Herpetological Study for Feronia, Lokutu Oil Palm Plantation High

Total Page:16

File Type:pdf, Size:1020Kb

Herpetological Study for Feronia, Lokutu Oil Palm Plantation High Herpetological Study for Feronia, Lokutu Oil Palm Plantation High Conservation Value Assessment Project Number: CDC2950 Prepared for: Feronia PHC March 2015 _______________________________________________________________________________________ Digby Wells and Associates (South Africa) (Pty) Ltd (Subsidiary of Digby Wells & Associates (Pty) Ltd). Co. Reg. No. 2010/008577/07. Fern Isle, Section 10, 359 Pretoria Ave Randburg Private Bag X10046, Randburg, 2125, South Africa Tel: +27 11 789 9495, Fax: +27 11 789 9498, [email protected], www.digbywells.com _______________________________________________________________________________________ Directors: AR Wilke, DJ Otto, GB Beringer, LF Koeslag, AJ Reynolds (Chairman) (British)*, J Leaver*, GE Trusler (C.E.O) *Non-Executive _______________________________________________________________________________________ This document has been prepared by Digby Wells Environmental. Report Type: High Conservation Value Assessment Herpetological Study Study for Feronia, Lokutu Oil Palm Project Name: Plantation Project Code: CDC2950 Name Responsibility Signature Date Caitlin O’Connor Report Writer March 2015 Phil Patton Pr.Sci.Nat. Report Reviewer April 2015 Brett Coutts Report Reviewer May 2015 (Cand.Sci. Nat) This report is provided solely for the purposes set out in it and may not, in whole or in part, be used for any other purpose without Digby Wells Environmental prior written consent. Digby Wells Environmental i High Conservation Value Assessment Herpetological Study Study for Feronia, Lokutu Oil Palm Plantation CDC2950 EXECUTIVE SUMMARY The Democratic Republic of Congo is one of the most important countries in Africa for biodiversity conservation. It has the highest number of species for almost all groups of organisms with the exception of plants in which it is second to South Africa. There are a number of species, which are extremely important, and in critical danger, and others, which are unknown to science. High Conservation Value Assessments are critical to ensure whether Oil Palm plantations could have a negative impact. The DRC has a number of rural communities who depend largely on the forest resources and it is important to identify the resources that are used and to define the degree of dependence on these resources (HCV, 2014). Habitat loss is the most significant environmental driver threatening biodiversity. Extensive deforestation has not only resulted in the large-scale loss of forest cover, but has also caused the fragmentation of the existing remaining habitat into numerous isolated patches. This herpetological study forms part of a High Conservation Value (HCV) assessment. As a result the study focuses predominantly on Herpetological habitat assessment, expected numbers of species and the likely occurrence of herpetological Species of Special Concern. This herpetological study forms part of a High Conservation Value assessment. As a result the study focuses predominantly on Herpetological habitat assessment, expected numbers of species and the likely occurrence of herpetological Species of Special Concern. The Lokutu Feronia Oil Palm Plantation lies in the Northern DRC, within the province of Orientale. The area lies within the Central Congolian Lowland Forest. The vegetation consists of rainforest vegetation, which straddles the Congo River and its tributaries. This habitat type is regarded to be Vulnerable. Lokutu Oil Palm Plantation is located on the Southern Bank of the Congo River. The project area covers approximately 63500 HA. The findings of the study present the Lokutu Concession to be moderate to high in species richness and habitat provision in terms of herpetology. Natural, Secondary forest (especially with streams), Swamp Forest and Riverine Forest Habitats are regarded to have the highest ecological sensitivity due to the moderate to high in species richness and habitat provision. These areas are all regarded to be important to conserve for herpetological species. Digby Wells Environmental ii High Conservation Value Assessment Herpetological Study Study for Feronia, Lokutu Oil Palm Plantation CDC2950 TABLE OF CONTENTS 1 Introduction ........................................................................................................................... 1 2 Site ....................................................................................................................................... 2 2.1.1 Geography ......................................................................................................... 2 2.1.2 Climate ............................................................................................................... 5 3 Methodology ......................................................................................................................... 5 3.1 Baseline assessment ................................................................................................ 5 3.2 Field Survey .............................................................................................................. 5 4 Findings ................................................................................................................................ 8 4.1 Desktop .................................................................................................................... 8 4.1.1 Reptiles .............................................................................................................. 8 4.1.2 Amphibians ...................................................................................................... 11 4.2 Field Survey ............................................................................................................ 13 4.2.1 Reptile field survey findings .............................................................................. 13 4.2.2 Amphibians ...................................................................................................... 14 4.3 Habitat Types ......................................................................................................... 15 4.3.1 Natural Forest Habitat ...................................................................................... 16 4.3.2 Secondary forest habitat ................................................................................... 17 4.3.3 Swamp Forest Habitat ...................................................................................... 18 4.3.4 Riverine Forest and Open Water ...................................................................... 20 4.3.5 Plantation with termite mound habitat ............................................................... 21 4.3.6 Village .............................................................................................................. 22 5 Discussion .......................................................................................................................... 23 6 Conclusion .......................................................................................................................... 24 7 References ......................................................................................................................... 25 Digby Wells Environmental iii High Conservation Value Assessment Herpetological Study Study for Feronia, Lokutu Oil Palm Plantation CDC2950 LIST OF FIGURES Figure 1: Regional setting of Lokutu Oil Palm Concession, Democratic Republic of Congo .. 3 Figure 2: Lokutu Oil Palm Concession, Democratic Republic of Congo ................................ 4 Figure 3: Transects and sample sites within the Lokutu Oil Palm Concession, Democratic Republic of Congo ................................................................................................................ 7 Figure 4: Expected Species within Lokutu Concession; A. Pygmy Chameleon (Rhampholeon spectrum) B. Nile Crocodile (Crocodylus niloticus) C. Elongate Quill-snouted Snake (Xenocalamus mechowii) D. Günther's Green Tree Snake (Dipsadoboa unicolor) E. Lamprophis fuliginosus F. Zygaspis quadrifrons .................................................................... 9 Figure 5: Amphibian species expected to occur within the Lokutu concession A: African Foam nest Tree Frog (Chiromantis rufescens) B: Endemic Congo Banana Frog (Afrixalus equatorialis) C: (Leptopelis calcaratus) D: Mascarene Grass Frog (Ptychadena mascariensis) Expected amphibian Species of Special Concern ........................................ 12 Figure 6: Reptile species identified during the field survey at Lokutu Oil Palm Plantation, Feronia, DRC: A: Black-necked Tree Agama (Agama cyanogaster) B. Wolf snake species C: Tropical House Gekko (Hemidactylus mabouia) .................................................................. 14 Figure 7: Amphibian Species Identified During the Field Survey of the Lokutu Concession.A. African common toad (Amietophrynus regularis), B. African Gutteral Toad (Amietophrynus gutturalis) ............................................................................................................................ 15 Figure 8: Natural Forest Habitat: A. Closed canopy of natural forest B. Leaf litter, C. and D Shallow Sand substrate stream with logs and vegetation, deeper sand substrate stream with thick leaf litter floor .............................................................................................................. 17 Figure 9: Secondary Forest Habitat: A and B. Opened canopy as a result of tree clearing .. 18 Figure 10: Swamp Forest Habitat A. and B. Permanent
Recommended publications
  • Note Sur Une Collection De Serpents Du Congo Avec Description D'une Espèce Nouvelle
    .I ', * I L Note sur une collection de serpents du Congo avec description d'une espèce nouvelle Jean François WE'& Rolande ROUX-ESTEVE Trape, J. F. & Roux - Estève, R. 1990. Note sur une collection de serpents du Congo avec description d'une espèce nouvelle. J. Afr. Zool. 104 : 375-383. On a collection of snakesfrom the Congo, &th description of a neu, species.- Philothamnus , hughest nsp. is described from Gangahgolo, Congo. This new species ranges from Cameroun to Gabon, Central African Republic and North Zaïre; it was previously mistaken for Phoplogaster.Six species are recorded for the fmt time in the Congo : Rhino&ohlops caecus, Chamaelycus christyt, Chamaelycus parkeri, Philothamnus nitidus loveridgei, Aparallactus modestus ubang- and Paranaja multifadata anomala. Specimens of two rare species are described: Miodon fulvicollts and Bouletgerlna christyt. Philothamnus hughest n. sp. est décrit de Gangalingolo au Congo. Cette espèce était précédemment confondue avec P. hoplogaster. Son aire de répartition géographique s' étend du Cameroun au Gabon, B la RCA et au Nord du Zaïre. Si espèces sont rapportées pour la première fois du Congo: Rhinotyphlops caecus, Chamaelycuschristyf, Chamaelycusparkeri, Philothamnus nitidus loueridgel, Aparallactus modestus ubangensis et Paranaja multifasclata anomala. Des exemplaires de deux espèces rares sont décrits : Miodon .f2luicollis et Boulengerina christyt. Key words : Snakes, Africa, Congo, Philothamnus hughest. J. F. Tra e, ORSTOM, B.P.1386,Dakar, Sénégal. - R. Roux-Estève, Muséum National d'Histoire Natureg, 25 rue Cuvier, F-75005 Paris, France. INTRODUCI'ION MNHP 1987-1670: Dimonika (Ma- yombe), Q . Capturé le 1-6-1981. Nous présentons dans cette note une description des spécimens les plus Longueur totale: 340 mm, longueur remarquables d'une collection de 750 de la queue: 5 mm.
    [Show full text]
  • Morphological and Cytological Observations on Iwo Opalinid Endocommensals of Acanthixalus Spinosus (Amphibia, Anura)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/238037392 Morphological and cytological observations on two opalinid endocommensals of Acanthixalus spinosus (Amphibia, Anura) Article in Canadian Journal of Zoology · February 2011 DOI: 10.1139/z96-171 CITATIONS READS 2 133 3 authors, including: Félix-Marie Affa'a RAPPAUC 21 PUBLICATIONS 98 CITATIONS SEE PROFILE All content following this page was uploaded by Félix-Marie Affa'a on 23 January 2015. The user has requested enhancement of the downloaded file. 1573 Morphological and cytological observations on Iwo opalinid endocommensals of Acanthixalus spinosus (Amphibia, Anura) Félix-Marie Affa'a, Jean-Pierre Mignot, and Jean-Louis Amiet Abstract: The morphology and cytology of two new opalinid species were studied using silver impregnation and fixation, which preserves the microfibrils. Both species, commensal on Acanthixalus spinosus, are hast-specifie. Light microscopy showed the existence of a posterior secant system in Opalina proteus n.sp. and its absence in Cepedea couillardi n.sp. (in agreement with the differences presently recognised between the two genera). At the ultrastructural level, however, bath species present a posterior fibrillar zone that seems to be homologous with the secant system. This apparent contradiction may be explained by the fact that the secant system is visible under light microscopy only in O. proteus because its fibrillar zone is more developed than in C. couillardi. The life cycle of C. couillardi spans stages from the tadpole to the adult; in contrast, O. proteus completes its cycle before metamorphosis of the hast. Résumé: Les auteurs ont étudié la morphologie et l'ultrastructure de deux nouvelles opalines par imprégnation à l'argent en microscopie optique et en microscopie électronique, après fixation par une technique réputée préserver les microfibrilles.
    [Show full text]
  • Freshwater Fishes
    WESTERN CAPE PROVINCE state oF BIODIVERSITY 2007 TABLE OF CONTENTS Chapter 1 Introduction 2 Chapter 2 Methods 17 Chapter 3 Freshwater fishes 18 Chapter 4 Amphibians 36 Chapter 5 Reptiles 55 Chapter 6 Mammals 75 Chapter 7 Avifauna 89 Chapter 8 Flora & Vegetation 112 Chapter 9 Land and Protected Areas 139 Chapter 10 Status of River Health 159 Cover page photographs by Andrew Turner (CapeNature), Roger Bills (SAIAB) & Wicus Leeuwner. ISBN 978-0-620-39289-1 SCIENTIFIC SERVICES 2 Western Cape Province State of Biodiversity 2007 CHAPTER 1 INTRODUCTION Andrew Turner [email protected] 1 “We live at a historic moment, a time in which the world’s biological diversity is being rapidly destroyed. The present geological period has more species than any other, yet the current rate of extinction of species is greater now than at any time in the past. Ecosystems and communities are being degraded and destroyed, and species are being driven to extinction. The species that persist are losing genetic variation as the number of individuals in populations shrinks, unique populations and subspecies are destroyed, and remaining populations become increasingly isolated from one another. The cause of this loss of biological diversity at all levels is the range of human activity that alters and destroys natural habitats to suit human needs.” (Primack, 2002). CapeNature launched its State of Biodiversity Programme (SoBP) to assess and monitor the state of biodiversity in the Western Cape in 1999. This programme delivered its first report in 2002 and these reports are updated every five years. The current report (2007) reports on the changes to the state of vertebrate biodiversity and land under conservation usage.
    [Show full text]
  • Sequencing of Mitochondrial DNA with Long Repetitive Regions and Detection of the Frog Lineages of Large Mt Genome Showing Reduction of Purifying Selection
    Prime Archives in Genetics: 2nd Edition Book Chapter Sequencing of Mitochondrial DNA with Long Repetitive Regions and Detection of the Frog Lineages of Large mt Genome Showing Reduction of Purifying Selection Ryosuke Kakehashi1, Keitaro Hemmi2, Chiaki Kambayashi1 and Atsushi Kurabayashi1* 1Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Japan 2Amphibian Research Center, Hiroshima University, Japan *Corresponding Author: Atsushi Kurabayashi, Faculty of Bio- Science, Nagahama Institute of Bio-Science and Technology, Japan Published July 12, 2021 This Book Chapter is a republication of an article published by Atsushi Kurabayashi, et al. at International Journal of Genomics in January 2020. (Keitaro Hemmi, Ryosuke Kakehashi, Chiaki Kambayashi, Louis Du Preez, Leslie Minter, Nobuaki Furuno, Atsushi Kurabayashi. Exceptional Enlargement of the Mitochondrial Genome Results from Distinct Causes in Different Rain Frogs (Anura: Brevicipitidae: Breviceps). International Journal of Genomics. Volume 2020, Article ID 6540343, 12 pages. https://doi.org/10.1155/2020/6540343) How to cite this book chapter: Ryosuke Kakehashi, Keitaro Hemmi, Chiaki Kambayashi, Atsushi Kurabayashi. Sequencing of Mitochondrial DNA with Long Repetitive Regions and Detection of the Frog Lineages of Large mt Genome Showing Reduction of Purifying Selection. In: Fekadu Gadissa, editor. Prime Archives in Genetics: 2nd Edition. Hyderabad, India: Vide Leaf. 2021. 1 www.videleaf.com Prime Archives in Genetics: 2nd Edition © The Author(s) 2021. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The mitochondrial (mt) genome of the bushveld rain frog (Breviceps adspersus, family Brevicipitidae, Afrobatrachia) is the largest (28.8 kbp) among the vertebrates investigated to date.
    [Show full text]
  • Congolius, a New Genus of African Reed Frog Endemic to The
    www.nature.com/scientificreports OPEN Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution Tadeáš Nečas1,2*, Gabriel Badjedjea3, Michal Vopálenský4 & Václav Gvoždík1,5* The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difcult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the frst time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests. African reed frogs, Hyperoliidae Laurent, 1943, are presently encompassing almost 230 species in 17 genera.
    [Show full text]
  • Characterization of Arm Autotomy in the Octopus, Abdopus Aculeatus (D’Orbigny, 1834)
    Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roy L. Caldwell, Chair Professor David Lindberg Professor Damian Elias Fall 2013 ABSTRACT Characterization of Arm Autotomy in the Octopus, Abdopus aculeatus (d’Orbigny, 1834) By Jean Sagman Alupay Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Roy L. Caldwell, Chair Autotomy is the shedding of a body part as a means of secondary defense against a predator that has already made contact with the organism. This defense mechanism has been widely studied in a few model taxa, specifically lizards, a few groups of arthropods, and some echinoderms. All of these model organisms have a hard endo- or exo-skeleton surrounding the autotomized body part. There are several animals that are capable of autotomizing a limb but do not exhibit the same biological trends that these model organisms have in common. As a result, the mechanisms that underlie autotomy in the hard-bodied animals may not apply for soft bodied organisms. A behavioral ecology approach was used to study arm autotomy in the octopus, Abdopus aculeatus. Investigations concentrated on understanding the mechanistic underpinnings and adaptive value of autotomy in this soft-bodied animal. A. aculeatus was observed in the field on Mactan Island, Philippines in the dry and wet seasons, and compared with populations previously studied in Indonesia.
    [Show full text]
  • Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes
    Journal of Herpetology, Vol. 55, No. 1, 1–10, 2021 Copyright 2021 Society for the Study of Amphibians and Reptiles Ancestral Reconstruction of Diet and Fang Condition in the Lamprophiidae: Implications for the Evolution of Venom Systems in Snakes 1,2 1 1 HIRAL NAIK, MIMMIE M. KGADITSE, AND GRAHAM J. ALEXANDER 1School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. PO Wits, 2050, Gauteng, South Africa ABSTRACT.—The Colubroidea includes all venomous and some nonvenomous snakes, many of which have extraordinary dental morphology and functional capabilities. It has been proposed that the ancestral condition of the Colubroidea is venomous with tubular fangs. The venom system includes the production of venomous secretions by labial glands in the mouth and usually includes fangs for effective delivery of venom. Despite significant research on the evolution of the venom system in snakes, limited research exists on the driving forces for different fang and dental morphology at a broader phylogenetic scale. We assessed the patterns of fang and dental condition in the Lamprophiidae, a speciose family of advanced snakes within the Colubroidea, and we related fang and dental condition to diet. The Lamprophiidae is the only snake family that includes front-fanged, rear-fanged, and fangless species. We produced an ancestral reconstruction for the family and investigated the pattern of diet and fangs within the clade. We concluded that the ancestral lamprophiid was most likely rear-fanged and that the shift in dental morphology was associated with changes in diet. This pattern indicates that fang loss, and probably venom loss, has occurred multiple times within the Lamprophiidae.
    [Show full text]
  • Biogeography of the Reptiles of the Central African Republic
    African Journal of Herpetology, 2006 55(1): 23-59. ©Herpetological Association of Africa Original article Biogeography of the Reptiles of the Central African Republic LAURENT CHIRIO AND IVAN INEICH Muséum National d’Histoire Naturelle Département de Systématique et Evolution (Reptiles) – USM 602, Case Postale 30, 25, rue Cuvier, F-75005 Paris, France This work is dedicated to the memory of our friend and colleague Jens B. Rasmussen, Curator of Reptiles at the Zoological Museum of Copenhagen, Denmark Abstract.—A large number of reptiles from the Central African Republic (CAR) were collected during recent surveys conducted over six years (October 1990 to June 1996) and deposited at the Paris Natural History Museum (MNHN). This large collection of 4873 specimens comprises 86 terrapins and tortois- es, five crocodiles, 1814 lizards, 38 amphisbaenids and 2930 snakes, totalling 183 species from 78 local- ities within the CAR. A total of 62 taxa were recorded for the first time in the CAR, the occurrence of numerous others was confirmed, and the known distribution of several taxa is greatly extended. Based on this material and an additional six species known to occur in, or immediately adjacent to, the coun- try from other sources, we present a biogeographical analysis of the 189 species of reptiles in the CAR. Key words.—Central African Republic, reptile fauna, biogeography, distribution. he majority of African countries have been improved; known distributions of many species Tthe subject of several reptile studies (see are greatly expanded and distributions of some for example LeBreton 1999 for Cameroon). species are questioned in light of our results.
    [Show full text]
  • Figs1 Speciestree Seqcap
    Phrynomantis microps Microhylidae Breviceps adspersus Brevicipitidae Hemisus marmoratus Hemisotidae Leptopelis rufus Cardioglossa gracilis Arthtroleptis poecilinotus Leptodactylodon ovatus Arthroleptidae Nyctibates corrugatus Trichobatrachus robustus Scotobleps gabonicus Acanthixalus spinosus Acanthixalus sonjae Semnodactylus wealli Paracassina obscura Paracassina kounhiensis Kassininae Phlyctimantis maculata Phlyctimantis verrucosus Phlyctimantis boulengeri Phlyctimantis leonardi Kassina kuvangensis Kassina fusca Kassina lamottei Kassina senegalensis Kassina decorata Kassina maculosa Kassina arboricola Hyperoliidae Kassina cochranae Opisthothylax immaculatus Afrixalus enseticola Tachycnemis seychellensis Heterixalus luteostriatus Malagasy-Seychelles Heterixalus alboguttatus Species Afrixalus vibekensis Afrixalus weidholzi Afrixalus lacustris Afrixalus dorsimaculatus 1 Afrixalus dorsimaculatus 2 Afrixalus knysae Afrixalus spinifrons Hyperoliinae Afrixalus delicatus Afrixalus sylvaticus Afrixalus brachycnemis Afrixalus laevis Afrixalus lacteus Afrixalus fornasini Afrixalus wittei Afrixalus osorioi Afrixalus paradorsalis paradorsalis 2 Afrixalus paradorsalis paradorsalis 1 Afrixalus paradorsalis manengubensis Afrixalus nigeriensis Afrixalus vittiger 1 Afrixalus vittiger 2 Afrixalus dorsalis 3 Afrixalus dorsalis 1 Afrixalus quadrivittatus 1 Afrixalus quadrivittatus 2 Afrixalus dorsalis 2 Afrixalus fulvovittatus 2 Afrixalus fulvovittatus 1 Morerella cyanophthalma Cryptothylax greshoffii Hyperolius semidiscus Hyperolius parkeri Hyperolius
    [Show full text]
  • Miocene Plio-Pleistocene Oligocene Eocene Paleocene Cretaceous
    Phrynomantis microps Hemisus sudanensis Hemisus marmoratus Balebreviceps hillmani Breviceps mossambicus Breviceps adspersus Breviceps montanus Breviceps fuscus Breviceps gibbosus Breviceps macrops Breviceps namaquensis Breviceps branchi Spelaeophryne methneri Probreviceps loveridgei Probreviceps uluguruensis Probreviceps durirostris Probreviceps sp. Nguru Probreviceps sp. Rubeho Probreviceps sp. Kigogo Probreviceps sp. Udzungwa Probreviceps rungwensis Probreviceps macrodactylus Callulina shengena Callulina laphami Callulina dawida Callulina kanga Callulina sp lowland Callulina sp Rubeho Callulina hanseni Callulina meteora Callulina stanleyi Callulina kisiwamsitu Callulina kreffti Nyctibates corrugatus Scotobleps gabonicus Astylosternus laticephalus Astylosternus occidentalis Trichobatrachus robustus Astylosternus diadematus Astylosternus schioetzi Astylosternus batesi Leptodactylodon mertensi Leptodactylodon erythrogaster Leptodactylodon perreti Leptodactylodon axillaris Leptodactylodon polyacanthus Leptodactylodon bicolor Leptodactylodon bueanus Leptodactylodon ornatus Leptodactylodon boulengeri Leptodactylodon ventrimarmoratus Leptodactylodon ovatus Leptopelis parkeri Leptopelis macrotis Leptopelis millsoni Leptopelis rufus Leptopelis argenteus Leptopelis yaldeni Leptopelis vannutellii Leptopelis susanae Leptopelis gramineus Leptopelis kivuensis Leptopelis ocellatus Leptopelis spiritusnoctis Leptopelis viridis Leptopelis aubryi Leptopelis natalensis Leptopelis palmatus Leptopelis calcaratus Leptopelis brevirostris Leptopelis notatus
    [Show full text]
  • Amblyodipsas Polylepis (Bocage, 1873) Feeding on the Amphisbaenid Monopeltis Luandae Gans, 1976
    Herpetology Notes, volume 14: 205-207 (2021) (published online on 26 January 2021) A snake with an appetite for the rare: Amblyodipsas polylepis (Bocage, 1873) feeding on the amphisbaenid Monopeltis luandae Gans, 1976 Werner Conradie1,* and Pedro Vaz Pinto2,3 Specimens in natural history museum collections catalogue number PEM R22034. The snake measured represent a unique snapshot of the time and place they 634 mm in snout–vent length (no tail length is provided were collected, while the analysis of stomach contents as the tail was truncated). Identification to the nominate often leads to unexpected results and new discoveries. For subspecies A. p. polylepis was based on a series of example, the Angolan lizard Ichnotropis microlepidota characteristics (fide Broadley, 1990), including enlarged Marx, 1956 was described based on material recovered fangs below a small eye; loreal absent; preocular absent; from the crop of a Dark Chanting Goshawk (Melierax one postocular; seven supralabials, with the 3rd and metabates), and the species has not been collected since 4th entering the orbit; seven infralabials, with the first (Marx, 1956; van den Berg, 2018). Specifically, such four in contact with a single pair of genials; temporal an approach is known to provide extremely valuable formula 0+1 on both sides; 19-19-17 midbody scale insights into highly cryptic and rarely sighted fossorial rows; 227 ventrals; 16+ paired subcaudals (truncated). species, such as amphisbaenids (Broadley, 1971; Shine The specimen was re-examined in mid-2019 and it was et al., 2006). These tend to be generally underrepresented discovered that the stomach was full. Upon dissection, a in museum collections and, therefore, make a case for fully intact amphisbaenian was removed (Fig.
    [Show full text]
  • Goliath Frogs Build Nests for Spawning – the Reason for Their Gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F
    JOURNAL OF NATURAL HISTORY 2019, VOL. 53, NOS. 21–22, 1263–1276 https://doi.org/10.1080/00222933.2019.1642528 Goliath frogs build nests for spawning – the reason for their gigantism? Marvin Schäfera, Sedrick Junior Tsekanéb, F. Arnaud M. Tchassemb, Sanja Drakulića,b,c, Marina Kamenib, Nono L. Gonwouob and Mark-Oliver Rödel a,b,c aMuseum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany; bFaculty of Science, Laboratory of Zoology, University of Yaoundé I, Yaoundé, Cameroon; cFrogs & Friends, Berlin, Germany ABSTRACT ARTICLE HISTORY In contrast to its popularity, astonishingly few facts have become Received 16 April 2019 known about the biology of the Goliath Frog, Conraua goliath.We Accepted 7 July 2019 herein report the so far unknown construction of nests as spawning KEYWORDS sites by this species. On the Mpoula River, Littoral District, West Amphibia; Anura; Cameroon; Cameroon we identified 19 nests along a 400 m section. Nests Conraua goliath; Conrauidae; could be classified into three types. Type 1 constitutes rock pools parental care that were cleared by the frogs from detritus and leaf-litter; type 2 constitutes existing washouts at the riverbanks that were cleared from leaf-litter and/or expanded, and type 3 were depressions dug by the frogs into gravel riverbanks. The cleaning and digging activ- ities of the frogs included removal of small to larger items, ranging from sand and leaves to larger stones. In all nest types eggs and tadpoles of C. goliath were detected. All nest types were used for egg deposition several times, and could comprise up to three distinct cohorts of tadpoles.
    [Show full text]