Martin Lück. Team Logic: Axioms, Expressiveness, Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Martin Lück. Team Logic: Axioms, Expressiveness, Complexity Bereitgestellt durch Technische Informationsbibliothek (TIB) Hannover. Technische Informationsbibliothek (TIB) Welfengarten 1 B, 30167 Hannover Postfach 6080, 30060 Hannover Web: https://www.tib.eu/de/ Lizenziert unter Creative Commons Namensnennung 3.0 Deutschland. Team Logic Axioms, Expressiveness, Complexity Von der Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Herrn M. Sc. Martin Lück geboren am 15.12.1988 in Güstrow Hannover 2020 Referent: Prof. Heribert Vollmer, Leibniz Universität Hannover Korreferenten: Prof. Lauri Hella, Universität Tampere (FI) Prof. Juha Kontinen, Universität Helsinki (FI) Tag der Promotion: 09.01.2020 Acknowledgments First of all, I wish to sincerely thank my supervisor, Professor Heribert Vollmer. I am indebted to him for granting me both the trust and liberty to pursue my own ideas in my area of research, as well as the time to develop these over the years and finally write this thesis. Also, I thank him for his deep, motivating and inspiring lectures that drew me to the field of theoretical computer science from the beginning of my studies. Next, I am thankful to my Finnish colleagues from the logic groups of Helsinki and Tampere for the enjoyable work together, for their hospitality and for many fruitful discussions. In particular, I want to thank Juha Kontinen, Miika Hannula, Jonni Virtema, Lauri Hella, and Miikka Vilander. I am especially grateful to Professor Juha Kontinen and Professor Lauri Hella for their advice and for agreeing to review this thesis on our hike at the Dagstuhl seminar on Logics for Dependence and Independence. Also, I thank my fellow students and now-colleagues from Hannover, Anselm Haak, Fabian Müller and Maurice Chandoo for many nice discussions, as well as Arne Meier, Irina Schindler, Yasir Mahmood, Timon Barlag and Rahel Becker from the Institute for Theoretical Computer Science. Finally, I want to thank my sister Maren and my girlfriend Lisa for their unbreakable support and their patience in often challenging times. vi Zusammenfassung Im letzten Jahrzehnt wurde die Teamsemantik kontinuierlich zu einem vielseitigen und mächtigen Rahmen entwickelt, um Begriffe wie Abhängigkeit und Unabhängigkeit mit den Mitteln formaler Logik beschreiben zu können. Bisher lag der Fokus dabei auf der Vielzahl nichtklassischer Atome, die Beziehungen zwischen einzelnen semantischen Einheiten beschreiben, wozu neben dem bekannten Abhängigkeitsatom auch Atome der Unabhängigkeit, des Ein- oder Ausschlusses, der Nichtleerheit sowie verschiedene Zählatome gehören. Das Ziel dieser Arbeit ist hingegen, die Natur der Teamsemantik auch und gerade ohne solche Atome zu untersuchen. Im ersten Teil beschäftigen wir uns dafür mit grundlegenden Fragen, wie etwa: Wann genau ist eine Logik eine teamsemantische Erweiterung einer klassischen Logik? Welche Freiheitsgrade gibt es beim Definieren einer solchen Erweiterung? Hierfür analysieren wir existierende Teamlogiken und zeigen mögliche Ansätze zur formalen Beantwortung dieser Fragen auf. Im Rest der Arbeit betrachten wir mit der Aussagenteamlogik PL(∼), der Modalteam- logik ML(∼) und der Prädikatenteamlogik FO(∼) drei konkrete Teamlogiken ohne nicht- klassische Atome, die aber unter den Boole’schen Verknüpfungen abgeschlossen sind. Wir untersuchen sie hinsichtlich dreier zentraler Fragestellungen aus dem Bereich der mathematischen Logik, nämlich Ausdrucksstärke, Berechnungskomplexität und Axio- matisierbarkeit. Dabei verwenden wir auch abstrakte Resultate aus dem ersten Teil. Ein wichtiger Teil der Arbeit ist das Ergebnis, dass ML(∼) nichtelementare Komplexität besitzt. Für den Beweis übertragen wir Begriffe aus der Modelltheorie auf die Teamlogik und konstruieren einen Schwerebeweis in mehreren Schritten, wobei wir als Zwischen- resultate festhalten, dass Eigenschaften wie Bisimilarität und Kanonizität in ML(∼) auf gewisse Weise effizient definierbar sind. Durch Übertragung der Filtrationsmethode auf Teamsemantik finden wir anschließend jedoch auch elementar entscheidbare Fragmente. Danach wird FO(∼) bezüglich Komplexitätsfragen betrachtet, wobei sich das Zwei- Variablen-Fragment wie im klassischen Fall als entscheidbar herausstellt, ebenso wie das Guarded Fragment GF(∼), das wir analog zum klassischen Fragment GF einführen. Des Weiteren wird im Bereich der Modelltheorie eine Variante des Ultraproduktsatzes von Łoś bewiesen, aus dem beispielsweise auch der Kompaktheitssatz für FO(∼) folgt. Zuletzt entwickeln wir ein modulares Beweissystem für die genannten Logiken PL(∼), ML(∼) und FO(∼). Wir zeigen insbesondere, dass sich die besondere Disjunktion der Teamlogik wie ein modaler Operator axiomatisieren lässt. Für die Vollständigkeit des Systems spielt auch die Widerlegungsvollständigkeit auf der Ebene der Literale eine wichtige Rolle, die für Teamlogiken im Gegensatz zu klassischer Logik nicht trivial gegeben ist. Es werden zwei Möglichkeiten vorgestellt, wie sie für obige Logiken dennoch erreicht werden kann. Schlagworte: Team-Semantik; Axiome; Ausdrucksstärke; Komplexität 2010 MSC: 03B45; 03B60; 03B70; 03C20; 68Q15; 68Q17 vii Abstract In the last decade, team semantics has been continuously developed into a flexible and powerful framework to describe concepts of dependence and independence by means of formal logic. Until now, research mostly focused on the manifold non-classical atoms that express relationships between the semantical units. Besides the prominent dependence atom, among these there also are atoms of independence, inclusion, exclusion, non- emptiness as well as various counting atoms. The aim of this thesis is instead to study the nature of team semantics on its own and especially without such atoms. In the first part, we consider basic questions, such as: What makes a logic a team-semantical extension of a classical logic? Which degrees of freedom exist when defining such an extension? For this, we analyze existing team logics and point out possible approaches to answer these questions formally. In the remainder of the thesis, we study propositional team logic PL(∼), modal team logic ML(∼) and first-order team logic FO(∼), which are three concrete team logics without non-classical atoms, yet which are closed under the Boolean operations. We investigate three central questions from the area of mathematical logic, that is, expressive power, computational complexity, and axiomatizability. For this, we also utilize abstract results from the first part. An important part of the thesis is the result that ML(∼) has non-elementary complexity. For the proof, we generalize concepts of model theory to team logic and in several steps construct a hardness proof, with key steps such as showing that bisimilarity and canonic- ity are, in a certain sense, efficiently definable in ML(∼). That being said, by transferring the well-known filtration method to team semantics, we also find elementarily decidable fragments. Afterwards, the complexity aspects of FO(∼) are studied. Its two-variable fragment turns out to be decidable as in the classical case, and likewise for the Guarded Fragment GF(∼) that we introduce analogously to the classical fragment GF. Furthermore, as a model-theoretic result, we prove a variant of Łoś’s ultraproduct theorem, which entails, for example, the compactness theorem for FO(∼). Finally, we develop a modular proof system for the mentioned logics PL(∼), ML(∼) and FO(∼). In particular, we show that the special disjunction of team logic can be axiomatized like a modal operator. In order to prove that this system is complete, the refutation completeness on the level of literals plays a crucial role, which, in contrast to classical logics, does not trivially hold for team logics. We present two methods to achieve this property for the above logics nonetheless. Keywords: Team semantics; axioms; expressiveness; complexity 2010 MSC: 03B45; 03B60; 03B70; 03C20; 68Q15; 68Q17 viii Contents 1 Introduction 1 1.1 Team logic . 2 1.2 Contributions . 6 1.3 Further notes . 11 2 Preliminaries 12 2.1 Complexity theory . 12 2.2 Team logic . 15 3 Abstract team logic 29 3.1 Basic definitions . 29 3.2 Teamification . 37 3.3 Operators . 43 3.4 Transversals . 51 3.5 Relaxations . 53 3.6 Strict and lax standard transversals . 57 3.7 Quasi-flatness . 59 3.8 Outlook: Linear Temporal Logic . 73 3.9 Summary and outlook . 76 4 The complexity of modal team logic 78 4.1 Types and canonical models . 78 4.2 Scopes and subteam quantifiers . 82 4.3 Implementing bisimulation . 85 4.4 Enforcing a canonical model . 87 4.5 Defining an order on types . 91 4.6 Encoding non-elementary computations . 97 4.7 Hardness under strict semantics . 109 4.8 Hardness on restricted frame classes . 110 4.9 Filtration in team semantics . 113 4.10 Summary and outlook . 119 5 First-order team logic 122 5.1 Upper bounds for satisfiability and validity . 122 5.2 A standard translation for team semantics . 133 5.3 Łoś’s theorem for team semantics . 139 5.4 Summary and outlook . 145 Contents 6 An axiomatization of team logic 148 6.1 Introduction . 148 6.2 Axioms of the Boolean connectives . 151 6.3 Operator elimination . 159 6.4 A remark on the empty team . 171 6.5 Summary and outlook . 173 7 Conclusion 177 Bibliography 179 Appendix 190 Index 200 Curriculum Vitae 203 List of publications 204 x List of Tables and Figures 2.1 Complexity of satisfiability and validity of propositional and modal team logics . 26 2.2 Complexity of model
Recommended publications
  • On the Succinctness of Atoms of Dependency
    Logical Methods in Computer Science Volume 15, Issue 3, 2019, pp. 17:1–17:28 Submitted Mar. 07, 2019 https://lmcs.episciences.org/ Published Aug. 20, 2019 ON THE SUCCINCTNESS OF ATOMS OF DEPENDENCY MARTIN LUCK¨ a AND MIIKKA VILANDER b a Leibniz University Hannover e-mail address: [email protected] b Tampere University e-mail address: [email protected] Abstract. Propositional team logic is the propositional analog to first-order team logic. Non-classical atoms of dependence, independence, inclusion, exclusion and anonymity can be expressed in it, but for all atoms except dependence only exponential translations are known. In this paper, we systematically compare their succinctness in the existential fragment, where the splitting disjunction only occurs positively, and in full propositional team logic with unrestricted negation. By introducing a variant of the Ehrenfeucht{Fra¨ıss´e game called formula size game into team logic, we obtain exponential lower bounds in the existential fragment for all atoms. In the full fragment, we present polynomial upper bounds also for all atoms. 1. Introduction As a novel extension of classical logic, team semantics provides a framework for reasoning about whole collections of entities at once, as well as their relation with each other. Such a collection of entities is called a team. Originally, team semantics was introduced by Hodges [Hod97] to provide a compositional approach to logic of incomplete information, such as Hintikka's and Sandu's independence-friendly logic (IF-logic) [HS89]. In his seminal work, V¨a¨an¨anen[V¨a07] introduced dependence logic which extends first-order logic by so-called dependence atoms, atomic formulas =(x1; : : : ; xn; y) that in- tuitively express that the value of y depends only on the values of x1; : : : ; xn.
    [Show full text]
  • Bunched Logics a Uniform Approach
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UCL Discovery Bunched Logics A Uniform Approach Simon Robert Docherty A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of University College London. Department of Computer Science University College London May 2, 2019 2 I, Simon Robert Docherty, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the work. Abstract Bunched logics have found themselves to be key tools in modern computer science, in particular through the industrial-level program verification formalism Separation Logic. Despite this—and in contrast to adjacent families of logics like modal and substructural logic—there is a lack of uniform methodology in their study, leaving many evident variants uninvestigated and many open problems unresolved. In this thesis we investigate the family of bunched logics—including previ- ously unexplored intuitionistic variants—through two uniform frameworks. The first is a system of duality theorems that relate the algebraic and Kripke-style inter- pretations of the logics; the second, a modular framework of tableaux calculi that are sound and complete for both the core logics themselves, as well as many classes of bunched logic model important for applications in program verification and systems modelling. In doing so we are able to resolve a number of open problems in the lit- erature, including soundness and completeness theorems for intuitionistic variants of bunched logics, classes of Separation Logic models and layered graph models; decidability of layered graph logics; a characterisation theorem for the classes of bunched logic model definable by bunched logic formulae; and the failure of Craig interpolation for principal bunched logics.
    [Show full text]
  • Contributed Talk Abstracts1
    CONTRIBUTED TALK ABSTRACTS1 I M.A. NAIT ABDALLAH, On an application of Curry-Howard correspondence to quantum mechanics. Dep. Computer Science, UWO, London, Canada; INRIA, Rocquencourt, France. E-mail: [email protected]. We present an application of Curry-Howard correspondence to the formalization of physical processes in quantum mechanics. Quantum mechanics' assignment of complex amplitudes to events and its use of superposition rules are puzzling from a logical point of view. We provide a Curry-Howard isomorphism based logical analysis of the photon interference problem [1], and develop an account in that framework. This analysis uses the logic of partial information [2] and requires, in addition to the resolution of systems of algebraic constraints over sets of λ-terms, the introduction of a new type of λ-terms, called phase λ-terms. The numerical interpretation of the λ-terms thus calculated matches the expected results from a quantum mechanics point of view, illustrating the adequacy of our account, and thus contributing to bridging the gap between constructive logic and quantum mechanics. The application of this approach to a photon traversing a Mach-Zehnder interferometer [1], which is formalized by context Γ = fx : s; hP ; πi : s ! a? ! a; Q : s ! b? ! b; hJ; πi : a ! a0; hJ 0; πi : b ! b0; hP 0; πi : b0 ! c? ! c; Q0 : b0 ! d? ! d; P 00 : a0 ! d0? ! d0;Q00 : a0 ! c0? ! c0;R : c _ c0 ! C; S : 0 ? ? 0 ? 0 ? 00 0? 00 0? d _ d ! D; ξ1 : a ; ξ2 : b ; ξ1 : c ; ξ2 : d ; ξ1 : d ; ξ2 : c g, yields inhabitation claims: 00 00 0 0 0 R(in1(Q (J(P xξ1))ξ2 )) + R(in2(P (J (Qxξ2))ξ1)) : C 00 00 0 0 0 S(in1(P (J(P xξ1))ξ1 )) + hS(in2(Q (J (Qxξ2))ξ2)); πi : D which are the symbolic counterpart of the probability amplitudes used in the standard quantum mechanics formalization of the interferometer, with constructive (resp.
    [Show full text]
  • The Modal Logic of Functional Dependence
    THE MODAL LOGIC OF FUNCTIONAL DEPENDENCE Johan van Benthem and Alexandru Baltag ILLC, University of Amsterdam Dependence is Ubiquitous Dependence of x on y, or of x on a set Y: Correlated values (probability), Construction (vector spaces), Dependent occurrence or behavior (causality, games). Not necessarily one single notion! Diverse senses of dependence in logic: ∀x ∃y Rxy, {ϕ, ϕ ∧ ψ} Ontic coupled behavior in the physical world Epistemic information about x gives information about y We will explore one basic sense that applies to both. A Dependence Table Data base: tuples of values for attributes = assignment of objects to variables Global dependence x y z x → y: y depends on x 0 1 0 x → y, y → z (so: x → z) 1 1 0 not y → x (so: not z → x) 2 0 0 not z → y Local dependence x depends on y at (2, 0, 0) but not at (1, 1, 0) Dependence Models , D = (V, O, S, P) V variables (in fact, any abstract objects) O objects (possible values of variables) S family of functions from V to O V need not be full O : gaps = dependence P predicates of objects (if desired) DXy for all s, t in S: if s =X t, then s =y t with s =x t : s(x) = t(x), s =X t : ∀x∈X: s =x t also lifted to sets DXY : for all y∈Y: Dxy Background: CRS-style First-Order Logic Dependence models : ‘generalized assignment models’ M = (D, V, I) with V set of ‘available’ assignments M, s |= ∃x.ϕ iff there exists t in V with s =x t and M, t |= ϕ s =x t : s(y) = t(y) for all variables y distinct from x The validities of this semantics are RE and decidable.
    [Show full text]
  • The Dynamics of Imperfect Information
    The Dynamics of Imperfect Information Pietro Galliani The Dynamics of Imperfect Information ILLC Dissertation Series DS-200X-NN For further information about ILLC-publications, please contact Institute for Logic, Language and Computation Universiteit van Amsterdam Science Park 904 1098 XH Amsterdam phone: +31-20-525 6051 fax: +31-20-525 5206 e-mail: [email protected] homepage: http://www.illc.uva.nl/ Copyright c 2012 by Pietro Galliani Printed and bound by GVO Drukkers & Vormgevers B.V. ISBN: 978–90–9026932–0 The Dynamics of Imperfect Information Academisch Proefschrift ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof.dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Aula der Universiteit op vrijdag 21 september 2012, te 13.00 uur door Pietro Galliani geboren te Bologna, Itali¨e. Promotor: Prof. dr. J. V¨a¨an¨anen Overige leden: Prof. dr. S. Abramsky Prof. dr. J.F.A.K. van Benthem Dr. A. Baltag Dr. U. Endriss Prof. dr. E. Gr¨adel Prof. dr. D.H.J. de Jongh Prof. dr. B. L¨owe Faculteit der Natuurwetenschappen, Wiskunde en Informatica to Dino and Franca Davoli thanks for everything v Contents Acknowledgments xi 1 Introduction 1 2 Logics of Imperfect Information 9 2.1 From Branching Quantifiers to Dependence Logic . 9 2.1.1 BranchingQuantifiers . 9 2.1.2 IndependenceFriendlyLogic . 11 2.1.3 DependenceLogic .. .. .. .. .. .. .. .. .. 13 2.2 DependenceLogicanditsExtensions. 14 2.2.1 TeamSemantics ....................... 14 2.2.2 SomeKnownResults.
    [Show full text]
  • Axiomatizations for Propositional and Modal Team Logic
    Axiomatizations for Propositional and Modal Team Logic Martin Lück Leibniz Universität Hannover, Germany [email protected] Abstract A framework is developed that extends Hilbert-style proof systems for propositional and modal logics to comprehend their team-based counterparts. The method is applied to classical propo- sitional logic and the modal logic K. Complete axiomatizations for their team-based extensions, propositional team logic PTL and modal team logic MTL, are presented. 1998 ACM Subject Classification F.4.1 Mathematical Logic Keywords and phrases team logic, propositional team logic, modal team logic, proof system, axiomatization Digital Object Identifier 10.4230/LIPIcs.CSL.2016.33 1 Introduction Propositional and modal logics, while their history goes back to ancient philosophers, have assumed an outstanding role in the age of modern computer science, with plentiful applications in software verification, modeling, artificial intelligence, and protocol design. An important property of a logical framework is completeness, i.e., that the act of mechanical reasoning can effectively be done by a computer. A recent extension of classical logics is the generalization to team semantics, i.e., formulas are evaluated on whole sets of assignments. So-called team based logics allow a more sophisticated expression of facts that regard multiple states of a system simultaneously as well as their internal relationship towards each other. The concept of team logic originated from the idea of quantifier dependence and independence. The question was simple andis long-known in linguistics: How can the statement For every 푥 there is 푦(푥), and for every 푢 there is 푣(푢) such that P(x,y,u,v) be formalized? The fact that 푣 should only depend on 푢 cannot be expressed with first-order quantifiers.
    [Show full text]
  • Computational Aspects of Dependence Logic
    COMPUTATIONAL ASPECTS OF DEPENDENCE LOGIC Von der Fakultat¨ fur¨ Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universitat¨ Hannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von arXiv:1206.4564v1 [cs.LO] 20 Jun 2012 Dipl.-Math. Peter Lohmann geboren am 23. September 1985 in Hannover 2012 Referent: Heribert Vollmer, Leibniz Universitat¨ Hannover Korreferent: Lauri Hella, Tampereen Yliopisto Tag der Promotion: 13. Juni 2012 c Peter Lohmann licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License COMPUTATIONAL ASPECTS OF DEPENDENCE LOGIC Dissertation to obtain the academic degree of Dr. rer. nat. PhD authorized by the Faculty of Electrical Engineering and Computer Science of the Gottfried Wilhelm Leibniz Universitat¨ Hannover written by Dipl.-Math. Peter Lohmann born September 23, 1985 in Hannover, Germany 2012 First Reviewer: Heribert Vollmer, Leibniz Universitat¨ Hannover Second Reviewer: Lauri Hella, Tampereen Yliopisto Graduation Date: June 13, 2012 c Peter Lohmann licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License I am interested in mathematics only as a creative art. G. H. Hardy DANKSAGUNG Zuerst mochte¨ ich ganz herzlich meinem Doktorvater Heribert Vollmer fur¨ die Betreuung, Hilfestellung und gemeinsame Forschung wahrend¨ meiner Promotionszeit danken – und dafur,¨ dass er zu der besten Sorte Chef gehort,¨ die ich mir vorstellen kann. Weiter danke ich meinem Kollegen, Koautor und Buronachbarn¨ Johan- nes Ebbing fur¨ zahlreiche gewinnbringende Diskussionen und gemeinsame Forschungsergebnisse. Des Weiteren mochte¨ ich mich bei meinen weiteren Koautoren fur¨ die gemeinsame Forschung bedanken. Auch danke ich Juha Kontinen und Lauri Hella fur¨ meine erfolgreichen Besuche in Helsinki und Tampere.
    [Show full text]
  • Truth, Proof and Gödelian Arguments: a Defence of Tarskian Truth In
    Markus Pantsar Truth, PPProofProof and Gödelian AAArguments:Arguments: AAA DDDefenceDefence of Tarskian TTTruthTruth in MMMathematicsMathematics Philosophical Studies from the University of Helsinki 23 Filosofisia tutkimuksia Helsingin yliopistosta Filosofiska studier från Helsingfors universitet Philosophical Studies from the University of Helsinki Publishers: Department of Philosophy Department of Social and Moral Philosophy P.O. Box 9 (Siltavuorenpenger 20 A) 00014 University of Helsinki Finland Editors: Marjaana Kopperi Panu Raatikainen Petri Ylikoski Bernt Österman Markus Pantsar Truth, Proof and Gödelian Arguments: AAA Defence of Tarskian Truth in Mathematics ISBN 978-952-10-5373-3 (paperback) ISBN 978-952-10-5374-0 (PDF) ISSN 1458-8331 Tampere 2009 Kopio Niini Finland Oy Contents CONTENTS ............................................................................................ 5 ACKNOWLEDGEMENTS ................................................................... 5 1. INTRODUCTION ........................................................................... 11 1.1 GENERAL BACKGROUND ................................................................... 11 1.2 ANOTHER APPROACH ....................................................................... 17 1.3 TRUTH AND PROOF ............................................................................ 20 1.4 TARSKIAN TRUTH .............................................................................. 22 1.5 REFERENCE .......................................................................................
    [Show full text]
  • Dependence Logic: Investigations Into Higher-Order Semantics Defined on Teams
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Helsingin yliopiston digitaalinen arkisto Dependence Logic: Investigations into Higher-Order Semantics Defined on Teams Ville Nurmi Department of Mathematics and Statistics Faculty of Science University of Helsinki Academic dissertation To be presented, with the permission of the Faculty of Science of the University of Helsinki, for public criticism in Hall 4, Mets¨atalo (Unioninkatu 40), on August 22nd, 2009, at 10 a.m. http://ethesis.helsinki.fi ISBN 978-952-92-5944-1 (paperback) ISBN 978-952-10-5679-6 (PDF) Helsinki University Print Helsinki 2009 Contents Acknowledgementsv 1 Introduction1 1.1 History............................... 1 1.2 Goals of the Thesis ........................ 3 1.3 Outline of the Thesis ....................... 4 2 Preliminaries 7 2.1 General Definitions ........................ 7 2.2 First Order Logic (FO) ...................... 9 2.3 Second Order Logic (SO) ..................... 11 2.4 Dependence Logic (FOD) .................... 15 2.5 Team Logic (TL) ......................... 26 3 Swapping Quantifiers 33 3.1 Definitions ............................. 33 3.2 Swapping Quantifiers in Team Logic . 34 4 FO vs. FOD in Logical Equivalence 39 4.1 Definitions ............................. 39 4.2 Comparing Semiequivalences ................... 42 4.3 EF-game for FO in FOD-rank . 43 4.4 Converting Winning Strategies . 47 4.5 Further Points of Interest ..................... 49 5 Translating between Logics 51 5.1 The General Setting ....................... 51 5.2 Translating ESO to FOD ..................... 54 5.3 Translating SO-Sentences to TL . 57 5.4 Translating SO-Formulas to TL . 68 5.5 Applications of Translations ................... 71 iii iv 6 Axiomatising Fragments of FOD 73 6.1 Calculus of Structures .....................
    [Show full text]
  • Instantial Logic
    INSTANTIAL LOGIC An Investigation into Reasoning with Instances W.P.M. Meyer Viol ILLC Dissertation Series 1995-11 Instant ial Logic ILLC Dissertation Series 1995-11 language andcomputation For further information about ILLC-publications, please Contact Institute for Logic, Language and Computation Universiteit van Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam phone: +31-20-5256090 fax: +31-20-5255101 e-mail: [email protected] Instant ial Logic An Investigation into Reasoning with Instances Instantiéle Logica Een Onderzoek naar Redeneren met Voorbeelden (Met een Samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad Vandoctor aan de Universiteit Utrecht op gezag van de rector magnificus, Prof. dr. J .A. van Ginkel ingevolge het besluit van het college van decanen in het openbaar te verdedigen op dinsdag 20 juni 1995 des voormiddags te 10.30 uur door Wilfried Peter Marie Meyer Viol Promotoren: Prof. dr. D.J.N. van Eijck Prof. dr. J.F.A.K. van Benthem CIP—GEGEVENSKONINKLIJKE BIBLIOTHEEK, DEN HAAG Meyer Viol, Wilfried Peter Marie Instantial Logic: an investigation into reasoning with instances / Wilfried Peter Marie Meyer Viol. - Utrecht: LEd. - (ILLC dissertation series, 1995-11) Proefschrift Universiteit Utrecht. - Met lit. opg. ISBN 90-5434-O41-X NUGI 941 trefw.: logica/taalkunde ©1995, W.P.M. Meyer Viol, Amsterdam Contents Acknowledgments ix 1 What is Instantial Logic? 1 1.1 Introduction . 1 1.2 Overview of the Thesis . 3 2 A Brief History of Instantial Logic 6 2.1 Introduction . 6 2.2 Classical Predicate Logic . 7 2.2.1 Semantics . 7 2.2.2 Natural Deduction for Classical Predicate Logic .
    [Show full text]
  • Lottery Semantics 30
    Dependence and Independence in Logic Juha Kontinen and Jouko Väänänen ESSLLI 2010 CPH Juha Kontinen and Jouko Väänänen (eds.) Proceedings of Dependence and Independence in Logic ESSLLI 2010 Workshop Copenhagen, August 16-20, 2010 ii Preface Dependence and independence are common phenomena, wherever one looks: ecological systems, astronomy, human history, stock markets - but what is their role in logic and - turning the tables - what is the logic of these concepts? The possibility of nesting quantifiers, thus expressing patterns of dependence and independence between variables, accounts for much of the expressive power of first order logic. However, first order logic is not capable of expressing all such patterns, and as a consequence various generalizations - such as branching quantifiers, or the various variants of independence-friendly logic - have been introduced during the last fifty years. Dependence logic is a recent formalism, which brings to the forefront the very concept of dependence, isolating it from the notion of quantifier and making it one of the primitive elements of the language. It can also be added to other logics, such as modal logic. This has opened up an opportunity to develop logical tools for the study of complex forms of dependence, with applications to computer science, philosophy, linguistics, game theory and mathematics. Recently there has been an increasing interest in this topic, especially among young researchers. The goal of this workshop is to provide an opportunity for researchers to further explore the
    [Show full text]