 1993). The tectonic setting part of Iran (Seyed-Emami, 2003). Five members is considered to be one of the major controlling have been recognized at the type section of the factors for sedimentary compositions (Dickinson, formation (Bronifman et al., 1971; Kluyver et al., 1985). Accordingly, in addition to petrography and 1983; Aghanabati, 2006), which are from the Sedimentary environment and provenance of sandstones from the Qadir member in Nayband Formation http://dx.doi.org/10.18268/BSGM2021v73n1a140920 Boletín de la Sociedad Geológica Mexicana / 73 (1) / A140920/ 2021 / 3 base to the top: 1- Gelkan Member, 2- Bidestan fault in the west. The Qadir Member of the Nay- Member, 3- Howz-e-Sheikh Member, 4- Howz- band Formation in Parvadeh Coal Mine section e-Khan Member, and 5- Qadir Member. The (33° 00’ 21”N and 56° 48’ 40”E) is located about Nayband
Recommended publications
  • Phosphate Occurrence and Potential in the Region of Afghanistan, Including Parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan
    Phosphate Occurrence and Potential in the Region of Afghanistan, Including Parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan By G.J. Orris, Pamela Dunlap, and John C. Wallis With a section on geophysics by Jeff Wynn Open-File Report 2015–1121 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Orris, G.J., Dunlap, Pamela, and Wallis, J.C., 2015, Phosphate occurrence and potential in the region of Afghanistan, including parts of China, Iran, Pakistan, Tajikistan, Turkmenistan, and Uzbekistan, with a section on geophysics by Jeff Wynn: U.S. Geological Survey Open-File Report 2015-1121, 70 p., http://dx.doi.org/10.3133/ofr20151121. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents
    [Show full text]
  • 7. Rickards, Wright, Hamedi.Pdf
    Records of the Western AustralIan Museum Supplement No. 58: 103-122 (2000). Late Ordovician and Early Silurian graptolites from southern Iran R.B. Rickardsl, A.J. Wright2 and M.A. HamedP I Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3 EQ, England 1 School of Geosciences, University of Wollongong, Wollongong, N.s.W. 2522, Australia "Department of Geology, Tarbiet Modares University, Tehran, Iran Abstract - Graptolites are described for the first time from the Faraghun mountains (Kuh-e-Faraghun) and the Gahkum mountains (Kuh-e-Gahkum) on the northern edge of the southeast part of the Zagros Mountains, Iran. 38 taxa are recorded, including 4 Ordovician and 34 Silurian species; the latter are the first Silurian graptolites described from Iran. Ashgill (Late Ordovician) graptolite assemblages from Kuh-e-Faraghun include: Persclllptograptlls persculptlls and Orthograptlls amplexicalllis, indicating a persculptlls Biozone age; and Orthograptus amplexicalllis abbreviatlls, indicating the latest Ordovician anceps Biozone. Kuh-e-Faraghun Early Silurian faunas include representatives of the L1andovery leptotheca Biozone; another assemblage, including Monograptlls convollltus and Pselldorthograptlls inopinatlls, indicates the slightly younger L1andovery convollltlls Biozone. Graptolites from Kuh-e-Gahkum comprise a rich Stimlllograptlls sedgwickii assemblage, indicating a slightly higher L1andovery level again (sedgwickii Biozone); a convollltlls Biozone fauna is also probably represented in our collections. INTRODUCTION the Kerman district, East-Central Iran; the fauna Late Ordovician and Early Silurian graptolites, they reported is that described in part from the from two areas in the northern part of the Zagros Katkoyeh Formation by Rickards et al. (1994), now belt (Figures 1, 2, 3), are described for the first time being fully described on the basis of collections from Iran.
    [Show full text]
  • Central Iran): Stratigraphy and Paleoenvironments
    Late Triassic and Early Cretaceous sedimentary sequences of the northern Isfahan Province 367 Boletín de la Sociedad GeolóGica Mexicana VoluMen 61, núM. 3, 2009, p. 367-374 D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Late Triassic and Early Cretaceous sedimentary sequences of the northern Isfahan Province (Central Iran): stratigraphy and paleoenvironments Maryam Mannani1,*, Mehdi Yazdi1 1 Department of Geology, University of Isfahan, Isfahan, Iran. * [email protected] Abstract This research gives a general outline of the Upper Triassic and Lower Cretaceous sequences cropping out north of Isfahan, Central Iran. Upper Triassic Nayband Formation subdivided into the Gelkan, Bidestan, Howz-e-Sheikh, Howz-e Khan and Qadir members. Two biostromal levels are documented in the Bidestan and Howz-e-Khan members. Due to a suitable condition in Late Triassic time including light, oxygen and nutrient, fauna such as: corals, sponges, hydrozoas, bivalves, gastropods, brachiopods, echinoderms and Dicroidium were flourished in water and flora on land. The first appearance of Heterastridium spp. in level of the Bidestan Member is apparently the first occurrence of this taxon in Central Iran. Qadir Member has several key beds, one key bed with land flora Cla- thropteris spp., and three key beds with bivalve Indopecten glabra, dating as Rhaetian Stage. An angular unconformity can be traced between Rhaetian sediments and red conglomerates and sandstones of Lower Cretaceous Sequences in Isfahan area which encompasses all Jurassic rocks. This gap can be related to Cimmerian tectonic phase.
    [Show full text]
  • Microfacies and Sedimentary Environments of Gurpi and Pabdeh Formations in Southwest of Iran
    American Journal of Applied Sciences 6 (7): 1295-1300, 2009 ISSN 1546-9239 © 2009 Science Publications Microfacies and Sedimentary Environments of Gurpi and Pabdeh Formations in Southwest of Iran Mohammad Bahrami Department of Geology, University of Payam-e-Noor, Shiraz, Iran Abstract: Problem statement: The Upper Cretaceous Gurpi and lower Tertiary Pabdeh formations as units of folded Zagros Zone were studied in three different regions (Tang-e-Abolhiat, Tang-e-Zanjiran and Maharloo) in Fars Province, Iran. Approach: Gurpi formation consisted of thin to medium sized layers of gray marl and marlstone interbedded with thin layers of argillaceous limestone and shale. The dominant microfacies in this formation biomicrite; Index species of Globotruncana give the age of the Formation from lower companion to upper Maastrichtian. Pabdeh formation consisted of bluish gray, thin to medium sized layers of shale and marl and interlayers of argillaceous limestones with purple shales and thin cherty beds at lower part, dark gray shales and marls with interlayers of argillaceous limestones in the middle andalternative layers of thinly bedded argillaceous limestone, shale and marl at the upper part. The dominant microfacies are biomicrite. Index species of Globorotalia and Hantkenina give the age of formation from upper Paleocene to Eocene. Results: The sedimentary environment of both formations is a bathymetrical carbonate floored basin (deep shelf or basin margin) which had deposited its facies in transgressive stage. The contact between the two formations is of disconformity type. In Tang-e-Abolhiat it lies at the base of purple shale. In this region and also in Tang-e-Zanjiran and Maharloo, in addition to recognition of Globorotalia velascoensis , which was attributed to lower part of the Pabdeh formation, a glauconitic- phosphatic bed separates the two formations.
    [Show full text]
  • Patricia Vickers-Rich1, Sara Soleimani2, Farnoosh Farjandi3, Mehdi Zand4, Ulf Linnemann5, Mandy Hofmann5, Thomas H
    New Discoveries in the Neoproterozoic of Iran Patricia Vickers-Rich1, Sara Soleimani2, Farnoosh Farjandi3, Mehdi Zand4, Ulf Linnemann5, Mandy Hofmann5, Thomas H. Rich1,6, Siobhan Wilson7 and Raymond Cas8 1. Faculty of Sci, Eng & Tech, Swinburne, Melbourne, Vic, Australia, [email protected]; School of EAE, Monash University, Melbourne, Vic, Australia, [email protected], 2. Paleontology Department, Geol Survey of Iran, Tehran, Iran, 3. Department of Geochemical Exploration, Geological Survey of Iran, Tehran, Iran, 4. Geology Department, Bafq Mining Company, Koushk Mine, Yazd, Iran, 5. Senckenberg Naturhistorische Sammlungen, Dresden, Museum fuer Mineralogie und Geologie, Sektion Geochronologie, Koenigsbruecker Landstrasse 159, D-01109, Dresden, Germany, 6. Museum Victoria, Exhibition Gardens, P. O. Box 666, Melbourne, Victoria, 3001 Australia, 7. University of Alberta, Earth & Atmospheric Science, Edmonton, Alberta, Canada, 8. School of EAE, Monash University, Melbourne, Vic, Australia Introduction During late 2015 new discoveries of Neoproterozoic metazoans were made in the Bafq Region of Central Iran by a joint Iranian-Australian expedition, hosted by the Iranian Geological Survey and the International Geological Program Project IGCP587. Previous to the newly discovered material supposed Vendian/Ediacaran metazoans including Permoria, Beltanella, and forms similar to Dickinsonia, Spriggina and Medusites (Stocklin, 1968), a supposed medusiod - Persimedusites chahgazensis (Hahn & Pflug 1980) along with Charnia (Glaessner, 1984) had been reported, but not well documented (Fedonkin et al., 2007). The new material both questions the identity of the previously described material and adds new taxa to the list of late Precambrian metazoans previously reported, increasing the biodiversity for this region. Pervious discoveries of Precambrian metazoans in Iran The first report of possible Neoproterozoic (Infracambrian) metazoan fossils from Iran was Stocklin (1968, 1972).
    [Show full text]
  • The Economic Geology of Iran Mineral Deposits and Natural Resources Springer Geology
    Springer Geology Mansour Ghorbani The Economic Geology of Iran Mineral Deposits and Natural Resources Springer Geology For further volumes: http://www.springer.com/series/10172 Mansour Ghorbani The Economic Geology of Iran Mineral Deposits and Natural Resources Mansour Ghorbani Faculty of Geoscience Shahid Beheshti University Tehran , Iran ISBN 978-94-007-5624-3 ISBN 978-94-007-5625-0 (eBook) DOI 10.1007/978-94-007-5625-0 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012951116 © Springer Science+Business Media Dordrecht 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • Fasciculate Kleopatrinid Corals from the Bashkirian (Late Carboniferous) of Sardar Formation (Ozbak-Kuh Mountains, East-Central Iran)
    Rev. bras. paleontol. 19(2):151-166, Maio/Agosto 2016 © 2016 by the Sociedade Brasileira de Paleontologia doi: 10.4072/rbp.2016.2.01 FASCICULATE KLEOPATRINID CORALS FROM THE BASHKIRIAN (LATE CARBONIFEROUS) OF SARDAR FORMATION (OZBAK-KUH MOUNTAINS, EAST-CENTRAL IRAN) MAHDI BADPA Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. [email protected] EDOUARD POTY Paléontologie animale et humaine, Département de Géologie, Université de Liège, Bât.B18, Allée du 6 Août, Sart Tilman, 4000-Liège, Belgium. [email protected] ALIREZA ASHOURI Department of Geology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran. [email protected] KAVEH KHAKSAR Department of Water & Soil, Imam Khomeini High Education Center, Institute of Scientific Applied Higher Education of Jihad-e-Agriculture, Karaj, Iran. [email protected] ABSTRACT – In the East-Central Iran, the Sardar Formation (upper Visean–Moscovian) consists of shallow-water limestone with intercalations of shale containing rugose corals, tabulate corals and brachiopods. Ten sections were sampled in the Ozbak-kuh Mountains, from north to south. Among the rugose corals, an assemblage of fasciculate Kleopatrinidae has been collected. The latter contains the species: Paraheritschioides antoni antoni, P. antoni minor, P. gracilis and two new species for the genera Fomichevella and Heintzella. Heintzella is described from Iran for the first time. However, its age, as determined by conodonts and foraminifers, is early to middle Bashkirian (early late Carboniferous). The most similar, time-equivalent faunal associations are that of the Ellesmere Island, Sverdrup Basin in Arctic Canada, Alexander terrane and Brooks Range in southeastern Alaska and eastern Klamath terrane in northern California, where similar tropical warm water conditions have been identified during the Bashkirian in the northern hemisphere.
    [Show full text]
  • Evolution of the Zagros Suture Zone, Southern Iran
    SIMON J. HAYNES Department of Geology, Pahlavi University, Shiraz, Iran HENRY MCQUILLAN Oil Service Company of Iran (Private Company), P. O. Box 1065, Tehran, Iran Evolution of the Zagros Suture Zone, Southern Iran ABSTRACT lations of the sediments and the petrology amphibolites, and gneisses. In the south- of the ultramafic and metamorphic rocks in eastern part of the Sirjan high, the gneisses In the light of plate tectonic theory, a the neighborhood of Neyriz has allowed us contain large kyanite crystals. model for the evolution of the Zagros to develop a revised model for the evolution The metamorphic basement is overlain mountain system in southern Iran is of the Zagros orogen based on current by Paleozoic sediments north of the study proposed. A suture zone, which lies between theories of plate tectonics. area in the vicinity of Kerman and in the Arabian and Persian plates, comprises We consider that the Zagros mountain scattered localities north and west of Sirjan the Zagros mountain range. The suture zone chain and the region immediately to the (Stocklin, 1968). To the west, the basement is divisible into five segments, each of which north represent a still active suture zone is overlain by Permian-Triassic continental reflects the various lithologic and tectonic between the Arabian and Persian plates that sediments and Jurassic limestone that passes environments associated with stages in the was formed by the interaction of an southward into clastics. These are overlain collision of the Arabian and Persian Atlantic-type margin (the Arabian plate) by a fairly continuous line of Cretaceous continental masses.
    [Show full text]
  • Recent Tectonic Activity of Iran Deduced from Young Magmatism Evidences
    Recent tectonic activity of Iran deduced from young magmatism evidences Jamshid AHMADIAN, Mamoru MURATA, Alireza NADIMI Hiroaki OZAWA and Takeshi KOZAI 鳴門教育大学学校教育研究紀要 第28号 Bulletin of Center for Collaboration in Community Naruto University of Education No.28, Feb., 2014 鳴門教育大学学校教育研究紀要 28,23−38 原著論文 Recent tectonic activity of Iran deduced from young magmatism evidences Jamshid AHMADIAN a, b,Mamoru MURATA c,Alireza NADIMI d, Hiroaki OZAWA e and Takeshi KOZAIc a- Department of Geology, Payame Noor University, P.O. Box 19395-3697, Tehran, IRAN b- Center for collaboration in community, Naruto University of Education, Naruto, Tokushima, 772-8502, Japan c- Natural Science Education (Science), Naruto University of Education, Naruto, Tokushima, 772-8502, Japan d- Department of Geology, Faculty of Science, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran e- International Cooperation Center for the Teacher Education and Training, Naruto, Tokushima, 772-8502, Japan Abstract:Closure of the Neo-Tethys Ocean during Mesozoic and Cenozoic is one of the most important stages of tectonic evolution of Iranian Plateau. Subduction of the oceanic lithosphere under the southwestern border of Central Iran, caused plutonic and volcanic activity between the Jurassic and Quaternary within and adjacent to the southern margin of Central Iran. During closure of the ocean, two major subduction-related arcs trending parallel to the Main Zagros Thrust, the Mesozoic Sanandaj-Sirjan (SSMA) and the Tertiary to Plio- Quaternary Urumieh-Dokhtar magmatic arcs (UDMA) have been formed. Quaternary volcanic activity, generated by a complex combination of geodynamic and petrogenetic processes associated with the evolution of the Alpine-Himalayan collision belt. This volcanic activity has produced both andesitic stratovolcanoes and fields of basaltic cones and plateau lavas.
    [Show full text]
  • International Workshop on Tethyan Orogenesis and Metallogeny in Asia and Cooperation Among
    International Workshop on Tethyan Orogenesis and Metallogeny in Asia and Cooperation among Institutions of Higher Education Extended Abstract Volume Edited by Changqian Ma, Paul T. Robinson and Yunlong He Mafic dykes in Paleo-Tethyan granitoid pluton (East Kunlun, Northern Qinghai-Tibet Plateau) China University of Geosciences 11th - 16th October, 2014 Wuhan, China Organization Structure of Workshop Scientific Committee Chair: Jingsui Yang (China) Co-Chairs: Erdin Bozkurt (Turkey) Jianwei Li (China) Paul T. Robinson (China) Qinglai Feng (China) Hassan Mirnejad (Iran) Olga Sayfulloeva (Tajikistan) Members: Sajjad Ahmed (Pakistan) Roger Mason (China) Jonathan Aitchison (Australia) Lianfu Mei (China) Honghan Chen (China) U.ur Ka.an Tekin (Turkey) Chongpan Chonglakmani (Thailand) Nguyen Van Vuong (Vietnam) Farahnaz Daliran (Germany) Guocan Wang (China) Mohammad Naim Eqrar (Afghanistan) Guoqing Wang (China) Mohammad Hassan Karimpour (Iran) Jiasheng Wang (China) Xinbiao Lv (China) Organizing Committee Chair: Changqian Ma (China) Co-chairs: Qinglai Feng (China) Lailin Sun (China) Hongtao Su (China) Lijun Zhang (China) Members: Myo Min (Myanmar) Mongkol Udchachon (Thailand) Zhenbing She (China) Yunlong He (China) Sihai Wang (China) Hui Wang (China) Dan Wu (China) Sponsors China University of Geosciences (CUG), Wuhan National Natural Science Foundation of China, Beijing State Key Laboratory of Geologcial Processes and Mineral Resources, CUG, Wuhan State Key Laboratory of Continental Tectonics and Dynamics, CAGS, Beijing Contents Basaltic flows in the Laki Range of the Lower Indus Basin, Sindh, Pakistan: evidence for northwestern extension of the Deccan traps .................................................................................. 1 Muhammad Hassan Agheem, Qasim Jan, Sarfraz Hussain Solangi, Amanullah Laghari, Humaira Dars Petrogenesis of Late Carboniferous gabbro east of Misho, Northwest Iran, based on geochemical and Sr–Nd isotopic data ...............................................................................................................
    [Show full text]
  • Origin and Formational History of Some Pb-Zn Deposits from Alborz and Central Iran: Pb Isotope Constraints
    International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: http://www.tandfonline.com/loi/tigr20 Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran: Pb isotope constraints Hassan Mirnejad, Antonio Simonetti & Fatemeh Molasalehi To cite this article: Hassan Mirnejad, Antonio Simonetti & Fatemeh Molasalehi (2015) Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran: Pb isotope constraints, International Geology Review, 57:4, 463-471, DOI: 10.1080/00206814.2015.1013510 To link to this article: http://dx.doi.org/10.1080/00206814.2015.1013510 Published online: 19 Feb 2015. Submit your article to this journal Article views: 101 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tigr20 Download by: [University of Notre Dame] Date: 15 September 2016, At: 06:01 International Geology Review, 2015 Vol. 57, No. 4, 463–471, http://dx.doi.org/10.1080/00206814.2015.1013510 Origin and formational history of some Pb-Zn deposits from Alborz and Central Iran: Pb isotope constraints Hassan Mirnejada*, Antonio Simonettib,c and Fatemeh Molasalehia aDepartment of Geology, Faculty of Science, University of Tehran, Tehran, Iran; bDepartment of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada; cDepartment of Civil Engineering & Geological Sciences, University of Notre Dame, Notre Dame, USA (Received 29 September 2014; accepted 27 January 2015) Several Pb-Zn deposits and occurrences within Iran are hosted by Mesozoic–Tertiary-aged sedimentary and igneous rocks. This study reports new Pb isotope analyses for galena from 14 Pb-Zn deposits in the Alborz and Central Iran structural zones.
    [Show full text]
  • Structural Evolution of the Kopet Dagh Fold-And-Thrust Belt
    *Manuscript Click here to view linked References 1 2 3 4 5 6 7 8 9 Structural evolution of the Kopet Dagh fold-and-thrust 10 11 belt (NE Iran) and interactions with the South Caspian 12 13 Sea Basin and Amu Darya Basin 14 15 a,b c d 16 Alexandra M. M. Robert ,JeanLetouzey,MohammadA.Kavoosi, 17 Sharham Sherkatid, Carla M¨ullerc,JaumeVerg´esb, Abdullah Agababaid 18 19 aG´eosciences Environnement Toulouse (GET), Observatoire de Midi-Pyr´en´ees, 20 Universit´ede Toulouse, CNRS, IRD, F-31400 Toulouse, France, 21 ([email protected]) 22 bGroup of Dynamics of the Lithosphere (GDL), Institute of Earth Sciences Jaume 23 Almera, ICTJA-CSIC, c Llu´ıs Sol´ei Sabaris s/n, 08028 Barcelona, Spain 24 cInstitut des Sciences de la Terre Paris (iSTeP), Sorbonne Universit´es, UPMC Univ 25 Paris 06, UMR 7193, F-75005 Paris, France 26 d National Iranian Oil Company (NIOC), Exploration, Yaghma alley, Jomhuri ave, 27 28 Tehran, Iran 29 30 31 32 33 Abstract 34 35 We present a detailed stratigraphic and structural study of the Kopet Dagh 36 37 fold-and-thrust belt in NE Iran, which is an investigation of the complex 38 39 polyphased tectonic history of this belt and its links with the adjacentSouth 40 41 Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large 42 43 amount of 2D and 3D seismic data, borehole data and more than 150 new 44 45 biostratigaphic datings, a new detailed biostratigraphic chart and 4 main re- 46 47 gional cross-sections illustrate the importance of lateral facies variations and 48 49 structural inheritance in the present-day structure of the belt.
    [Show full text]