Release of the Non-Steroidal Anti-Inflammatory Drug Flufenamic

Total Page:16

File Type:pdf, Size:1020Kb

Release of the Non-Steroidal Anti-Inflammatory Drug Flufenamic materials Article Release of the Non-Steroidal Anti-Inflammatory Drug Flufenamic Acid by Multiparticulate Delivery Systems Promotes Adipogenic Differentiation of Adipose-Derived Stem Cells Andreea D. Lazăr 1 , Sorina Dinescu 1,2,* ,Mădălina G. Albu-Kaya 3, Sami Gharbia 4, Anca Hermenean 4 and Marieta Costache 1,2 1 Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; [email protected] (A.D.L.); [email protected] (M.C.) 2 Research Institute of the University of Bucharest, 050663 Bucharest, Romania 3 Department of Collagen Research, Division of Leather and Footwear Research Institute, The National Research & Development Institute for Textiles and Leather, 031215 Bucharest, Romania; [email protected] 4 Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; [email protected] (S.G.); [email protected] (A.H.) * Correspondence: [email protected] Received: 22 January 2020; Accepted: 25 March 2020; Published: 27 March 2020 Abstract: Engineered tissue-like structures often instigate an inflammatory response in the host that can inhibit wound healing and ultimately lead to the rejection of the implant. In our previous study, we have characterized the properties and biocompatibility of novel multiparticulate drug delivery systems (MDDS), based on collagen matrix with gradual release of anti-inflammatory drug flufenamic acid, we evaluated their anti-inflammatory potential and demonstrated their efficiency against burns and soft tissue lesions. In addition to these results, FA was previously described as a stimulant for adipogenesis, therefore we hypothesized that MDDS might also be appropriate for adipose tissue engineering. After the cell-scaffold constructs were obtained, cell morphology, adhesion and spreading on the systems were highlighted by scanning electron microscopy, immunostaining and confocal microscopy. The effect of FA-enriched materials on adipogenesis was evaluated at gene and protein level, by RT-qPCR, confocal microscopy and immunohistochemistry. Our current work indicates that flufenamic acid plays a beneficial role in adipocyte differentiation, with a direct effect upon the gene and protein expression of important early and late markers of adipogenesis, such as PPARγ2 and perilipin. Keywords: adipose tissue engineering; multiparticulate drug delivery systems; flufenamic acid; adipose-derived stem cells; adipogenic differentiation; PPARγ2; perilipin 1. Introduction The field of tissue engineering (TE) combines principles of engineering with notions from natural sciences in order to develop complex structures capable of mimicking natural tissue, in both aspect and function, fit for the purpose of regeneration [1]. Adipose tissue engineering (ATE) belongs to this interdisciplinary field and it aims to obtain a proper substitute for damaged adipose tissue, resulted for example, from tumor resection, burns or other types of wounds. In vitro an ATE construct can be generated by seeding a biomaterial, made out of natural/synthetic compounds or a combination of the two, with cells capable of differentiating in mature adipocytes in the presence of a proper differentiation Materials 2020, 13, 1550; doi:10.3390/ma13071550 www.mdpi.com/journal/materials Materials 2020, 13, 1550 2 of 13 media (adipogenic inducers). Once implanted at the lesion site, the construct should integrate with the normal tissue through in vivo remodeling [2,3]. The best choice for cellular component would seem to be human adipose-derived stem cells (hASCs), hypo-immunogenic cells suitable for designing biocompatible tissue constructs, which can be easily harvested in abundance from autologous fat tissue through minimal invasive procedures [4,5]. hASCs’ self-renewal ability is similar to bone marrow or umbilical cord stem cells, and they are capable of differentiating into cells of mesodermal or ectodermal lineages under the influence of a specific inducing microenvironment [6–11]. Moreover, hASCs release multiple growth factors that facilitate tissue regeneration, such as vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), fibroblast growth factor-2 (FGF-2), transforming growth factor (TGF), platelet-derived growth factor-b (PDGFB), angiopoietin-1 (Ang-1), Ang-2, stromal cell-derived factor-1 (SDF-1) and osteonectin [12]. Preclinical studies on the use of hASCs in vitro and in vivo have been performed, and their efficacy has been established in clinical trials [13–15]. The differentiation of hASCs involves a complex series of changes in the cellular gene and protein expression patterns. In vitro differentiation is characterized by growth arrest, the induction and expression of multiple adipogenic genes, and ultimately, triglyceride accumulation [16,17]. One of the key regulators of the process is peroxisome proliferating activated receptor gamma-2 (PPARγ2), a ligand-activated transcription factor that belongs to the nuclear receptor superfamily, which is selectively expressed in adipocytes and induced early (initial 24–48 h) during the course of differentiation [18,19]. After hormonal induction, PPARγ2 level significantly increases, thus initiating adipogenesis, and then gradually decreases as the process evolves. PPARγ2 also plays a role in maintenance of the differentiated state. If silenced, already differentiated 3T3-L1 preadipocytes express specific late markers, such as perilipin, at a lower level and the accumulated fat droplets diminish, thus dedifferentiating [20]. Perilipin is considered a late marker of adipogenesis because it coats the intracellular lipid droplets, which only form in the terminal stage of the process, acting as a protective barrier that restricts the access of cytosolic lipases. Its expression is mainly regulated by PPARγ2 [21,22]. In order to provide the cells with an in vivo-like structure, tridimensional (3D) scaffolds that resemble the natural extracellular matrix (ECM) in architecture and composition should be used, because they allow the cells to maintain their conformation, communicate and interact with one another, exert their native functions and better adhere to the material, thus facilitating the formation of a proper tissue construct [23]. Due to their high biocompatibility and similarity to the ECM, natural polymers are widely used for ATE purposes [24,25]. Collagen is prevalent in native adipose ECM, has low antigenicity, low inflammatory properties and good biocompatibility, promoting cell attachment and favorable adipose outcome [26–28]. Even more, it is approved for use in humans by the US Food and Drug Administration (FDA) [24]. However, pure collagen has a fast degradation rate in vivo; therefore, to enhance its mechanical strength and durability it needs to be cross-linked with other polymers (such as dextran) or fixatives (for example glutaraldehyde) [29]. To facilitate the future integration of the ATE construct into the lesion site, various drugs, natural plant extracts or growth factors can be incorporated into the biomaterials [16,30]. For example, Kimura et al. combined collagen sponges with gelatin microspheres containing basic fibroblast growth factor (bFGF) and implanted them in nude mice. Within 6 weeks, adipose tissue developed in the constructs and the extent of fat tissue formation was positively influenced by the bFGF concentration, presumably by promoting angiogenesis [31]. Nonsteroidal anti-inflammatory drugs (NSAIDs), such as flufenamic acid (FA), modulate the immune response of the host, and diminish the excess inflammation that could occur as a result of implantation, a potential cause for construct rejection. NSAIDs are commonly used in the clinic for their anti-inflammatory, antipyretic and analgesic activity. Therapeutic actions are attributed to inhibition of cyclooxygenases (COX-1 and COX-2), enzymes that catalyze the first steps in conversion of arachidonic acid (AA) to prostaglandins (PGs) [32]. While the COX enzymes constitute major NSAID targets, there are also suggestions that some NSAIDs effects are mediated by PPAR members. High doses of certain NSAIDs concentrations can modulate PPARγ Materials 2020, 13, 1550 3 of 13 activation in vitro [33,34]. FA is a good candidate for ATE applications because in addition to its proven conventional role, a previous study reported that FA facilitates differentiation into fat tissue, acting as an adjuvant to the process in a similar, though less potent, manner to another class member, namely indomethacin, regularly used as a component in the adipocyte differentiation media [33,35]. As such, FA may contribute to the activation of PPARγ2, the main inducer of adipogenesis, in the first 1–2 days of differentiation [36]. To reduce the initial burst release effect and to provide a controlled drug release over time, our group previously proposed novel multiparticulate drug delivery systems (MDDS) for FA, based on collagen composite matrices with gelatin-alginate-carboxymethylcellulose microcapsules for drug encapsulation, that allowed the drug to be rapidly discharged in the first 60 min and then gradually released over the course of 48 h. Out of all the tested MDDS, the ones with the highest amount of FA, specifically M2 and M4 (systems with 30% FA microcapsules in their structure and additional FA in free form incorporated in the composite gel of M4) obtained the best results, the released FA percentage reaching 85.3% for M2 and 95.01% for M4. Moreover, these natural polymeric systems showed good biocompatibility, having a positive
Recommended publications
  • Colitis Caused by Non-Steroidal Anti-Inflammatory Drugs
    Postgrad Med J: first published as 10.1136/pgmj.62.730.773 on 1 August 1986. Downloaded from Postgraduate Medical Journal (1986) 62, 773-776 Colitis caused by non-steroidal anti-inflammatory drugs S. Ravi', A.C. Keat2 and E.C.B. Keat1 'Cuckfield Hospital, Cuckfield, West Sussex, and2Westminster Hospital, Horseferry Road, London SWIP2AP, UK. Summary: Four cases of acute proctocolitis associated with non-steroidal anti-inflammatory drug therapy are presented. The drugs implicated were flufenamic acid, mefenamic acid, naproxen and ibuprofen. After resolution of symptoms and signs of proctocolitis three of the four patients were subsequently rechallenged with the implicated drug: in each there was a rapid relapse. Introduction Ulcerative colitis is a disease of unknown aetiology Case reports with characteristic clinical features and a protracted course. A similar clinical picture, but running a shorter Case I and usually benign course, is occasionally seen follow- ing the administration of certain drugs. This was first A 77 year old woman was referred with intermittent noticed following the administration of antibiotics, bleeding per rectum for 6 months, associated for the often with pseudomembrane formation. Later, this last 2 months with bloody diarrhoea up to eight times was shown to be associated with infection by toxigenic daily. Previously, she had had troublesome symptoms Clostridium difficile. Until 1978, most cases were from osteoarthritis of her back and knees for which copyright. associated with treatment with clindamycin but since she had been prescribed flufenamic acid 200 mg thrice that time nearly all antibiotics have been implicated. daily. Her general health had remained good but she Other drugs capable of causing proctocolitis, though appeared pale and her haemoglobin was reduced to by different mechanisms, include phenindione (Keat & 8 g/dl.
    [Show full text]
  • Investigating the Influence of Polymers on Supersaturated
    Page 1 of 45 Molecular Pharmaceutics 1 2 3 4 5 6 7 Investigating the Influence of Polymers on 8 9 10 11 12 Supersaturated Flufenamic Acid Cocrystal Solutions 13 14 15 16 1 1 2 2 1 17 Minshan Guo , Ke Wang , Noel Hamill , Keith Lorimer and Mingzhong Li * 18 19 20 1School of pharmacy, De Montfort University, Leicester, UK 21 22 23 2Almac Science, Seagoe Industrial Estate, Craigavon, UK 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment 1 Molecular Pharmaceutics Page 2 of 45 1 2 3 4 5 6 7 Table of contents graphic 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment 2 Page 3 of 45 Molecular Pharmaceutics 1 2 3 Abstract 4 5 6 7 The development of enabling formulations is a key stage when demonstrating the effectiveness 8 9 10 of pharmaceutical cocrystals to maximize the oral bioavailability for poorly water soluble drugs. 11 12 Inhibition of drug crystallization from a supersaturated cocrystal solution through a fundamental 13 14 understanding of the nucleation and crystal growth is important. In this study, the influence of 15 16 17 the three polymers of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and a copolymer 18 19 of N-vinly-2-pyrrodidone (60%) and vinyl acetate (40%) (PVP-VA) on the flufenamic acid 20 21 22 (FFA) crystallization from three different supersaturated solutions of the pure FFA and two 23 24 cocrystals of FFA-NIC CO and FFA-TP CO has been investigated by measuring nucleation 25 26 induction times and desupersaturation rates in the presence and absence of seed crystals.
    [Show full text]
  • FDA-Approved Drugs with Potent in Vitro Antiviral Activity Against Severe Acute Respiratory Syndrome Coronavirus 2
    pharmaceuticals Article FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2 1, , 1, 2 1 Ahmed Mostafa * y , Ahmed Kandeil y , Yaseen A. M. M. Elshaier , Omnia Kutkat , Yassmin Moatasim 1, Adel A. Rashad 3 , Mahmoud Shehata 1 , Mokhtar R. Gomaa 1, Noura Mahrous 1, Sara H. Mahmoud 1, Mohamed GabAllah 1, Hisham Abbas 4 , Ahmed El Taweel 1, Ahmed E. Kayed 1, Mina Nabil Kamel 1, Mohamed El Sayes 1, Dina B. Mahmoud 5 , Rabeh El-Shesheny 1 , Ghazi Kayali 6,7,* and Mohamed A. Ali 1,* 1 Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; [email protected] (A.K.); [email protected] (O.K.); [email protected] (Y.M.); [email protected] (M.S.); [email protected] (M.R.G.); [email protected] (N.M.); [email protected] (S.H.M.); [email protected] (M.G.); [email protected] (A.E.T.); [email protected] (A.E.K.); [email protected] (M.N.K.); [email protected] (M.E.S.); [email protected] (R.E.-S.) 2 Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt; [email protected] 3 Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; [email protected] 4 Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt; [email protected] 5 Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt; [email protected] 6 Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA 7 Human Link, Baabda 1109, Lebanon * Correspondence: [email protected] (A.M.); [email protected] (G.K.); [email protected] (M.A.A.) Contributed equally to this work.
    [Show full text]
  • PRODUCT INFORMATION Mefenamic Acid Item No
    PRODUCT INFORMATION Mefenamic Acid Item No. 23650 CAS Registry No.: 61-68-7 OH Formal Name: 2-[(2,3-dimethylphenyl)amino]-benzoic acid O Synonyms: C.I. 473, CN 35355, NSC 94437 H C H NO MF: 15 15 2 N FW: 241.3 Purity: ≥98% Supplied as: A solid Storage: 4°C Stability: ≥1 year Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Mefenamic acid is supplied as a solid. A stock solution may be made by dissolving the mefenamic acid in the solvent of choice, which should be purged with an inert gas. Mefenamic acid is slightly soluble in DMSO and methanol. Description Mefenamic acid is a non-steroidal anti-inflammatory drug (NSAID) and a COX-2 inhibitor.1 It binds to COX-2 (Kd = 4 nM) and inhibits COX-2-dependent oxygenation of arachidonic acid (Item Nos. 90010 | 90010.1 | 10006607) in vitro (Ki = 10 µM). Mefenamic acid (30 mg/kg) reduces acetic acid-induced writhing in rats.2 It inhibits increases in skin thickness in a mouse model of delayed-type hypersensitivity induced by dinitrochlorobenzene (DNBC).2 Mefenamic acid also reduces the antibody response to sheep red blood cells in mice. References 1. Prusakiewicz, J.J., Duggan, K.C., Rouzer, C.A., et al. Differential sensitivity and mechanism of inhibition of COX-2 oxygenation of arachidonic acid and 2-arachidonoylglycerol by ibuprofen and mefenamic acid. Biochemistry 48(31), 7353-7355 (2009). 2. Roszkowski, A.P., Rooks, W.H., Tomolonis, A.J., et al. Anti-inflammatory and analgetic properties of d-2-(6’-methoxy-2’-naphthyl)-propionic acid (naproxen).
    [Show full text]
  • Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M
    Dentistry and Basic Non- Opioid Prescribing in Pain Dmitry M. Arbuck, MD President, Indiana Polyclinic Clinical Associate Professor of Psychiatry and Pain Management, Marian University College of Osteopathic Medicine Clinical Assistant Professor of Psychiatry and Medicine, IU School of Medicine www.IndianaPolyclinic.com Version May 2020 1 Disclosures No disclosures currently (May 7, 2020) 2 Disclaimer ISDH Oral Health Program Disclaimer for courses or presentations: The information provided in this course or presentation does not, and is not intended to, constitute dental, medical, or legal advice; instead, all information, content, and materials available in this course or presentation are for general informational purposes only. You should contact an outside dentist, physician, or attorney to obtain dental, medical, or legal advice and prior to acting, or refraining from acting, on the basis of information contained in this course or presentation. All liability with respect to actions taken or not taken based on the contents of this course or presentation are hereby expressly disclaimed. 3 Goals of Pain Management • Decrease pain • Increase function • Utilize medications that limit unacceptable side effects, including addiction 4 Goals of This Presentation • Gain knowledge of appropriate use of NSAIDs and acetaminophen for pain management in dentistry • Improve insight into benefits and adverse effects of various NSAIDs • Learn appropriate alternatives to opioid use for pain management 5 Opioids: Use with Caution • Use of opioids for
    [Show full text]
  • N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
    Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A.
    [Show full text]
  • Piroxicam 10Mg and 20Mg Capsules Celecoxib Or Acetylsalicylic Acid (Aspirin), a Not Known (Frequency Cannot Be Estimated No Longer Use
    • drowsiness Reporting of side effects • ringing in ears (tinnitus) If you get any side effects, talk to your doctor, • abdominal pain/discomfort pharmacist or nurse. This includes any possible • constipation side effects not listed in this leaflet. • diarrhoea Package leaflet: Information for the patient • wind You can also report side effects directly via the • feeling sick (nausea) Yellow Card Scheme at: Piroxicam 10mg and 20mg • being sick (vomiting) www.mhra.gov.uk/yellowcard or search for • indigestion MHRA Yellow Card in the Google Play or Apple Capsules • itching App Store. Read all of this leaflet carefully before 2 What you need to know before • skin rash By reporting side effects you can help provide • swelling of the feet, hands or other parts of you start taking this medicine because it you take Piroxicam capsules more information on the safety of this contains important information for you. the body (oedema) medicine. • weight increase. • Keep this leaflet. You may need to read Do not take Piroxicam capsules if you: it again. • are allergic to piroxicam or any of the other 5 How to store Piroxicam capsules Uncommon (may affect up to • If you have any further questions, ask ingredients of this medicine (listed in section 1 in 100 people): Keep this medicine out of the sight and reach 6); an allergic reaction to other NSAIDs or • blurred vision your doctor or pharmacist. of children. • This medicine has been prescribed for any other medications, especially serious • fast or pounding heartbeat Store below 25°C in a dry place. Protect from skin reactions (regardless of severity) such as • sore mouth and/or lips you only.
    [Show full text]
  • Big Pain Assays Aren't a Big Pain with the Raptor Biphenyl LC Column
    Featured Application: 231 Pain Management and Drugs of Abuse Compounds in under 10 Minutes by LC-MS/MS Big Pain Assays Aren’t a Big Pain with the Raptor Biphenyl LC Column • 231 compounds, 40+ isobars, 10 drug classes, 22 ESI- compounds in 10 minutes with 1 column. • A Raptor SPP LC column with time-tested Restek Biphenyl selectivity is the most versatile, multiclass-capable LC column available. • Achieve excellent separation of critical isobars with no tailing peaks. • Run fast and reliable high-throughput LC-MS/MS analyses with increased sensitivity using simple mobile phases. The use of pain management drugs is steadily increasing. As a result, hospital and reference labs are seeing an increase in patient samples that must be screened for a wide variety of pain management drugs to prevent drug abuse and to ensure patient safety and adherence to their medication regimen. Thera- peutic drug monitoring can be challenging due to the low cutoff levels, potential matrix interferences, and isobaric drug compounds. To address these chal- lenges, many drug testing facilities are turning to liquid chromatography coupled with mass spectrometry (LC-MS/MS) for its increased speed, sensitivity, and specificity. As shown in the analysis below, Restek’s Raptor Biphenyl column is ideal for developing successful LC-MS/MS pain medication screening methodologies. With its exceptionally high retention and unique selectivity, 231 multiclass drug compounds and metabolites—including over 40 isobars—can be analyzed in just 10 minutes. In addition, separate panels have been optimized on the Raptor Biphenyl column specifically for opioids, antianxiety drugs, barbiturates, NSAIDs and analgesics, antidepressants, antiepileptics, antipsychotics, hallucinogens, and stimulants for use during confirmation and quantitative analyses.
    [Show full text]
  • Flufenamic Acid, Mefenamic Acid and Niflumic Acid Inhibit Single Nonselective Cation Channels in the Rat Exocrine Pancreas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 268, number 1, 79-82 FEBS 08679 July 1990 Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas H. Gagelein*, D. Dahlem, H.C. Englert** and H.J. Lang** Max-Planck-Institutfir Biophysik, Kennedyallee 70, D-600 Frankfurt/Main 70, FRG Received 17 May 1990 The non-steroidal anti-inflammatory drugs, flufenamic acid, mefenamic acid and niflumic acid, block Ca2+-activated non-selective cation channels in inside-out patches from the basolateral membrane of rat exocrine pancreatic cells. Half-maximal inhibition was about 10 PM for flufenamic acid and mefenamic acid, whereas niflumic acid was less potent (IC,, about 50 PM). Indomethacin, aspirin, diltiazem and ibuprofen (100 /IM) had not effect. It is concluded that the inhibitory effect of flufenamate, mefenamate and niflumate is dependent on the specific structure, consisting of two phenyl rings linked by an amino bridge. Mefenamic acid; Flufenamic acid; Niflumic acid; Indomethacin; Non-selective cation channel; Rat exocrine pancreas 1. INTRODUCTION indomethacin, ibuprofen, diltiazem and acetylsalicylic acid (aspirin) were obtained from Sigma (Munich, FRG). The substances were dissolved in dimethylsulfoxide (DMSO, Merck, Darmstadt, FRG, Recently it was reported that the drug, 3 ’ ,5-dichloro- 0.1% of total volume) before addition to the measuring solution. diphenylamine-2-carboxylic acid (DCDPC), blocks DMSO alone had no effect on the single channel recordings. non-selective cation channels in the basolateral mem- 2.2. Methods brane of rat exocrine pancreatic cells [ 11.
    [Show full text]
  • Synthesis and Pharmacological Evaluation of Fenamate Analogues: 1,3,4-Oxadiazol-2-Ones and 1,3,4- Oxadiazole-2-Thiones
    Scientia Pharmaceutica (Sci. Pharm.) 71,331-356 (2003) O Osterreichische Apotheker-Verlagsgesellschaft m. b.H., Wien, Printed in Austria Synthesis and Pharmacological Evaluation of Fenamate Analogues: 1,3,4-Oxadiazol-2-ones and 1,3,4- Oxadiazole-2-thiones Aida A. ~l-~zzoun~'*,Yousreya A ~aklad',Herbert ~artsch~,~afaaA. 2aghary4, Waleed M. lbrahims, Mosaad S. ~oharned~. Pharmaceutical Sciences Dept. (Pharmaceutical Chemistry goup' and Pharmacology group2), National Research Center, Tahrir St. Dokki, Giza, Egypt. 3~nstitutflir Pharmazeutische Chemie, Pharrnazie Zentrum der Universitilt Wien. 4~harmaceuticalChemistry Dept. ,' Organic Chemistry Dept. , Helwan University , Faculty of Pharmacy, Ein Helwan Cairo, Egypt. Abstract A series of fenamate pyridyl or quinolinyl analogues of 1,3,4-oxadiazol-2-ones 5a-d and 6a-r, and 1,3,4-oxadiazole-2-thiones 5e-g and 6s-v, respectively, have been synthesized and evaluated for their analgesic (hot-plate) , antiinflammatory (carrageenin induced rat's paw edema) and ulcerogenic effects as well as plasma prostaglandin E2 (PGE2) level. The highest analgesic activity was achieved with compound 5a (0.5 ,0.6 ,0.7 mrnolkg b.wt.) in respect with mefenamic acid (0.4 mmollkg b.wt.). Compounds 6h, 61 and 5g showed 93, 88 and 84% inhibition, respectively on the carrageenan-induced rat's paw edema at dose level of O.lrnrnol/kg b.wt, compared with 58% inhibition of mefenamic acid (0.2mmoll kg b.wt.). Moreover, the highest inhibitory activity on plasma PGE2 level was displayed also with 6h, 61 and 5g (71, 70,68.5% respectively, 0.lmmolkg b.wt.) compared with indomethacin (60%, 0.01 mmolkg b.wt.) as a reference drug.
    [Show full text]
  • Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome
    International Journal of Molecular Sciences Review Role of Arachidonic Acid and Its Metabolites in the Biological and Clinical Manifestations of Idiopathic Nephrotic Syndrome Stefano Turolo 1,* , Alberto Edefonti 1 , Alessandra Mazzocchi 2, Marie Louise Syren 2, William Morello 1, Carlo Agostoni 2,3 and Giovanni Montini 1,2 1 Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico, Pediatric Nephrology, Dialysis and Transplant Unit, Via della Commenda 9, 20122 Milan, Italy; [email protected] (A.E.); [email protected] (W.M.); [email protected] (G.M.) 2 Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; [email protected] (A.M.); [email protected] (M.L.S.); [email protected] (C.A.) 3 Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pediatric Intermediate Care Unit, 20122 Milan, Italy * Correspondence: [email protected] Abstract: Studies concerning the role of arachidonic acid (AA) and its metabolites in kidney disease are scarce, and this applies in particular to idiopathic nephrotic syndrome (INS). INS is one of the most frequent glomerular diseases in childhood; it is characterized by T-lymphocyte dysfunction, alterations of pro- and anti-coagulant factor levels, and increased platelet count and aggregation, leading to thrombophilia. AA and its metabolites are involved in several biological processes. Herein, Citation: Turolo, S.; Edefonti, A.; we describe the main fields where they may play a significant role, particularly as it pertains to their Mazzocchi, A.; Syren, M.L.; effects on the kidney and the mechanisms underlying INS. AA and its metabolites influence cell Morello, W.; Agostoni, C.; Montini, G.
    [Show full text]
  • Acute Renal Failure Associated with Diflunisal J. G. WHARTON D. 0
    Postgrad Med J: first published as 10.1136/pgmj.58.676.104 on 1 February 1982. Downloaded from Postgraduate Medical Journal (February 1982) 58, 104-105 Acute renal failure associated with diflunisal J. G. WHARTON D. 0. OLIVER B.Sc., M.R.C.P. F.R.C.P., F.R.A.C.P. M. S. DUNNILL F.R.C.P., F.R.C.Path. Renal Unit, Churchill Hospital, and Department of Pathology, John Radcliffe Hospital, Oxford Summary eosinophils 224 x 106/1; ESR 30 mm/hr; urea 305 The case of a 44-year-old man with acute oliguric mmol/l; creatinine 1651 ,Lmol/l; potassium 6-43 renal failure due to tubulo-interstitial nephritis after mmol/l; serum amylase 88 Somogyi units; urine 3 months' diflunisal is reported. The possible mecha- contained no casts; no red cells but 10 neutrophils, nisms are discussed. no eosinophils and no growth. Antistreptolysin 0 titre 50 i.u./ml; IgG 16-5 g/l; IgA 3-8 g/l; IgM 1.1 g/l antinuclear factor negative; C3 122 mg/dl, C4 54Protected by copyright. Introduction mg/dl; hepatitis B surface antigen negative; chest Diflunisal has been reported as causing acute radiograph, cardiomegaly plus congestion; intra- allergic interstitial nephritis (Chan et al., 1980) venous urogram with tomograms, no obstruction, resulting in acute oliguric renal failure. A case of poor nephrogram. A renal biopsy showed tubulo- acute renal failure due to tubulo-interstitial nephritis interstitial nephritis with no eosinophil infiltrate. after 3 months of diflunisal is reported here. Recently, Diflunisal had been stopped 2 days before admission phenylakalonic acids with analgesic and anti- to this renal unit.
    [Show full text]